157 research outputs found

    Multi-criteria optimization for energy-efficient multi-core systems-on-chip

    Get PDF
    The steady down-scaling of transistor dimensions has made possible the evolutionary progress leading to today’s high-performance multi-GHz microprocessors and core based System-on-Chip (SoC) that offer superior performance, dramatically reduced cost per function, and much-reduced physical size compared to their predecessors. On the negative side, this rapid scaling however also translates to high power densities, higher operating temperatures and reduced reliability making it imperative to address design issues that have cropped up in its wake. In particular, the aggressive physical miniaturization have increased CMOS fault sensitivity to the extent that many reliability constraints pose threat to the device normal operation and accelerate the onset of wearout-based failures. Among various wearout-based failure mechanisms, Negative biased temperature instability (NBTI) has been recognized as the most critical source of device aging. The urge of reliable, low-power circuits is driving the EDA community to develop new design techniques, circuit solutions, algorithms, and software, that can address these critical issues. Unfortunately, this challenge is complicated by the fact that power and reliability are known to be intrinsically conflicting metrics: traditional solutions to improve reliability such as redundancy, increase of voltage levels, and up-sizing of critical devices do contrast with traditional low-power solutions, which rely on compact architectures, scaled supply voltages, and small devices. This dissertation focuses on methodologies to bridge this gap and establishes an important link between low-power solutions and aging effects. More specifically, we proposed new architectural solutions based on power management strategies to enable the design of low-power, aging aware cache memories. Cache memories are one of the most critical components for warranting reliable and timely operation. However, they are also more susceptible to aging effects. Due to symmetric structure of a memory cell, aging occurs regardless of the fact that a cell (or word) is accessed or not. Moreover, aging is a worst-case matric and line with worst-case access pattern determines the aging of the entire cache. In order to stop the aging of a memory cell, it must be put into a proper idle state when a cell (or word) is not accessed which require proper management of the idleness of each atomic unit of power management. We have proposed several reliability management techniques based on the idea of cache partitioning to alleviate NBTI-induced aging and obtain joint energy and lifetime benefits. We introduce graceful degradation mechanism which allows different cache blocks into which a cache is partitioned to age at different rates. This implies that various sub-blocks become unreliable at different times, and the cache keeps functioning with reduced efficiency. We extended the capabilities of this architecture by integrating the concept of reconfigurable caches to maintain the performance of the cache throughout its lifetime. By this strategy, whenever a block becomes unreliable, the remaining cache is reconfigured to work as a smaller size cache with only a marginal degradation of performance. Many mission-critical applications require guaranteed lifetime of their operations and therefore the hardware implementing their functionality. Such constraints are usually enforced by means of various reliability enhancing solutions mostly based on redundancy which are not energy-friendly. In our work, we have proposed a novel cache architecture in which a smart use of cache partitions for redundancy allows us to obtain cache that meet a desired lifetime target with minimal energy consumption

    Fault- and Yield-Aware On-Chip Memory Design and Management

    Get PDF
    Ever decreasing device size causes more frequent hard faults, which becomes a serious burden to processor design and yield management. This problem is particularly pronounced in the on-chip memory which consumes up to 70% of a processor' s total chip area. Traditional circuit-level techniques, such as redundancy and error correction code, become less effective in error-prevalent environments because of their large area overhead. In this work, we suggest an architectural solution to building reliable on-chip memory in the future processor environment. Our approaches have two parts, a design framework and architectural techniques for on-chip memory structures. Our design framework provides important architectural evaluation metrics such as yield, area, and performance based on low level defects and process variations parameters. Processor architects can quickly evaluate their designs' characteristics in terms of yield, area, and performance. With the framework, we develop architectural yield enhancement solutions for on-chip memory structures including L1 cache, L2 cache and directory memory. Our proposed solutions greatly improve yield with negligible area and performance overhead. Furthermore, we develop a decoupled yield model of compute cores and L2 caches in CMPs, which show that there will be many more L2 caches than compute cores in a chip. We propose efficient utilization techniques for excess caches. Evaluation results show that excess caches significantly improve overall performance of CMPs

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Design for Reliability and Low Power in Emerging Technologies

