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We report an interesting symmetry-breaking transition in coupled identical oscillators, namely, the continuous
transition from homogeneous to inhomogeneous limit cycle oscillations. The observed transition is the oscillatory
analog of the Turing-type symmetry-breaking transition from amplitude death (i.e., stable homogeneous steady
state) to oscillation death (i.e., stable inhomogeneous steady state). This novel transition occurs in the parametric
zone of occurrence of thythmogenesis and oscillation death as a consequence of the presence of local filtering in
the coupling path. We consider paradigmatic oscillators, such as Stuart-Landau and van der Pol oscillators, under
mean-field coupling with low-pass or all-pass filtered self-feedback and through a rigorous bifurcation analysis
we explore the genesis of this transition. Further, we experimentally demonstrate the observed transition, which
establishes its robustness in the presence of parameter fluctuations and noise.

DOLI: 10.1103/PhysRevE.97.042218

I. INTRODUCTION

Cooperative phenomena in coupled oscillators have been
an active topic of extensive research in the field of physics, bi-
ology, engineering, and social science [1]. Coupled oscillators
show several cooperative behaviors such as synchronization,
phase locking, and oscillation quenching [2]. In this context
the spontaneous symmetry-breaking transition from a stable
homogeneous steady state (HSS) [also known as the amplitude
death (AD) state] to a stable inhomogeneous steady state
(IHSS) [also known as the oscillation death (OD) state] discov-
ered by Koseska er al. [3] has been in the center of recent in-
terest. They considered two diffusively coupled Stuart-Landau
oscillators with parameter mismatch and established that the
symmetry-breaking transition from AD to OD state is equiva-
lent to the Turing-type bifurcation [4] that occurs in spatially
extended systems. Later, this transition has also been observed
under several coupling schemes in coupled identical oscillators
[5-12] (see Ref. [13] for an elaborate review). It was also
experimentally observed in coupled electronic oscillators [14].

The above mentioned AD-OD transition is due to the
symmetry breaking in steady states. Therefore, the next natural
question arises if there exists a similar symmetry-breaking
transition in limit cycle (LC) oscillations also? More specifi-
cally, we are interested to explore the transition from a stable
homogeneous limit cycle (HLC) to a stable inhomogeneous
limit cycle (IHLC) (or vice versa) in coupled identical os-
cillators. Identification and understanding of this transition
is important as it may shed light on the genesis of another
significant symmetry-breaking state, namely, the amplitude
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chimera [15], which is the spatiotemporal coexistence of
(unstable) IHLC and HLC in a network of coupled identical
oscillators. Further, it may improve our understanding of
various biological processes, like cellular differentiations [16],
where a transition occurs from homogeneity to inhomogeneity.
Earlier, Koseska et al. [3] observed a transition from HLC to
IHLC in Stuart-Landau oscillators under diffusive coupling,
but that transition essentially resulted from the parameter
mismatch; also, it occurs around the homogeneous steady state
and has no connection with the symmetry-breaking branches
of OD. To the best of our knowledge the symmetry-breaking
transition from HLC to IHLC has not been observed in coupled
identical oscillators. In this context it should be mentioned that
this symmetry-breaking transition from HLC to IHLC should
not be confused with the observation of Ref. [17] where the
authors observed a sudden transition from HLC to IHLC in a
network of genetic oscillators under phase repulsive coupling:
that transition resulted from the presence of multistability
instead of symmetry breaking in a limit cycle.

In this paper, we indeed observe the symmetry-breaking
transition from HLC to IHLC in coupled identical paradig-
matic oscillators under mean-field coupling with an additional
filter in the self-feedback path. We identify that the IHLC-HLC
transition arises due to the interplay of mean-field coupling
and the local filtering. In earlier studies it has been established
that the mean-field coupling can induce AD, OD, and AD-
OD transition even in identical coupled oscillators [9,14].
The mean-field coupling is very much relevant in biology
and physics; e.g., in the context of genetic oscillators the
diffusion of autoinducer molecules through the cell membrane
is governed by the mean-field coupling with a quorum-sensing
mechanism [17,18]. On the other hand, in practical coupling
path a signal may suffer dispersion and attenuation due to the
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change in phase and amplitude of the signal, respectively. If a
signal suffers both dispersion and attenuation the coupling path
(or channel) is said to act as a low-pass filter (LPF); whereas, if
only dispersion occurs without any change in amplitude (i.e.,
the case of zero attenuation), the channel may be modeled as
an all-pass filter (APF). LPFs are omnipresent in electrical and
biological networks. Examples include the musculoskeletal
system of human body which has an in-built local low-pass
filtering system [19], the abdominal ganglion of the crayfish
contains LPFs [20], and a LPF being an essential building block
of phase-locked loops [21]. On the other hand, APFs have wide
applications in electronic communication systems as active
phase shifters [22]. In hyperchaotic time-delayed systems the
application of APF as time-delay block has recently been
established [23]. In biological and electrical networks where
time delay or phase shift occurs without any attenuation, the
notion of all-pass filtering is very much relevant: for example,
in neuronal systems, action potential propagates without any
attenuation due to the perfect balance created by ion pumps
and protein channels [24], and in electronic communication
systems, hubs or local amplifiers are used to preserve the
signal amplitude. However, in those cases, the signal invariably
experiences a time delay or phase shift.

