17,885 research outputs found

    Tensor Numerical Methods in Quantum Chemistry: from Hartree-Fock Energy to Excited States

    Get PDF
    We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, led to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(nlogn)O(n\log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n×n×nn\times n\times n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D ``density fitting`` scheme. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excited states, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is related to the recent attempts to develop a tensor-based Hartree-Fock numerical scheme for finite lattice-structured systems, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L×L×LL\times L\times L lattice manifests the linear in LL computational work, O(L)O(L), instead of the usual O(L3logL)O(L^3 \log L) scaling by the Ewald-type approaches

    A non-linear structure preserving matrix method for the low rank approximation of the Sylvester resultant matrix

    Get PDF
    A non-linear structure preserving matrix method for the computation of a structured low rank approximation S((f) over bar , (g) over bar) of the Sylvester resultant matrix S(f , g) of two inexact polynomials f = f(y) and g = g(y) is considered in this paper. It is shown that considerably improved results are obtained when f (y) and g(y) are processed prior to the computation of S((f) over bar , (g) over bar), and that these preprocessing operations introduce two parameters. These parameters can either be held constant during the computation of S((f) over bar , (g) over bar), which leads to a linear structure preserving matrix method, or they can be incremented during the computation of S((f) over bar, (g) over bar), which leads to a non-linear structure preserving matrix method. It is shown that the non-linear method yields a better structured low rank approximation of S((f) over bar , (g) over bar) and that the assignment of f (y) and g(y) is important because S((f) over bar , (g) over bar) may be a good structured low rank approximation of S(f, g), but S((f) over bar , (g) over bar) may be a poor structured low rank approximation of S (g f) because its numerical rank is not defined. Examples that illustrate the differences between the linear and non-linear structure preserving matrix methods, and the importance of the assignment off (y) and g(y), are shown. (C) 2010 Elsevier B.V. All rights reserved

    A quadratically convergent algorithm for structured low-rank approximation

    No full text

    Structured total least norm and approximate GCDs of inexact polynomials

    Get PDF
    The determination of an approximate greatest common divisor (GCD) of two inexact polynomials f=f(y) and g=g(y) arises in several applications, including signal processing and control. This approximate GCD can be obtained by computing a structured low rank approximation S*(f,g) of the Sylvester resultant matrix S(f,g). In this paper, the method of structured total least norm (STLN) is used to compute a low rank approximation of S(f,g), and it is shown that important issues that have a considerable effect on the approximate GCD have not been considered. For example, the established works only yield one matrix S*(f,g), and therefore one approximate GCD, but it is shown in this paper that a family of structured low rank approximations can be computed, each member of which yields a different approximate GCD. Examples that illustrate the importance of these and other issues are presented
    corecore