    Get PDF
    Die fortlaufende Verkleinerung von Transistor-StrukturgrĂ¶ĂŸen ist einer der wichtigsten Antreiber fĂŒr das Wachstum in der Halbleitertechnologiebranche. Seit Jahrzehnten erhöhen sich sowohl Integrationsdichte als auch KomplexitĂ€t von Schaltkreisen und zeigen damit einen fortlaufenden Trend, der sich ĂŒber alle modernen FertigungsgrĂ¶ĂŸen erstreckt. Bislang ging das Verkleinern von Transistoren mit einer Verringerung der Versorgungsspannung einher, was zu einer Reduktion der Leistungsaufnahme fĂŒhrte und damit eine gleichbleibenden Leistungsdichte sicherstellte. Doch mit dem Beginn von StrukturgrĂ¶ĂŸen im Nanometerbreich verlangsamte sich die fortlaufende Skalierung. Viele Schwierigkeiten, sowie das Erreichen von physikalischen Grenzen in der Fertigung und Nicht-IdealitĂ€ten beim Skalieren der Versorgungsspannung, fĂŒhrten zu einer Zunahme der Leistungsdichte und, damit einhergehend, zu erschwerten Problemen bei der Sicherstellung der ZuverlĂ€ssigkeit. Dazu zĂ€hlen, unter anderem, Alterungseffekte in Transistoren sowie ĂŒbermĂ€ĂŸige Hitzeentwicklung, nicht zuletzt durch stĂ€rkeres Auftreten von Selbsterhitzungseffekten innerhalb der Transistoren. Damit solche Probleme die ZuverlĂ€ssigkeit eines Schaltkreises nicht gefĂ€hrden, werden die internen Signallaufzeiten ĂŒblicherweise sehr pessimistisch kalkuliert. Durch den so entstandenen zeitlichen Sicherheitsabstand wird die korrekte FunktionalitĂ€t des Schaltkreises sichergestellt, allerdings auf Kosten der Performance. Alternativ kann die ZuverlĂ€ssigkeit des Schaltkreises auch durch andere Techniken erhöht werden, wie zum Beispiel durch Null-Temperatur-Koeffizienten oder Approximate Computing. Wenngleich diese Techniken einen Großteil des ĂŒblichen zeitlichen Sicherheitsabstandes einsparen können, bergen sie dennoch weitere Konsequenzen und Kompromisse. Bleibende Herausforderungen bei der Skalierung von CMOS Technologien fĂŒhren außerdem zu einem verstĂ€rkten Fokus auf vielversprechende Zukunftstechnologien. Ein Beispiel dafĂŒr ist der Negative Capacitance Field-Effect Transistor (NCFET), der eine beachtenswerte Leistungssteigerung gegenĂŒber herkömmlichen FinFET Transistoren aufweist und diese in Zukunft ersetzen könnte. Des Weiteren setzen Entwickler von Schaltkreisen vermehrt auf komplexe, parallele Strukturen statt auf höhere Taktfrequenzen. Diese komplexen Modelle benötigen moderne Power-Management Techniken in allen Aspekten des Designs. Mit dem Auftreten von neuartigen Transistortechnologien (wie zum Beispiel NCFET) mĂŒssen diese Power-Management Techniken neu bewertet werden, da sich AbhĂ€ngigkeiten und VerhĂ€ltnismĂ€ĂŸigkeiten Ă€ndern. Diese Arbeit prĂ€sentiert neue Herangehensweisen, sowohl zur Analyse als auch zur Modellierung der ZuverlĂ€ssigkeit von Schaltkreisen, um zuvor genannte Herausforderungen auf mehreren Designebenen anzugehen. Diese Herangehensweisen unterteilen sich in konventionelle Techniken ((a), (b), (c) und (d)) und unkonventionelle Techniken ((e) und (f)), wie folgt: (a)\textbf{(a)} Analyse von Leistungszunahmen in Zusammenhang mit der Maximierung von Leistungseffizienz beim Betrieb nahe der Transistor Schwellspannung, insbesondere am optimalen Leistungspunkt. Das genaue Ermitteln eines solchen optimalen Leistungspunkts ist eine besondere Herausforderung bei Multicore Designs, da dieser sich mit den jeweiligen Optimierungszielsetzungen und der Arbeitsbelastung verschiebt. (b)\textbf{(b)} Aufzeigen versteckter Interdependenzen zwischen Alterungseffekten bei Transistoren und Schwankungen in der Versorgungsspannung durch „IR-drops“. Eine neuartige Technik wird vorgestellt, die sowohl Über- als auch UnterschĂ€tzungen bei der Ermittlung des zeitlichen Sicherheitsabstands vermeidet und folglich den kleinsten, dennoch ausreichenden Sicherheitsabstand ermittelt. (c)\textbf{(c)} EindĂ€mmung von Alterungseffekten bei Transistoren durch „Graceful Approximation“, eine Technik zur Erhöhung der Taktfrequenz bei Bedarf. Der durch Alterungseffekte bedingte zeitlich Sicherheitsabstand wird durch Approximate Computing Techniken ersetzt. Des Weiteren wird Quantisierung verwendet um ausreichend Genauigkeit bei den Berechnungen zu gewĂ€hrleisten. (d)\textbf{(d)} EindĂ€mmung von temperaturabhĂ€ngigen Verschlechterungen der Signallaufzeit durch den Betrieb nahe des Null-Temperatur Koeffizienten (N-ZTC). Der Betrieb bei N-ZTC minimiert temperaturbedingte Abweichungen der Performance und der Leistungsaufnahme. Qualitative und quantitative Vergleiche gegenĂŒber dem traditionellen zeitlichen Sicherheitsabstand werden prĂ€sentiert. (e)\textbf{(e)} Modellierung von Power-Management Techniken fĂŒr NCFET-basierte Prozessoren. Die NCFET Technologie hat einzigartige Eigenschaften, durch die herkömmliche Verfahren zur Spannungs- und Frequenzskalierungen zur Laufzeit (DVS/DVFS) suboptimale Ergebnisse erzielen. Dies erfordert NCFET-spezifische Power-Management Techniken, die in dieser Arbeit vorgestellt werden. (f)\textbf{(f)} Vorstellung eines neuartigen heterogenen Multicore Designs in NCFET Technologie. Das Design beinhaltet identische Kerne; HeterogenitĂ€t entsteht durch die Anwendung der individuellen, optimalen Konfiguration der Kerne. Amdahls Gesetz wird erweitert, um neue system- und anwendungsspezifische Parameter abzudecken und die VorzĂŒge des neuen Designs aufzuzeigen. Die Auswertungen der vorgestellten Techniken werden mithilfe von Implementierungen und Simulationen auf Schaltkreisebene (gate-level) durchgefĂŒhrt. Des Weiteren werden Simulatoren auf Systemebene (system-level) verwendet, um Multicore Designs zu implementieren und zu simulieren. Zur Validierung und Bewertung der EffektivitĂ€t gegenĂŒber dem Stand der Technik werden analytische, gate-level und system-level Simulationen herangezogen, die sowohl synthetische als auch reale Anwendungen betrachten