The effect of a LPF has already been studied in the context of
synchronization [25,26]. Recently, Zou et al. [27] established
that the presence of a LPF in the self-feedback path provides a
general mechanism for rhythmogenesis, which is an important
phenomenon as the cessation of oscillation often leads to a fatal
system degradation and an irrecoverable malfunctioning in
many physical, biological, and physiological systems [28-30].
They considered diffusive coupling and show that depending
upon time-delay or parameter mismatch the cutoff frequency
of the LPF can control rhythmogenesis. However, a detailed
bifurcation analysis is required in order to understand the exact
genesis of rhythmogenesis. On the other hand, hitherto the
effect of an all-pass filter on the dynamics of coupled oscillators
has not been studied.

In this paper we consider the effect of both low-pass and
all-pass filtering and show that the IHLC-HLC transition is the
consequence of the local filtering. With a rigorous bifurcation
analysis we show that depending upon the interplay of filter
and coupling parameters, the system at first goes through an
AD-OD transition with increasing coupling strength, and then
the inhomogeneous stable steady state branches of the OD
state become unstable through supercritical Hopf bifurcation
giving rise to stable IHLC; this stable IHLC then experiences a
pitchfork bifurcation of the limit cycle (PBLC) and gives rise to
a HLC. Conversely, if one starts from a large coupling strength
a HLC continuously transforms into IHLC through a PBLC.
We also experimentally demonstrate the IHLC-HLC transition
using van der Pol oscillators that proves the robustness of the
transition scenario.

II. EFFECT OF LOCAL FILTERING
IN STUART-LANDAU OSCILLATORS

A. Low-pass filter

We consider two Stuart-Landau oscillators interacting
through mean-field diffusive coupling with local low-pass

filtering. The mathematical model of the coupled system is
given by

Zi=(+iw;, —|Z;MZ; +e(QZ - S;), (la)
S; = a[—S; +Re(Z))] (1b)

with j =1,2; Z = %Z?:l Re(Z;) is the mean field of the
coupled system, Z; = x; +iy;. The individual Stuart-Landau
oscillators have unit amplitude and eigenfrequency w; (in the
rest of the paper we consider w; = w, i.e., oscillators have the
same eigenfrequency). € represents the coupling strength, and
Q controls the density of mean-field [18,31-33]; 0 < O < 1.
Equation (1b) governs the dynamics of a LPF whose input
is Re(Z;): here S; represents the output of the LPF and « is
the cutoff frequency or corner frequency. The limit « — oo
represents the unfiltered case as then §; = Re(Z;); smaller
o imposes a stronger filtering effect because then higher
frequencies and their harmonics get strongly attenuated.
Equation (1) has the following fixed points: the origin
(0,0,0,0,0,0) as the trivial fixed point, and additionally two
coupling-dependent nontrivial fixed points: (1) Inhomoge-
neous steady state (IHSS) F;pyss = (x*, y*, —x*, —y*, x¥,

)* - 2 2 _ 2
—x*), where x* = _#y*z and y* =+ /(EZM;—G ve—dw?

(2) Nontrivial homogeneous steady state Fypss = (xf,
i1
wy

_ L
oy d =

yT, xf, yT, xt, x1), where xT =

iJ c(1-0)-202+/(€ — €Q)* — 4w?

2¢(1-0)

We can write the fixed points of the system as (x™, y™, Px™,
Py™, x™, Px™),where {x" = 0,y™ = 0} gives the trivial fixed
point, {m = %, P = —1} represents the F;gss and {m = {,
P =1} gives Fypuss. The Jacobian matrix of the system at
the fixed point (x™, y™, Px™, Py™, x™, Px™) is

A Ap % 0 B, O
Ay Ax 0 0 0 0
L 0 Ay An 0 By

= 2
J 0 0 Ay Ax 0 ol 2)
o 0 0 0 —a 0
0 0 o 0 0 —a
where A1 =(1 —3x’”2—y’"2+%), By =—¢, A=

(—2x"y™ — w), Ay; = (@ — 2x™"y™), and A = (1 — X% —
3y™2). Note that although & has no effect on the fixed points it
affects their stability as the coefficients of the Jacobian matrix
contains o-dependent terms.

