4,247 research outputs found

    Algebraic Properties of the Cube Attack

    Get PDF
    Cube attacks can be used to analyse and break cryptographic primitives that have an easy algebraic description. One example for such a primitive is the stream cipher /Trivium. In this article we give a new framework for cubes that are useful in the cryptanalytic context. In addition, we show how algebraic modelling of a cipher can greatly be improved when taking both cubes and linear equivalences between variables into account. When taking many instances of Trivium, we empirically show a saturation effect, i.e., the number of variables to model an attack will become constant for a given number of rounds. Moreover, we show how to systematically find cubes both for general primitives and also specifically for Trivium. For the latter, we have found all cubes up to round 446 and draw some conclusions on their evolution between rounds. All techniques in this article are general and can be applied to any cipher

    On Selection of Samples in Algebraic Attacks and a New Technique to Find Hidden Low Degree Equations

    Get PDF
    The best way of selecting samples in algebraic attacks against block ciphers is not well explored and understood. We introduce a simple strategy for selecting the plaintexts and demonstrate its strength by breaking reduced-round KATAN32 and LBlock. In both cases, we present a practical attack which outperforms previous attempts of algebraic cryptanalysis whose complexities were close to exhaustive search. The attack is based on the selection of samples using cube attack and ElimLin which was presented at FSE’12, and a new technique called Universal Proning. In the case of LBlock, we break 10 out of 32 rounds. In KATAN32, we break 78 out of 254 rounds. Unlike previous attempts which break smaller number of rounds, we do not guess any bit of the key and we only use structural properties of the cipher to be able to break a higher number of rounds with much lower complexity. We show that cube attacks owe their success to the same properties and therefore, can be used as a heuristic for selecting the samples in an algebraic attack. The performance of ElimLin is further enhanced by the new Universal Proning technique, which allows to discover linear equations that are not found by ElimLin

    On Selection of Samples in Algebraic Attacks and a New Technique to Find Hidden Low Degree Equations

    Get PDF
    The best way of selecting samples in algebraic attacks against block ciphers is not well explored and understood. We introduce a simple strategy for selecting the plaintexts and demonstrate its strength by breaking reduced-round KATAN, LBLOCK and SIMON. For each case, we present a practical attack on reduced round version which outperforms previous attempts of algebraic cryptanalysis whose complexities were close to exhaustive search. The attack is based on the selection of samples using cube attack and ELIMLIN which was presented at FSE'12, and a new technique called proning. In the case of LBLOCK, we break 10 out of 32 rounds. In KATAN, we break 78 out of 254 rounds. Unlike previous attempts which break smaller number of rounds, we do not guess any bit of the key and we only use structural properties of the cipher to be able to break a higher number of rounds with much lower complexity. We show that cube attacks owe their success to the same properties and therefore, can be used as a heuristic for selecting the samples in an algebraic attack. The performance of ELIMLIN is further enhanced by the new proning technique, which allows to discover linear equations that are not found by ELIMLIN

    Point compression for the trace zero subgroup over a small degree extension field

    Get PDF
    Using Semaev's summation polynomials, we derive a new equation for the Fq\mathbb{F}_q-rational points of the trace zero variety of an elliptic curve defined over Fq\mathbb{F}_q. Using this equation, we produce an optimal-size representation for such points. Our representation is compatible with scalar multiplication. We give a point compression algorithm to compute the representation and a decompression algorithm to recover the original point (up to some small ambiguity). The algorithms are efficient for trace zero varieties coming from small degree extension fields. We give explicit equations and discuss in detail the practically relevant cases of cubic and quintic field extensions.Comment: 23 pages, to appear in Designs, Codes and Cryptograph

    Cube Testers and Key Recovery Attacks On Reduced-Round MD6 and Trivium

    Get PDF
    CRYPTO 2008 saw the introduction of the hash function MD6 and of cube attacks, a type of algebraic attack applicable to cryptographic functions having a low-degree algebraic normal form over GF(2). This paper applies cube attacks to reduced round MD6, finding the full 128-bit key of a 14-round MD6 with complexity 2^22 (which takes less than a minute on a single PC). This is the best key recovery attack announced so far for MD6. We then introduce a new class of attacks called cube testers, based on efficient property-testing algorithms, and apply them to MD6 and to the stream cipher Trivium. Unlike the standard cube attacks, cube testers detect nonrandom behavior rather than performing key extraction, but they can also attack cryptographic schemes described by nonrandom polynomials of relatively high degree. Applied to MD6, cube testers detect nonrandomness over 18 rounds in 2^17 complexity; applied to a slightly modified version of the MD6 compression function, they can distinguish 66 rounds from random in 2^24 complexity. Cube testers give distinguishers on Trivium reduced to 790 rounds from random with 2^30 complexity and detect nonrandomness over 885 rounds in 2^27, improving on the original 767-round cube attack

    Goodwillie towers and chromatic homotopy: an overview

    Get PDF
    This paper is based on talks I gave in Nagoya and Kinosaki in August of 2003. I survey, from my own perspective, Goodwillie's work on towers associated to continuous functors between topological model categories, and then include a discussion of applications to periodic homotopy as in my work and the work of Arone-Mahowald.Comment: This is the version published by Geometry & Topology Monographs on 29 January 200

    Improved Division Property Based Cube Attacks Exploiting Algebraic Properties of Superpoly

    Get PDF
    The cube attack is an important technique for the cryptanalysis of symmetric key primitives, especially for stream ciphers. Aiming at recovering some secret key bits, the adversary reconstructs a superpoly with the secret key bits involved, by summing over a set of the plaintexts/IV which is called a cube. Traditional cube attack only exploits linear/quadratic superpolies. Moreover, for a long time after its proposal, the size of the cubes has been largely confined to an experimental range, e.g., typically 40. These limits were first overcome by the division property based cube attacks proposed by Todo et al. at CRYPTO 2017. Based on MILP modelled division property, for a cube (index set) II, they identify the small (index) subset JJ of the secret key bits involved in the resultant superpoly. During the precomputation phase which dominates the complexity of the cube attacks, 2|I|+|J|2|I|+|J| encryptions are required to recover the superpoly. Therefore, their attacks can only be available when the restriction |I|+|J|<n|I|+|J|<n is met. In this paper, we introduced several techniques to improve the division property based cube attacks by exploiting various algebraic properties of the superpoly. 1. We propose the ``flag'' technique to enhance the preciseness of MILP models so that the proper non-cube IV assignments can be identified to obtain a non-constant superpoly. 2. A degree evaluation algorithm is presented to upper bound the degree of the superpoly. With the knowledge of its degree, the superpoly can be recovered without constructing its whole truth table. This enables us to explore larger cubes II's even if |I|+|J|≥n|I|+|J|≥n. 3. We provide a term enumeration algorithm for finding the monomials of the superpoly, so that the complexity of many attacks can be further reduced. As an illustration, we apply our techniques to attack the initialization of several ciphers. To be specific, our key recovery attacks have mounted to 839-round TRIVIUM, 891-round Kreyvium, 184-round Grain-128a and 750-round ACORN respectively
    • …
    corecore