    Value-Based Caching in Information-Centric Wireless Body Area Networks.

    Full text link
    We propose a resilient cache replacement approach based on a Value of sensed Information (VoI) policy. To resolve and fetch content when the origin is not available due to isolated in-network nodes (fragmentation) and harsh operational conditions, we exploit a content caching approach. Our approach depends on four functional parameters in sensory Wireless Body Area Networks (WBANs). These four parameters are: age of data based on periodic request, popularity of on-demand requests, communication interference cost, and the duration for which the sensor node is required to operate in active mode to capture the sensed readings. These parameters are considered together to assign a value to the cached data to retain the most valuable information in the cache for prolonged time periods. The higher the value, the longer the duration for which the data will be retained in the cache. This caching strategy provides significant availability for most valuable and difficult to retrieve data in the WBANs. Extensive simulations are performed to compare the proposed scheme against other significant caching schemes in the literature while varying critical aspects in WBANs (e.g., data popularity, cache size, publisher load, connectivity-degree, and severe probabilities of node failures). These simulation results indicate that the proposed VoI-based approach is a valid tool for the retrieval of cached content in disruptive and challenging scenarios, such as the one experienced in WBANs, since it allows the retrieval of content for a long period even while experiencing severe in-network node failures

    A Holistic Solution for Reliability of 3D Parallel Systems

    Full text link
    As device scaling slows down, emerging technologies such as 3D integration and carbon nanotube field-effect transistors are among the most promising solutions to increase device density and performance. These emerging technologies offer shorter interconnects, higher performance, and lower power. However, higher levels of operating temperatures and current densities project significantly higher failure rates. Moreover, due to the infancy of the manufacturing process, high variation, and defect densities, chip designers are not encouraged to consider these emerging technologies as a stand-alone replacement for Silicon-based transistors. The goal of this dissertation is to introduce new architectural and circuit techniques that can work around high-fault rates in the emerging 3D technologies, improving performance and reliability comparable to Silicon. We propose a new holistic approach to the reliability problem that addresses the necessary aspects of an effective solution such as detection, diagnosis, repair, and prevention synergically for a practical solution. By leveraging 3D fabric layouts, it proposes the underlying architecture to efficiently repair the system in the presence of faults. This thesis presents a fault detection scheme by re-executing instructions on idle identical units that distinguishes between transient and permanent faults while localizing it to the granularity of a pipeline stage. Furthermore, with the use of a dynamic and adaptive reconfiguration policy based on activity factors and temperature variation, we propose a framework that delivers a significant improvement in lifetime management to prevent faults due to aging. Finally, a design framework that can be used for large-scale chip production while mitigating yield and variation failures to bring up Carbon Nano Tube-based technology is presented. The proposed framework is capable of efficiently supporting high-variation technologies by providing protection against manufacturing defects at different granularities: module and pipeline-stage levels.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/168118/1/javadb_1.pd

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Concertina: Squeezing in cache content to operate at near-threshold voltage

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Scaling supply voltage to values near the threshold voltage allows a dramatic decrease in the power consumption of processors; however, the lower the voltage, the higher the sensitivity to process variation, and, hence, the lower the reliability. Large SRAM structures, like the last-level cache (LLC), are extremely vulnerable to process variation because they are aggressively sized to satisfy high density requirements. In this paper, we propose Concertina, an LLC designed to enable reliable operation at low voltages with conventional SRAM cells. Based on the observation that for many applications the LLC contains large amounts of null data, Concertina compresses cache blocks in order that they can be allocated to cache entries with faulty cells, enabling use of 100 percent of the LLC capacity. To distribute blocks among cache entries, Concertina implements a compression- and fault-aware insertion/replacement policy that reduces the LLC miss rate. Concertina reaches the performance of an ideal system implementing an LLC that does not suffer from parameter variation with a modest storage overhead. Specifically, performance degrades by less than 2 percent, even when using small SRAM cells, which implies over 90 percent of cache entries having defective cells, and this represents a notable improvement on previously proposed techniques.Peer ReviewedPostprint (author's final draft
    • 

    corecore