To derive the bifurcation points, we write the characteristic
equation of the system at the fixed point (x™, y™, Px™, Py™,
x™, Px™) as

W+ PoA2 + Pia+ Po)(WP + PoA2 + PIA+ P =0, (3)

where

Py= 244" —cQ+a, (42)
Pi=1+al4r" —2+ el — Q)]+’

3 =4 4 eQ(1 — X = 3y™),  (4b)
Py = o[l —4r"% 4 37

to? —e(l— Q)1 —x"=3y"H)],  (4o)
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FIG. 1. (a) Bifurcation diagram with € (using XPPAUT) for Q = 0.5, « = 8, and w = 2 [Eq. (1)]. Gray (red) lines: stable fixed points,
black lines: unstable fixed points, solid circle (green): stable limit cycle, open circle (blue): unstable limit cycle. HB{1,2,3,4} and PB{1,2,S}
are Hopf and pitchfork bifurcation points, respectively. (b) Zoomed-in view of the transition from stable IHLC to HLC; PBLC denotes the
pitchfork bifurcation of limit cycle. (c) Phase space representation of the symmetry breaking in limit cycle: Transition from stable HLC (lower
panel, € = 14.78) to stable IHLC (upper panel, € = 14.9) through PBLC. Upper panel: Oscillator with j =1 (j = 2) is denoted as OSC-1
(OSC-2) and unstable limit cycle is shown in open circle (blue). (d) Time series of y; (solid line) and y, (dotted line) showing AD (e = 4.3),
OD (¢ = 6), IHLC (¢ = 14.78), and HLC (¢ = 14.9). Note that the IHLCs are in phase with each other.

Py=a—2+4m, (4d)
Pl = aldr™ —2 4 €]+ 1 4 37

— 4" 4 02, (4e)
Py =afl - 4rm% 4 34 4 o

—e(1—x" =3y")], (4

where 2 = (x"2 + y™?). From the close inspection of the
fixed points one can find two pitchfork bifurcations (PBs) given
by PB1 and PB2 occurring at

2 1+ o

epp1 =1+ w7, EPBz—l_Q. )
IHSS emerges at epp;. PB2 gives rise to a nontrivial HSS
state. These two results are the same as those from the mean-
field coupled Stuart-Landau oscillators (without filtering) [9].
It is noteworthy that the occurrence of PB1 and PB2 does not
depend upon «; rather, as we will see later, o controls their
stability.

Before we proceed further with the stability analysis let us
look at the bifurcation scenario (using XPPAUT [34]) with a
representative value of 0 = 0.5 and o = 8. Without any loss of
generality in this paper we consider w = 2. Figure 1(a) shows
that, with increasing ¢, the coupled system experiences an
inverse Hopf bifurcation at €y g; and an AD state emerges. With
further increase in €, this AD state transforms into an OD state
through a pitchfork bifurcation at €pg,. The inhomogeneous
steady state branches of the OD state loss their stability through
the Hopf bifurcation (HB2) at €y 5, and give rise to two stable
inhomogeneous limit cycles (IHLCs). This is in sharp contrast
to the mean-field coupled oscillators of Ref. [9] where the OD
branches, once created, remain stable for increasing coupling
strength. Also, an additional Hopf bifurcation (HB3) of the

trivial steady state emerges and gives birth to an unstable
limit cycle. Interestingly, the stable IHLCs from HB2 collide
with the unstable HLC created from HB3, and this collision
creates a stable HLC through a pitchfork bifurcation of the
limit cycle (PBLC) [see Fig. 1(b) for a zoomed-in view]. Here
the role of « is twofold: it makes the OD branches unstable
and perfectly organizes the location of HB2 and HB3 such that
they govern the PBLC that creates the transition from IHLC
to HLC.

This transition can be visualized more clearly for a decreas-
ing €. Figure 1(c) shows the phase-space plot of the symmetry-
breaking bifurcation of limit cycle: for € > €pp; ¢ one has a
stable HLC (lower panel, € = 14.9). Now, if we decrease €, the
HLC experiences a PBLC and gives rise to two IHLCs (shown
in green solid circles in the upper panel, ¢ = 14.78) and the
HLC itself becomes unstable (shown in blue open circle). The
IHLCs are then transformed into OD through HB2 and the
unstable HLC disappears at HB3 [see Fig. 1(a)]. Therefore,
HB2 and HB3 act as perfect hosts for the IHLCs and the
unstable HLC, respectively. Another interesting limit cycle
oscillation emerges through Hopf bifurcation (HB4) from the
nontrivial HSS (NHSS) branches (created by a subcritical
pitchfork bifurcation) [see Fig. 1(a)]. This is a bistable LC as
depending upon the initial conditions both oscillators oscillate
in either the upper or lower branch. Therefore, this LC can be
denoted as a nontrivial homogeneous limit cycle (NT-HLC).
However, we find that a slight asymmetry in the coupled
systems (e.g., parameter mismatch) causes the NT-HLC to
vanish. Finally, the time series of y; , at different dynamical
states with representative values of € are shown in Fig. 1(d)
(with @ = 0.5 and o = 8): apart from AD and OD it shows
the IHLCs, i.e., limit cycles with shifted origin (for e = 14.78)
and HLC, i.e., limit cycles around zero origin (for € = 14.9).
Note that the IHLCs are in phase with each other, which is
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expected as the oscillators are identical and coupled under a
symmetric mean-field coupling.

