201,738 research outputs found
Flying car design and testing
This paper is primarily concerned with the inverted design process and manufacture of a flying car prototype which can overcome the problem of traffic management in the world today. A possible solution to the problem of overcrowded roads would be to design a flying or hovering car. Given technological advances in aircraft construction, navigation and operation, flying cars or personal aircraft are now a feasible proposition. The viability of such a concept was investigated in terms of producing a conceptual design for a two-person carrying flying vehicle, manufacturing a flying prototype followed by ground and initial flight testing
Large scale prop-fan structural design study. Volume 1: Initial concepts
In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 1 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described in Volume 2
Analysis, design, fabrication and testing of an optical tip clearance sensor
Analyses and the design, fabrication, and testing of an optical tip clearance sensor with intended application in aircraft propulsion control systems are reported. The design of a sensor test rig, evaluation of optical sensor components at elevated temperatures, sensor design principles, sensor test results at room temperature, and estimations of sensor accuracy at temperatures of an aircraft engine environment are discussed. Room temperature testing indicated possible measurement accuracies of less than 12.7 microns (0.5 mils). Ways to improve performance at engine operating temperatures are recommended. The potential of this tip clearance sensor is assessed
A Flight Investigation of the STOL Characteristics of an Augmented Jet Flap STOL Research Aircraft
The flight test program objectives are: (1) To determine the in-flight aerodynamic, performance, and handling qualities of a jet STOL aircraft incorporating the augmented jet flap concept; (2) to compare the results obtained in flight with characteristics predicted from wind tunnel and simulator test results; (3) to contribute to the development of criteria for design and operation of jet STOL transport aircraft; and (4) to provide a jet STOL transport aircraft for STOL systems research and development. Results obtained during the first 8 months of proof-of-concept flight testing of the aircraft in STOL configurations are reported. Included are a brief description of the aircraft, fan-jet engines, and systems; a discussion of the aerodynamic, stability and control, and STOL performance; and pilot opinion of the handling qualities and operational characteristics
NASA refan program status
The objective of the refan program is to demonstrate the technical feasibility of substantially reducing the noise levels of existing JT8D powered aircraft. The program consists of the design, manufacturing and testing of the refan engines and modified nacelles and airplanes. Experimental testing was completed for the refan engine both at sea level and at altitude conditions. Ground testing for the B727 side- and center-engine installations and flight testing of the DC-9 with refan engines and acoustic nacelles were performed. Preliminary results presented show that substantial noise reductions were achieved
Fabrication and evaluation of advanced titanium and composite structural panels
Advanced manufacturing methods for titanium and composite material structures are being developed and evaluated. The focus for the manufacturing effort is the fabrication of full-scale structural panels which replace an existing shear panel on the upper wing surface of the NASA YF-12 aircraft. The program involves design, fabrication, ground testing, and Mach 3 flight service of full-scale structural panels and laboratory testing of representative structural element specimens
Numerical prediction of 3-D ejector flows
The use of parametric flow analysis, rather than parametric scale testing, to support the design of an ejector system offers a number of potential advantages. The application of available 3-D flow analyses to the design ejectors can be subdivided into several key elements. These are numerics, turbulence modeling, data handling and display, and testing in support of analysis development. Experimental and predicted jet exhaust for the Boeing 727 aircraft are examined
concept study for a 80% scaled Derivative LCA
The LCA. i s expected to incorporate advanced aerodynamic and flight control features, with high AoA capabilities and high agility . Due to our limited design data bank and lack of experience in FBW technology, several uncertainties may not be resolved even at the prototype first flight stage . Hence a study was conducted to explore the feasibility of fabricating and flight-testing a 80;6 scaled derivative aircraft to provide flight mechanics and flight control data for the LCA. This aircraft would be made from rigid-foam-FRP composite materials, using techniques developed at MAL . It would have an gross weight of 2500 kg and the Viper 22/8 engine is suggested as the powerplant because of availability. Preliminary design has been started and basic parameters are mentioned. It is felt that this experimental program will be crucial for the success of the LCA . The time element is the most challenging aspect in this situation. A 21z year time frame seems to be possible if financial and manpower support are available It is expected that this study will initiate a dialogue between is HAL and MBB to formulate a joint program for the fabrication and flight-testing of the experimental LCA.
The right wing of the LEFT airplane
The NASA Leading-Edge Flight Test (LEFT) program addressed the environmental issues which were potential problems in the application of Laminar Flow Control (LFC) to transport aircraft. These included contamination of the LFC surface due to dirt, rain, insect remains, snow, and ice, in the critical leading-edge region. Douglas Aircraft Company designed and built a test article which was mounted on the right wing of the C-140 JetStar aircraft. The test article featured a retractable leading-edge high-lift shield for contamination protection and suction through perforations on the upper surface for LFC. Following a period of developmental flight testing, the aircraft entered simulated airline service, which included exposure to airborne insects, heavy rain, snow, and icing conditions both in the air and on the ground. During the roughly 3 years of flight testing, the test article has consistently demonstrated laminar flow in cruising flight. The experience with the LEFT experiment was summarized with emphasis on significant test findings. The following items were discussed: test article design and features; suction distribution; instrumentation and transition point reckoning; problems and fixes; system performance and maintenance requirements
Composite structural materials
The development of composite materials for aircraft applications is addressed with specific consideration of physical properties, structural concepts and analysis, manufacturing, reliability, and life prediction. The design and flight testing of composite ultralight gliders is documented. Advances in computer aided design and methods for nondestructive testing are also discussed
- …
