60,301 research outputs found

    Fragments of first-order logic over infinite words

    Get PDF
    We give topological and algebraic characterizations as well as language theoretic descriptions of the following subclasses of first-order logic FO[<] for omega-languages: Sigma_2, FO^2, the intersection of FO^2 and Sigma_2, and Delta_2 (and by duality Pi_2 and the intersection of FO^2 and Pi_2). These descriptions extend the respective results for finite words. In particular, we relate the above fragments to language classes of certain (unambiguous) polynomials. An immediate consequence is the decidability of the membership problem of these classes, but this was shown before by Wilke and Bojanczyk and is therefore not our main focus. The paper is about the interplay of algebraic, topological, and language theoretic properties.Comment: Conference version presented at 26th International Symposium on Theoretical Aspects of Computer Science, STACS 200

    Quantum logic and decohering histories

    Get PDF
    An introduction is given to an algebraic formulation and generalisation of the consistent histories approach to quantum theory. The main technical tool in this theory is an orthoalgebra of history propositions that serves as a generalised temporal analogue of the lattice of propositions of standard quantum logic. Particular emphasis is placed on those cases in which the history propositions can be represented by projection operators in a Hilbert space, and on the associated concept of a `history group'.Comment: 14 pages LaTeX; Writeup of lecture given at conference ``Theories of fundamental interactions'', Maynooth Eire 24--26 May 1995

    Positive Logic with Adjoint Modalities: Proof Theory, Semantics and Reasoning about Information

    Get PDF
    We consider a simple modal logic whose non-modal part has conjunction and disjunction as connectives and whose modalities come in adjoint pairs, but are not in general closure operators. Despite absence of negation and implication, and of axioms corresponding to the characteristic axioms of (e.g.) T, S4 and S5, such logics are useful, as shown in previous work by Baltag, Coecke and the first author, for encoding and reasoning about information and misinformation in multi-agent systems. For such a logic we present an algebraic semantics, using lattices with agent-indexed families of adjoint pairs of operators, and a cut-free sequent calculus. The calculus exploits operators on sequents, in the style of "nested" or "tree-sequent" calculi; cut-admissibility is shown by constructive syntactic methods. The applicability of the logic is illustrated by reasoning about the muddy children puzzle, for which the calculus is augmented with extra rules to express the facts of the muddy children scenario.Comment: This paper is the full version of the article that is to appear in the ENTCS proceedings of the 25th conference on the Mathematical Foundations of Programming Semantics (MFPS), April 2009, University of Oxfor

    Monadic Second-Order Logic with Arbitrary Monadic Predicates

    Full text link
    We study Monadic Second-Order Logic (MSO) over finite words, extended with (non-uniform arbitrary) monadic predicates. We show that it defines a class of languages that has algebraic, automata-theoretic and machine-independent characterizations. We consider the regularity question: given a language in this class, when is it regular? To answer this, we show a substitution property and the existence of a syntactical predicate. We give three applications. The first two are to give very simple proofs that the Straubing Conjecture holds for all fragments of MSO with monadic predicates, and that the Crane Beach Conjecture holds for MSO with monadic predicates. The third is to show that it is decidable whether a language defined by an MSO formula with morphic predicates is regular.Comment: Conference version: MFCS'14, Mathematical Foundations of Computer Science Journal version: ToCL'17, Transactions on Computational Logi
    corecore