To understand the role of o quantitatively, we derive the
important bifurcation curves using the characteristic equation
(3). Since (3) is a sixth-order polynomial it is difficult to extract
bifurcation points from the eigenvalue analysis. Therefore,
we use the technique used in Ref. [35], where it has been
shown that one can predict the Hopf bifurcation points from the
coefficients of the characteristic equation itself. From (3) the
analytical expressions of HB1 and HB3 are obtained by putting
| PPy — PO|(x’":0,y’”:O) = 0 (note that HB1 and HB3 are the
bifurcation points associated with the trivial fixed point x” =
0,y™ = 0). From Eq. (4), using P, = (-2 —-€Q +a), P| =
a{24+ec(1-0)}+14+eQ0+w? Ph=0afl +w?> —e(l —
Q)} we derive

—Bugs — v Bugs® —4Aup3Cups

= 6
oHBI Anm (6a)
o on —Bpps + v Buss® — 4Ans3Chps (6b)

HB3 A ,

where Ayps =€ —(€Q +2), Bups =(€Q+2)* —e(eQ + 1),
Cups = —(€0 +2)(1 + &* +€Q).

Since HB?2 is associated with the IHSS branch of OD, its
locus is obtained by using | P, P, — Pyl 7, = 0, yielding

—Buyps + v B — 4AupCup

= , 7
QHB2 241 m @)
where
8w?
Appr=2+¢€(1 - Q) — ,
Ly
2(4 + 10
Bupr = Apg® + €20 + Qw* — € —4e) + M,
Ly
Ro*  20*€Q —2)
Cupr = |0’ (1 +20)—QLyp + —— +
LHB2 LHBZ

X (App2 — €),
LHBZ = (E + vV 62 — 4(1)2).

Similarly, the locus of HB4 is obtained by using |P; P, —
Polry,ss = 0, which gives

s —Brps+ v Bups® — 4AnpsCrpa )
B 2AmB4 ’

where  Apps=2+e(l1 - Q) — %, Brps = Anps® —

201 _ _ 20? ®*{44+10e(1—Q)} _ ro*(14+0)
- —de+ 525+ (1oL  Cus=1Tg
OLyps

“ | 2002
-0 T Rot, 4 200 (Ayps—€), and  Lpyps =

Lyga® Lupa
[e(1 — Q)+ VeX(1 — 0)* — 4a?].
Figure 2(a) shows the two-parameter bifurcation curves in
the e-a space for Q = 0.5 [using XPPAUT and the analytical
results obtained in Eqgs. (5)—(8)]. It demonstrates that the zone
of the death region (determined by the HB1 and HB2 curves)
decreases with decreasing «. The OD state loses its stability
through HB2 with an increasing €. In the absence of filtering
a — o0 and €, —> 00, therefore, in the unfiltered case the

10

12

FIG. 2. (a) Low-pass filtering: Two-parameter bifurcation dia-
gram for Stuart-Landau oscillators of (1) (Q = 0.5). IHLC occurs
in the dark gray (green) shaded region bounded by HB2 and PBLC
curve. Yellow shaded region is for « > «;. Inset: A zoomed-in
view of the IHLC-HLC transition. White or yellow shaded region
is for limit cycle. (b) Single-parameter bifurcation for « = 6.2 (i.e.,
oy < a < o). Note that IHLC now becomes unstable although HLC
is stable. (c) Bifurcation for ¢ = 5.5 (i.e., ¢* < o < ap): asingle OD
region exists between two HB2. Here w = 2.

OD state never losses its stability with increasing e: as a con-
sequence, neither rhythmogenesis nor IHLC-HLC transition
occurs without filtering. As we decrease the cutoff frequency
o, the OD state loses stability through Hopf bifurcation (HB2)
for lower values of €y g». Let us investigate the subtlety of the
IHLC-HLC transition scenario in more detail. Based upon the
value of o, we identify four distinct dynamical regions.

