2,084 research outputs found

    The Federal Aviation Administration/Massachusetts Institute of Technology (FAA/MIT) Lincoln Laboratory Doppler weather radar program

    Get PDF
    The program focuses on providing real-time information on hazardous aviation weather to end users such as air traffic control and pilots. Existing systems will soon be replaced by a Next Generation Weather Radar (NEXRAD), which will be concerned with detecting such hazards as heavy rain and hail, turbulence, low-altitude wind shear, and mesocyclones and tornadoes. Other systems in process are the Central Weather Processor (CWP), and the terminal Doppler weather radar (TDWR). Weather measurements near Memphis are central to ongoing work, especially in the area of microbursts and wind shear

    An initial assessment of the performance achieved by the Seasat-1 radar altimeter

    Get PDF
    The results of an initial on-orbit engineering assessment of the performance achieved by the radar altimeter system flown on SEASAT-1 are presented. Additionally, the general design characteristics of this system are discussed and illustrations of altimeter data product are provided. The instrument consists of a 13.5 GHz monostatic radar system that tracks in range only using a one meter parabolic antenna pointed at the satellite nadir. Two of its unique features are a linear FM transmitter with 320 MHz bandwidth which yields a 3.125 nanosecond time delay resolution, and microprocessor implemented closed loop range tracking, automatic gain control (AGC), and real time estimation of significant wave height (SWH). Results presented show that the altimeter generally performed in accordance with its orginal performance requirments of measuring altitude to a precision of less the 10 cm RMS, significant wave height to an accuracy of + or - 0.5 m or 10%, whichever is greater, and ocean backscatter coefficient to an accuracy of + or - 1 db, all over an SWH range of 1 to 20 meters

    WiFi-based PCL for monitoring private airfields

    Get PDF
    In this article, the potential exploitation of WiFi-based PCL systems is investigated with reference to a real-world civil application in which these sensors are expected to nicely complement the existing technologies adopted for monitoring purposes, especially when operating against noncooperative targets. In particular, we consider the monitoring application of small private airstrips or airfields. With this terminology, we refer to open areas designated for the takeoff and landing of small aircrafts that, unlike an airport, have generally short and possibly unpaved runways (e.g., grass, dirt, sand, or gravel surfaces) and do not necessarily have terminals. More important, such areas usually are devoid of conventional technologies, equipment, or procedures adopted to guarantee safety and security in large aerodromes.There exist a huge number of small, privately owned, and unlicensed airfields around the world. Private aircraft owners mainly use these “airports” for recreational, single-person, or private flights for small groups and training flight purposes. In addition, residential airparks have proliferated in recent years, especially inthe United States, Canada, and South Africa. A residential airpark, or “fly-in community,” features common airstrips where homes with attached hangars allow owners to taxi from their hangar to a shared runway. In many cases, roads are dual use for both cars and planes.In such scenarios, the possibility to employ low-cost, compact, nonintrusive, and nontransmitting sensors as a way to improve safety and security with limited impact on the airstrips' users would be of great potential interest. To this purpose, WiFi-based passive radar sensors appear to be good candidates [23]. Therefore, we investigate their application against typical operative conditions experienced in the scenarios described earlier. The aim is to assess the capability to detect, localize, and track authorized and unauthorized targets that can be occupying the runway and the surrounding areas

    Applicability of APT aided-inertial system to crustal movement monitoring

    Get PDF
    The APT system, its stage of development, hardware, and operations are described. The algorithms required to perform the real-time functions of navigation and profiling are presented. The results of computer simulations demonstrate the feasibility of APT for its primary mission: topographic mapping with an accuracy of 15 cm in the vertical. Also discussed is the suitability of modifying APT for the purpose of making vertical crustal movement measurements accurate to 2 cm in the vertical, and at least marginal feasibility is indicated

    Automated Pilot Advisory System

    Get PDF
    An Automated Pilot Advisory System (APAS) was developed and operationally tested to demonstrate the concept that low cost automated systems can provide air traffic and aviation weather advisory information at high density uncontrolled airports. The system was designed to enhance the see and be seen rule of flight, and pilots who used the system preferred it over the self announcement system presently used at uncontrolled airports

    Study of radar pulse compression for high resolution satellite altimetry

    Get PDF
    Pulse compression techniques are studied which are applicable to a satellite altimeter having a topographic resolution of + 10 cm. A systematic design procedure is used to determine the system parameters. The performance of an optimum, maximum likelihood processor is analysed, which provides the basis for modifying the standard split-gate tracker to achieve improved performance. Bandwidth considerations lead to the recommendation of a full deramp STRETCH pulse compression technique followed by an analog filter bank to separate range returns. The implementation of the recommended technique is examined

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Aeronautical Engineering: A continuing bibliography with indexes, supplement 155, December 1982

    Get PDF
    This bibliography lists 272 reports, articles and other documents introduced into the NASA scientific and technical information system in November 1982
    corecore