14 research outputs found

    Adaptive Deep Learning Detection Model for Multi-Foggy Images

    Get PDF
    The fog has different features and effects within every single environment. Detection whether there is fog in the image is considered a challenge and giving the type of fog has a substantial enlightening effect on image defogging. Foggy scenes have different types such as scenes based on fog density level and scenes based on fog type. Machine learning techniques have a significant contribution to the detection of foggy scenes. However, most of the existing detection models are based on traditional machine learning models, and only a few studies have adopted deep learning models. Furthermore, most of the existing machines learning detection models are based on fog density-level scenes. However, to the best of our knowledge, there is no such detection model based on multi-fog type scenes have presented yet. Therefore, the main goal of our study is to propose an adaptive deep learning model for the detection of multi-fog types of images. Moreover, due to the lack of a publicly available dataset for inhomogeneous, homogenous, dark, and sky foggy scenes, a dataset for multi-fog scenes is presented in this study (https://github.com/Karrar-H-Abdulkareem/Multi-Fog-Dataset). Experiments were conducted in three stages. First, the data collection phase is based on eight resources to obtain the multi-fog scene dataset. Second, a classification experiment is conducted based on the ResNet-50 deep learning model to obtain detection results. Third, evaluation phase where the performance of the ResNet-50 detection model has been compared against three different models. Experimental results show that the proposed model has presented a stable classification performance for different foggy images with a 96% score for each of Classification Accuracy Rate (CAR), Recall, Precision, F1-Score which has specific theoretical and practical significance. Our proposed model is suitable as a pre-processing step and might be considered in different real-time applications

    Polarization-based smoke removal method for surgical images

    Get PDF
    Smoke generated during surgery affects tissue visibility and degrades image quality, affecting surgical decisions and limiting further image processing and analysis. Polarization is a fundamental property of light and polarization-resolved imaging has been studied and applied to general visibility restoration scenarios such as for smog or mist removal or in underwater environments. However, there is no related research or application for surgical smoke removal. Due to differences between surgical smoke and general haze scenarios, we propose an alternative imaging degradation model by redefining the form of the transmission parameters. The analysis of the propagation of polarized light interacting with the mixed medium of smoke and tissue is proposed to realize polarization-based smoke removal (visibility restoration). Theoretical analysis and observation of experimental data shows that the cross-polarized channel data generated by multiple scattering is less affected by smoke compared to the co-polarized channel. The polarization difference calculation for different color channels can estimate the model transmission parameters and reconstruct the image with restored visibility. Qualitative and quantitative comparison with alternative methods show that the polarization-based image smoke-removal method can effectively reduce the degradation of biomedical images caused by surgical smoke and partially restore the original degree of polarization of the samples
    corecore