(1) @ > oy, IHLC-HLC transition: In this region the tran-
sition from IHLC to HLC occurs. Here «; is the value of « for
which HB3 and HB4 collide with PB2. This can be derived
from (6b), (8), and (5) as

_ —B, £ B,> —4A,C,
- 24,

) ©)

(241

where Ay = (1 — 0*)(Q — 1)?, By = (0 = 3)(*Q + 1) —
0%w? — 12440, and C, = (0*+ D[(@*—1)Q +2].
Note that although the THLC-HLC transition is the result
of the bifurcation of the limit cycle, however, its stability is
controlled by the bifurcation of the fixed points, i.e., HB3,
HB4 and PB2. In Fig. 2(a) the zone of IHLC is bounded
between the HB2 and PBLC curves [shown with dark gray
(green) shading; see also the inset]; HLC appears below
the PBLC curve. For o > «, with the variation of ¢, the
IHLC-HLC transition is bounded by the PBLC curve and the
line of « = o) [here oy = 7 using (9) for 0 = 0.5and w = 2]:
this zone is shown in yellow shading for visual guidance.
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FIG. 3. Stuart-Landau oscillator with LPF. (a) Two-parameter
bifurcation diagram in the € — Q space for an unfiltered case (¢ =
o, — o0) and LPF with @ = 8. For O < Q; IHLC to HLC transition
occurs near the HB2 curve (highlighted in green). White or yellow
shaded region is for limit cycle. (b) Effect of & on the rhythmogenesis:
Shown are the critical curves for « = «, (i.e., unfiltered case), o =
8,4,2. Area under the curve represents the death region: the death
region is quenched with decreasing «. (c) The curve in the Q- space
showing the zone of the IHLC-HLC transition. Here @ = 2.

Figure 1(a) shows the bifurcation diagram in this region for a
representative value o = 8.

(2) ar < a < «aq, unstable IHLC, stable HLC: At o = >,
HB3 collides with PB1. Its value can be derived from (6b)
and (5) (expression not shown here). In this region the THLC
becomes unstable and the Hopf bifurcation HB2 is now a
subcritical one. However, the unstable LC originated from HB3
still collides with the unstable LC emanated from HB2 and
gives a stable HLC for € > €ppc. Therefore, in this (narrow)
region of & we do not have the (stable) IHLC-HLC transition;
Fig. 2(b) shows this scenario for « = 6.2.

(3) o* < o < oy a* represents the minima of the HB2
curve [see Fig. 2(a)], which can be derived by minimizing
(7). Here the HB2 curve becomes multivalued for a single «.
Figure 2(c) shows the representative bifurcation diagram in this
region (for « = 5.5). Here no AD-OD transition is possible,
instead a solitary OD region is interspersed in the limit cycles.

(4) o < a*: Complete rhythmogenesis, i.e., the system
enters into oscillatory state for any coupling strength.

Next, we explore the effect of o in the ¢ — Q parameter
space. Figure 3(a) shows this for two cases: one is without
any local filtering, i.e., « = o, — 00, and the other is shown
with local LPF for « = 8. Note the effect of o in order to
create an oscillation from the OD branch: it actually bends
the HB2 and HB3 curves of the conventional (i.e., unfiltered)
case downwards to create an oscillation and therefore induces
rhythmogenesis with increasing €. We get the IHLC-HLC tran-
sition for Q < Q;, where Q; is the value where the HB3 and

HB4 curves collide with the PB2 curve. The rhythmogenesis
is actually facilitated by decreasing «. Figure 3(b) shows that
the zone of the death region is quenched with decreasing «.
The parameter zone of observing the IHLC-HLC transition
is shown in Fig. 3(c) in the Q-o parameter space [using
Eq. (9)]: from this we can prescribe the condition for observing
HLC-IHLC transition: vary € with @ > «; and Q < Q; (i.e.,
the upper part of the Q- curve).

B. All-pass filter

Next, we investigate the effect of an all-pass filter in the
local feedback path. The mathematical model of the coupled
Stuart-Landau oscillators under mean-field coupling and an
all-pass filter is then given by

Zi=(+4iw, —1Z,)Z; +e(QZ - U;), (10a)
S; = a[—S; +Re(Z))], (10b)
Uj =2S; —Re(Z)). (10c)

Equation (10) is a differential-algebraic equation that governs
the dynamics of an all-pass filter (APF) whose inputis Re(Z):
here U; is the output of the APF. In this case also « has the
same meaning as (1b), however, it has a different effect on U;:
a does not change the amplitude of U; but it only controls
the phase part (see Appendix A). Equation (10) has the same
set of fixed points as Eq. (1), however, the Jacobian matrix of
(10) is modified from (2) as now the elements A; and By
become A = (1 —3x™% — y"? + %) + € and B;; = —2¢;
other elements remain the same.

