22 research outputs found

    Probability around the Quantum Gravity. Part 1: Pure Planar Gravity

    Full text link
    In this paper we study stochastic dynamics which leaves quantum gravity equilibrium distribution invariant. We start theoretical study of this dynamics (earlier it was only used for Monte-Carlo simulation). Main new results concern the existence and properties of local correlation functions in the thermodynamic limit. The study of dynamics constitutes a third part of the series of papers where more general class of processes were studied (but it is self-contained), those processes have some universal significance in probability and they cover most concrete processes, also they have many examples in computer science and biology. At the same time the paper can serve an introduction to quantum gravity for a probabilist: we give a rigorous exposition of quantum gravity in the planar pure gravity case. Mostly we use combinatorial techniques, instead of more popular in physics random matrix models, the central point is the famous α=7/2\alpha =-7/2 exponent.Comment: 40 pages, 11 figure

    Four-manifolds, geometries and knots

    Full text link
    The goal of this book is to characterize algebraically the closed 4-manifolds that fibre nontrivially or admit geometries in the sense of Thurston, or which are obtained by surgery on 2-knots, and to provide a reference for the topology of such manifolds and knots. The first chapter is purely algebraic. The rest of the book may be divided into three parts: general results on homotopy and surgery (Chapters 2-6), geometries and geometric decompositions (Chapters 7-13), and 2-knots (Chapters 14-18). In many cases the Euler characteristic, fundamental group and Stiefel-Whitney classes together form a complete system of invariants for the homotopy type of such manifolds, and the possible values of the invariants can be described explicitly. The strongest results are characterizations of manifolds which fibre homotopically over S^1 or an aspherical surface (up to homotopy equivalence) and infrasolvmanifolds (up to homeomorphism). As a consequence 2-knots whose groups are poly-Z are determined up to Gluck reconstruction and change of orientations by their groups alone. This book arose out of two earlier books "2-Knots and their Groups" and "The Algebraic Characterization of Geometric 4-Manifolds", published by Cambridge University Press for the Australian Mathematical Society and for the London Mathematical Society, respectively. About a quarter of the present text has been taken from these books, and I thank Cambridge University Press for their permission to use this material. The book has been revised in March 2007. For details see the end of the preface.Comment: This is the revised version published by Geometry & Topology Monographs in March 200

    Random Embeddings of Graphs: The Expected Number of Faces in Most Graphs is Logarithmic

    Full text link
    A random 2-cell embedding of a connected graph GG in some orientable surface is obtained by choosing a random local rotation around each vertex. Under this setup, the number of faces or the genus of the corresponding 2-cell embedding becomes a random variable. Random embeddings of two particular graph classes -- those of a bouquet of nn loops and those of nn parallel edges connecting two vertices -- have been extensively studied and are well-understood. However, little is known about more general graphs despite their important connections with central problems in mainstream mathematics and in theoretical physics (see [Lando & Zvonkin, Springer 2004]). There are also tight connections with problems in computing (random generation, approximation algorithms). The results of this paper, in particular, explain why Monte Carlo methods (see, e.g., [Gross & Tucker, Ann. NY Acad. Sci 1979] and [Gross & Rieper, JGT 1991]) cannot work for approximating the minimum genus of graphs. In his breakthrough work ([Stahl, JCTB 1991] and a series of other papers), Stahl developed the foundation of "random topological graph theory". Most of his results have been unsurpassed until today. In our work, we analyze the expected number of faces of random embeddings (equivalently, the average genus) of a graph GG. It was very recently shown [Campion Loth & Mohar, arXiv 2022] that for any graph GG, the expected number of faces is at most linear. We show that the actual expected number of faces is usually much smaller. In particular, we prove the following results: 1) 12lnn2<E[F(Kn)]3.65lnn\frac{1}{2}\ln n - 2 < \mathbb{E}[F(K_n)] \le 3.65\ln n, for nn sufficiently large. This greatly improves Stahl's n+lnnn+\ln n upper bound for this case. 2) For random models B(n,Δ)B(n,\Delta) containing only graphs, whose maximum degree is at most Δ\Delta, we show that the expected number of faces is Θ(lnn)\Theta(\ln n).Comment: 44 pages, 6 figure

    The combinatorics of the Jack parameter and the genus series for topological maps

    Get PDF
    Informally, a rooted map is a topologically pointed embedding of a graph in a surface. This thesis examines two problems in the enumerative theory of rooted maps. The b-Conjecture, due to Goulden and Jackson, predicts that structural similarities between the generating series for rooted orientable maps with respect to vertex-degree sequence, face-degree sequence, and number of edges, and the corresponding generating series for rooted locally orientable maps, can be explained by a unified enumerative theory. Both series specialize M(x,y,z;b), a series defined algebraically in terms of Jack symmetric functions, and the unified theory should be based on the existence of an appropriate integer valued invariant of rooted maps with respect to which M(x,y,z;b) is the generating series for locally orientable maps. The conjectured invariant should take the value zero when evaluated on orientable maps, and should take positive values when evaluated on non-orientable maps, but since it must also depend on rooting, it cannot be directly related to genus. A new family of candidate invariants, η, is described recursively in terms of root-edge deletion. Both the generating series for rooted maps with respect to η and an appropriate specialization of M satisfy the same differential equation with a unique solution. This shows that η gives the appropriate enumerative theory when vertex degrees are ignored, which is precisely the setting required by Goulden, Harer, and Jackson for an application to algebraic geometry. A functional equation satisfied by M and the existence of a bijection between rooted maps on the torus and a restricted set of rooted maps on the Klein bottle show that η has additional structural properties that are required of the conjectured invariant. The q-Conjecture, due to Jackson and Visentin, posits a natural combinatorial explanation, for a functional relationship between a generating series for rooted orientable maps and the corresponding generating series for 4-regular rooted orientable maps. The explanation should take the form of a bijection, ϕ, between appropriately decorated rooted orientable maps and 4-regular rooted orientable maps, and its restriction to undecorated maps is expected to be related to the medial construction. Previous attempts to identify ϕ have suffered from the fact that the existing derivations of the functional relationship involve inherently non-combinatorial steps, but the techniques used to analyze η suggest the possibility of a new derivation of the relationship that may be more suitable to combinatorial analysis. An examination of automorphisms that must be induced by ϕ gives evidence for a refinement of the functional relationship, and this leads to a more combinatorially refined conjecture. The refined conjecture is then reformulated algebraically so that its predictions can be tested numerically

    Progress in Surface Theory

    Get PDF
    The theory of surfaces is interpreted these days as a prototype of submanifold geometry and is characterized by the substantial application of PDE methods and methods from the theory of integrable systems, in addition to the more classical techniques from real and/or complex analysis. In addition, surfaces with singularities are studied intensively. In this workshop we brought together all the main strands of modern surface theory

    Thick hyperbolic 3-manifolds with bounded rank

    Full text link
    We construct a geometric decomposition for the convex core of a thick hyperbolic 3-manifold M with bounded rank. Corollaries include upper bounds in terms of rank and injectivity radius on the Heegaard genus of M and on the radius of any embedded ball in the convex core of M.Comment: 170 pages, 17 figure
    corecore