3,054 research outputs found

    Algebraic Analysis of Bifurcation and Limit Cycles for Biological Systems

    Get PDF
    International audienceIn this paper, we show how to analyze bifurcation and limit cycles for biological systems by using an algebraic approach based on triangular decomposition, Gröbner bases, discriminant varieties, real solution classification, and quantifier elimination by partial CAD. The analysis of bifurcation and limit cycles for a concrete two-dimensional system, the self-assembling micelle system with chemical sinks, is presented in detail. It is proved that this system may have a focus of order 3, from which three limit cycles can be constructed by small perturbation. The applicability of our approach is further illustrated by the construction of limit cycles for a two-dimensional Kolmogorov prey-predator system and a three-dimensional Lotka-Volterra system

    The complexity of dynamics in small neural circuits

    Full text link
    Mean-field theory is a powerful tool for studying large neural networks. However, when the system is composed of a few neurons, macroscopic differences between the mean-field approximation and the real behavior of the network can arise. Here we introduce a study of the dynamics of a small firing-rate network with excitatory and inhibitory populations, in terms of local and global bifurcations of the neural activity. Our approach is analytically tractable in many respects, and sheds new light on the finite-size effects of the system. In particular, we focus on the formation of multiple branching solutions of the neural equations through spontaneous symmetry-breaking, since this phenomenon increases considerably the complexity of the dynamical behavior of the network. For these reasons, branching points may reveal important mechanisms through which neurons interact and process information, which are not accounted for by the mean-field approximation.Comment: 34 pages, 11 figures. Supplementary materials added, colors of figures 8 and 9 fixed, results unchange

    Shaping bursting by electrical coupling and noise

    Full text link
    Gap-junctional coupling is an important way of communication between neurons and other excitable cells. Strong electrical coupling synchronizes activity across cell ensembles. Surprisingly, in the presence of noise synchronous oscillations generated by an electrically coupled network may differ qualitatively from the oscillations produced by uncoupled individual cells forming the network. A prominent example of such behavior is the synchronized bursting in islets of Langerhans formed by pancreatic \beta-cells, which in isolation are known to exhibit irregular spiking. At the heart of this intriguing phenomenon lies denoising, a remarkable ability of electrical coupling to diminish the effects of noise acting on individual cells. In this paper, we derive quantitative estimates characterizing denoising in electrically coupled networks of conductance-based models of square wave bursting cells. Our analysis reveals the interplay of the intrinsic properties of the individual cells and network topology and their respective contributions to this important effect. In particular, we show that networks on graphs with large algebraic connectivity or small total effective resistance are better equipped for implementing denoising. As a by-product of the analysis of denoising, we analytically estimate the rate with which trajectories converge to the synchronization subspace and the stability of the latter to random perturbations. These estimates reveal the role of the network topology in synchronization. The analysis is complemented by numerical simulations of electrically coupled conductance-based networks. Taken together, these results explain the mechanisms underlying synchronization and denoising in an important class of biological models
    • …
    corecore