An analysis in line of the previous subsection reveals that
all the steady state bifurcation points are the same as those
of the LPF case given in (5). The two-parameter bifurcation
structure in the € — & space is shown in Fig. 4(a) (for Q = 0.5)
using XPPAUT and analytically obtained bifurcation curves
(expressions are given in Appendix B). It can be observed
that the qualitative structure of the Hopf curves in the two-
parameter space remains the same as that of the LPF case
[Fig. 2(a)], except the fact that now the minima of the curve
HBI1 determines «*, the value of « below which complete
rhythmogenesis sets in. In this case there also exists a value of
o where the HB3 and HB4 curves collide with the PB2 line:
for an « greater than this value (shown with horizontal dashed
line) the system shows an IHLC-HLC transition. Figure 4(b)
demonstrates the transition from IHLC to HLC for increasing
€ for @ = 20 (Q = 0.5). Figure 4(c) shows the bifurcation for
o = 10.85, which shows a solitary AD state interspersed in
the limit cycle region, because here the HB1 curve becomes
multivalued; this is in contrast to the LPF case, where we get
a solitary OD region due to the multivalued HB2 curve [see
Fig. 2(c)].

Further, it is noteworthy that for the parameters the same
as in the LPF case, an APF can revoke the death states even
for a comparatively higher value of . Note that a lesser
o (i.e., a lesser cutoff frequency) means a stronger filtering
effect. Therefore, even a weaker all-pass filtering is equivalent
to a comparatively stronger low-pass filtering as far as the
rhythmogenesis is concerned. This is due to the fact that for a
given « the phase shift introduced by an APF is twice of that
of a LPF (see Appendix A).

042218-5



BANERIJEE, BISWAS, GHOSH, BANDYOPADHYAY, AND KURTHS

PHYSICAL REVIEW E 97, 042218 (2018)

(a)
21}
@
st
S15f
b92
( )1 IHLC"; (C) —

o f/’é"r = A
S 0 {3347: 0 gy
P _1 «=10.85

2 10 2 4 6

FIG. 4. (a) All-pass filtering: Two-parameter bifurcation diagram
of Stuart-Landau oscillators of (10) in the e-o parameter space for
Q = 0.5. Inset: azoomed-in view of the [IHLC-HLC transition. White
or yellow shaded region is for limit cycle. (b) Single-parameter bi-
furcation for @ = 20. Note the IHLC-HLC transition through PBLC.
(c) Bifurcation for « = 10.85; a single AD region exists between two
HBI1 points. Other parameter: @ = 2.

III. EFFECT OF LOCAL FILTERING
IN VAN DER POL OSCILLATORS

To verify the generality of the observed transitions, we
consider two van der Pol (vdP) oscillators interacting through
mean-field diffusive coupling with local filtering; the mathe-
matical model of the coupled system is given by

Xj =y +e(QX — F)), (11a)
y; =a(l —x;%)y; — x;, (11b)
S; = a(=S; +x). (11c)

Here j = 1,2. F; represents the filtered local feedback term:
for a LPE, F; = S, and for an APF, F; = (25; —x;). X =
% Z§:1 x is the mean-field term. The parameter a determines
the amplitude and shape of the oscillations. Equation (11)
has the following fixed points: the trivial fixed point is the
origin (0,0,0,0,0,0) and two coupling-dependent fixed points:
(1) (x*, y*, —x*, —y*, x*, —x*) where x* = y? and y* =
Vet —<iand (2) (1, yi, xT, yf, xT, 6(1)—_TQ)

and y! =\/62(1 - 0)? — @ The Jacobian matrix of the
system at a fixed point is given by

Ay Ap £ 0 By 0
Ay Axn 0 0 0 0
% 0 A Ap 0 By
0 0 Ay Ax 0 ol
o 0 0 0 —a 0
0 0 o 0 0 —o

xt) where xT =

12)

1 .8 T HLC—
THLC—~

HB2

PBLC/

2
975 980 985

t 990 995

0 7 14
€

FIG. 5. Bifurcation diagram for van der Pol oscillators [Eq. (11)].
o =4, Q = 0.3. Inset shows the transitions between the following
regions: AD (e = 2), OD (e = 10), IHLC (¢ = 11), and HLC (¢ =
12.96). Here a = 0.4.

where Ajp =1, Ay = (=2ax"y™ — 1), Ap =a(l —x™?)
(we use the same sign convention as in (2)). For a LPF,
A= % and B;; = —e, whereas for an APF, A = % +€
and By} = —2e¢. One can derive the bifurcation points in line
of the analysis of the previous section. Through a detailed
bifurcation analysis, we find that in the case of vdP oscillators
the bifurcation scenarios and the IHLC-HLC transition remain
qualitatively the same as those of the Stuart-Landau oscillator.
Figure 5 shows the representative bifurcation diagram with
LPFs (fora = 4) (we take a = 0.4 and Q = 0.3); it shows the
IHLC to HLC transition through PBLC. The inset of Fig. 5
demonstrates the time series depicting the AD, OD, IHLC, and
HLC for increasing €. For an APF we get the same transition
scenario for a properly chosen value of « (results not shown
here).

