44,655 research outputs found

    Agent-based resource management for grid computing

    Get PDF
    A computational grid is a hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational capability. An ideal grid environment should provide access to the available resources in a seamless manner. Resource management is an important infrastructural component of a grid computing environment. The overall aim of resource management is to efficiently schedule applications that need to utilise the available resources in the grid environment. Such goals within the high performance community will rely on accurate performance prediction capabilities. An existing toolkit, known as PACE (Performance Analysis and Characterisation Environment), is used to provide quantitative data concerning the performance of sophisticated applications running on high performance resources. In this thesis an ASCI (Accelerated Strategic Computing Initiative) kernel application, Sweep3D, is used to illustrate the PACE performance prediction capabilities. The validation results show that a reasonable accuracy can be obtained, cross-platform comparisons can be easily undertaken, and the process benefits from a rapid evaluation time. While extremely well-suited for managing a locally distributed multi-computer, the PACE functions do not map well onto a wide-area environment, where heterogeneity, multiple administrative domains, and communication irregularities dramatically complicate the job of resource management. Scalability and adaptability are two key challenges that must be addressed. In this thesis, an A4 (Agile Architecture and Autonomous Agents) methodology is introduced for the development of large-scale distributed software systems with highly dynamic behaviours. An agent is considered to be both a service provider and a service requestor. Agents are organised into a hierarchy with service advertisement and discovery capabilities. There are four main performance metrics for an A4 system: service discovery speed, agent system efficiency, workload balancing, and discovery success rate. Coupling the A4 methodology with PACE functions, results in an Agent-based Resource Management System (ARMS), which is implemented for grid computing. The PACE functions supply accurate performance information (e. g. execution time) as input to a local resource scheduler on the fly. At a meta-level, agents advertise their service information and cooperate with each other to discover available resources for grid-enabled applications. A Performance Monitor and Advisor (PMA) is also developed in ARMS to optimise the performance of the agent behaviours. The PMA is capable of performance modelling and simulation about the agents in ARMS and can be used to improve overall system performance. The PMA can monitor agent behaviours in ARMS and reconfigure them with optimised strategies, which include the use of ACTs (Agent Capability Tables), limited service lifetime, limited scope for service advertisement and discovery, agent mobility and service distribution, etc. The main contribution of this work is that it provides a methodology and prototype implementation of a grid Resource Management System (RMS). The system includes a number of original features that cannot be found in existing research solutions

    ALICE - ARC integration

    Get PDF
    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a module implementing the functionalities necessary to achieve AliEn job submission and management to ARC enabled sites

    Formal Aspects of Grid Brokering

    Full text link
    Coordination in distributed environments, like Grids, involves selecting the most appropriate services, resources or compositions to carry out the planned activities. Such functionalities appear at various levels of the infrastructure and in various means forming a blurry domain, where it is hard to see how the participating components are related and what their relevant properties are. In this paper we focus on a subset of these problems: resource brokering in Grid middleware. This paper aims at establishing a semantical model for brokering and related activities by defining brokering agents at three levels of the Grid middleware for resource, host and broker selection. The main contribution of this paper is the definition and decomposition of different brokering components in Grids by providing a formal model using Abstract State Machines

    MAGDA: A Mobile Agent based Grid Architecture

    Get PDF
    Mobile agents mean both a technology and a programming paradigm. They allow for a flexible approach which can alleviate a number of issues present in distributed and Grid-based systems, by means of features such as migration, cloning, messaging and other provided mechanisms. In this paper we describe an architecture (MAGDA – Mobile Agent based Grid Architecture) we have designed and we are currently developing to support programming and execution of mobile agent based application upon Grid systems

    Investigating grid computing technologies for use with commercial simulation packages

    Get PDF
    As simulation experimentation in industry become more computationally demanding, grid computing can be seen as a promising technology that has the potential to bind together the computational resources needed to quickly execute such simulations. To investigate how this might be possible, this paper reviews the grid technologies that can be used together with commercial-off-the-shelf simulation packages (CSPs) used in industry. The paper identifies two specific forms of grid computing (Public Resource Computing and Enterprise-wide Desktop Grid Computing) and the middleware associated with them (BOINC and Condor) as being suitable for grid-enabling existing CSPs. It further proposes three different CSP-grid integration approaches and identifies one of them to be the most appropriate. It is hoped that this research will encourage simulation practitioners to consider grid computing as a technologically viable means of executing CSP-based experiments faster

    A Semantic Grid Oriented to E-Tourism

    Full text link
    With increasing complexity of tourism business models and tasks, there is a clear need of the next generation e-Tourism infrastructure to support flexible automation, integration, computation, storage, and collaboration. Currently several enabling technologies such as semantic Web, Web service, agent and grid computing have been applied in the different e-Tourism applications, however there is no a unified framework to be able to integrate all of them. So this paper presents a promising e-Tourism framework based on emerging semantic grid, in which a number of key design issues are discussed including architecture, ontologies structure, semantic reconciliation, service and resource discovery, role based authorization and intelligent agent. The paper finally provides the implementation of the framework.Comment: 12 PAGES, 7 Figure
    • 

    corecore