IV. EXPERIMENT

The coupled system of Eq. (11) is implemented in an
electronic circuit [36]. The schematic of the circuit diagram
is given in Fig. 6. The individual van der Pol oscillators are
shown in the shaded regions of the figure labeled “vdP1” and
“vdP2”. The vdP oscillators are coupled through the mean-
field coupling scheme along with local filtering (low-pass or
all-pass). We replace the box labeled “FILTER” by LPF or
APF. The circuit of LPF and APF are shown in the inset of the
figure. The outputs from the individual vdP oscillators are fed
to an weighted inverting adder AQ which produces the mean
field given by Vp = 2RQ Z i1 " . The coupling strength is
controlled by the res1stances R..

The voltage equation of the circuit of Fig. 6 can be written as

2Ry
CRV, = Vy; + —[ ¢ X,}, (13a)
. R & Vyy
CRVyj = —(Va =75 ) 75 = Vi (13b)
: CR
CRSy = oo (=S + Vi), (13¢)
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FIG. 6. Experimental electronic circuit diagram of coupled van
der Pol (vdP) oscillators of Eq. (13). A1-A4, A, and AQ are TL074
opamps. The buffers “B” are opamp based, and inverters are realized
using unity-gain inverting amplifiers. M1-M4 are multiplier chips
(AD633JN). In the box labeled “FILTER” we use either LPF or APF,
which are shown in insets (a) and (b), respectively. R = 10k, R, =
2862, C =10nF, C, =0.1 uF, R, =2.2kQ,and V, = 0.1 V. The
resistors (capacitors) have +5% (£1%) tolerance. We use a =15 V
power supply.

where j =1,2. For a LPF, F,; =S,; and for an APF,

Fj =28, — Vyj). We consider the following identities to
normalize Eq. (13): € = &, O = 2& ,a= 100R , 10V, =1,
o= RIEEL Xj= %, yj = V" , and S —L . Here Vi is the

sat

saturation voltage of the opamp With these quantltles Eq. (13)
becomes equivalent to Eq. (11). In the experiment we choose
the following values: V, = 0.1 V, C =10 nF, R = 10 k€2,
R, =253Q(i.e.,a = 0.4). The values of € and Q are varied by
changing the resistances R, and R, respectively (using POTs).

R.=30kQ R,=7.39kQ R.,=5.50kQ R,=4.64 kQ R.=2.45KkQ
\ Fy LPF | -
/ 4 / '\ \‘{ ) ‘Hr \ ‘4 1 |
J i / (H Vi “ 1111 \ [‘
I i | |
fididi e Ve . P41
/ Yo of \ e PN N Nt i ! |‘ [/
/ ‘ f HgRe
i \ Y
osc AD oD THLC "HLC

FIG. 7. Low-pass filter: Snapshots of experimental time series
traces of V,; and V,,. Synchronized LC (OSC) at R, = 30 k2, AD
at R, =7.39kQ, 0D at R, = 5.50 k2, IHLC at R, = 4.64 k2, and
HLC at R =2.45kQ. R, =862 @, and Ry = 1.19 kQ. Scale: x
axis, 25 us; y axis, 1.25 v/div. See text for other parameters.

R.=30kQ R.=15kQ R,—254kQ R.-1.80kQ R.=1.34kQ
% A
. N\ APF )
\ I lL‘ N Vi ll I I
T S
\I‘ \“ mw II' IL
‘osc ¥ AD oD IHLC HLC

FIG. 8. All-pass filter: Snapshots of experimental time series
traces of V,; and V,,. Synchronized LC at R, = 30 k2, AD at
R. = 15kQ,0D at R, = 2.54 k2, IHLC at R, = 1.80k<2, and HLC
at Re =134 kQ. R, =119 @, and Ry = 1.134 kQ. Scale: OSC
panel same as Fig. 7; other panels: x axis, 10 us; y axis, 2.5 v/div.
See text for other parameters.

In an experiment with LPF, we take R, = 862 Q and
R = 1.19k2 and decrease R, (increase €). The results of the
experiment are summarized in Fig. 7 with the snapshots of time
series (taken using a digital storage oscilloscope, Tektronix
TDS2002B, 60 MHz, 1 GS/s). The same with an APF is shown
in Fig. 8 for R;, = 119 © and Ry = 1.134 k2. In both cases
we observe the following general scenario: with decreasing
R, (i.e., increasing €) the system enters into the OD state
from the synchronized oscillatory state via the AD state. A
further decrease in R, makes the system to oscillate around the
inhomogeneous steady states (IHSSs) giving IHLC oscillation.
This IHLC is transformed into a HLC for further decrease in
R.. Therefore, with proper values of the filter parameter (here
«), despite the presence of fluctuation, noise, and inherent
parameter mismatch in the real experimental setup, we indeed
observe a transition from IHLC to HLC which establishes that
this transition is robust.

V. CONCLUSION

In this paper, we have discovered that the presence of a
local filtering in the coupling path gives birth to an interesting
transition from homogeneous limit cycle to inhomogeneous
limit cycle in mean-field coupled identical oscillators. Using
a rigorous bifurcation analysis we have explored the genesis
of this transition. Unlike Ref. [27], which studied the effect of
low-pass filtering in the context of rhythmogenesis, here we
have considered both low-pass and all-pass filtering and un-
ravel the rich bifurcation structure associated with the coupled
identical oscillators. Further, we have proposed a differential-
algebraic equation to model an APF and explored the effect of
APFs on the collective behavior of coupled oscillators. We have
also provided the first experimental evidence of the filtering
induced rhythmogenesis and the IHLC-HLC transition.

The role of filtering (i.e., &) on the rhythmogenesis and the
IHLC-HLC transition can also be understood from dynamical
point of view: the cutoff (or corner) frequency, «, actually con-
trols the rate of dissipation in the coupling term by controlling
either the amplitude and phase (for a LPF) or only the phase
(for an APF) of the self-feedback signal. A smaller « means
lesser dissipation, which is conducive to rhythmogenesis and,
therefore, to the reported transition.

Also, our study suggests that, as far as rhythmogenesis is
concerned, APFs are more efficient than LPFs for the same
parameter value (here «). This is owing to the fact that for
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a given o an APF introduces more phase shift than that of
a LPF (Appendix A). It also suggests that the frequency
selectivity of phase (instead of amplitude) is sufficient to induce
rhythmogenesis and the observed IHLC-HLC transition.

The next natural extension of this work will be to study
the reported transition in networks of natural oscillators under
diverse coupling schemes. We strongly believe that it will
unravel the connection among several symmetry-breaking
states, such as oscillation death, inhomogeneous limit cycles,
and amplitude chimeras.
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APPENDIX A: ALL-PASS FILTER: ELECTRONIC ANALOG

The electronic circuit of an all-pass filter (APF) is shown in
Fig. 6(b). Using Kirchhoff’s voltage law, the voltage equation
of the R; — Cy, part reads

av 1
dt - CLR,

where V; is the input voltage and V is the voltage across the

capacitor Cy. The parameter (ﬁ) is the corner frequency

a. Again, from the opamp equation one gets the output of the
APF as

(=V+ WV, (AL)

Vo =2V — V. (A2)

Equation (Al) along with (A2) represent the differential-
algebraic dynamical equation of an APF.

To show that the circuit of Fig. 6(b) indeed represents an
APF, we derive the frequency domain transfer function of the
circuit as

E - M = Agexp(—i20),

Vi 14+ la)CL R L
where Ag =1 and @ = tan~'(wC.R.). Note that Ay =1
ensures that the amplitude is frequency independent (unlike
a LPF). The output only experiences a frequency dependent
phase shift of ¢ = 26. Also, it is interesting to note that for the
same « (i.e., ﬁ) the phase shift introduced by a LPF (i.e.,
0) is half of that of an APF (i.e., ¢).

(A3)

APPENDIX B: ANALYTICAL EXPRESSIONS OF
BIFURCATION CURVES FOR THE APF CASE (SEC. IIB)

We derive the expressions of Hopf bifurcation curves of the
system with local APF given by (10) using the same method
as in Sec. IT A. The derived expressions are

—Byps F \/312133 —4Anp3Crps3
2AHB3
where Apps=€e(1—0Q)—2, Byps=(¢Q+2)*+€2—

€), and Cyps = —€*(14+ Q) = 2(1 + ) —e(1 + Q)3 +
w?). The F sign is vertically aligned for HB1 and HB3:

OHB1,3 = ’ (B1)

—Bypy + \/3%132 —4Ay2CHp2

Qppr = , (B2)
e 2Aym
where
8w?
AH32=2+€(1—Q)— 5
Lyp
da’(e — 8 +4Q¢
Biis = Q% — 1)+ 4+ - ce)
Lyp
646{)4 2
>— —40¢€ — 2(Lypy — 20°),
Ly,
Ro* 20 (e +2)(1+Q)—2
Corps = {a)2 L2 [( 1+ Q) —2]
Ly Lyg>
+2(1 + Q)(w?* — E)}(AHBz —2e),
Lugs = € + Ve — 4ol
And finally,
—Bups + \/3%134 —4AysCHps ®3)
OHB4 = ’
2AHB4
where  Apps=24+¢€(1—-Q)— Zg:);’ Bpps = (0% —
@ (e— 0] —20*
1) 44 2HGHH00 4 e 40 — Algurten Cypy =
*(Q+3) _ (1+O)Lus 20 | 207(cQ+e—2)
(Anpa —26)[ 1-0 ~ ~ (1-9  + m + T]’

Lyps =e(1 — Q)+ eX(1 — 0)> — 4.
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