8,745 research outputs found

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity network—the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio

    New actor types in electricity market simulation models: Deliverable D4.4

    Get PDF
    Project TradeRES - New Markets Design & Models for 100% Renewable Power Systems: https://traderes.eu/about/ABSTRACT: The modelling of agents in the simulation models and tools is of primary importance if the quality and the validity of the simulation outcomes are at stake. This is the first version of the report that deals with the representation of electricity market actors’ in the agent based models (ABMs) used in TradeRES project. With the AMIRIS, the EMLab-Generation (EMLab), the MASCEM and the RESTrade models being in the centre of the analysis, the subject matter of this report has been the identification of the actors’ characteristics that are already covered by the initial (with respect to the project) version of the models and the presentation of the foreseen modelling enhancements. For serving these goals, agent attributes and representation methods, as found in the literature of agent-driven models, are considered initially. The detailed review of such aspects offers the necessary background and supports the formation of a context that facilitates the mapping of actors’ characteristics to agent modelling approaches. Emphasis is given in several approaches and technics found in the literature for the development of a broader environment, on which part of the later analysis is deployed. Although the ABMs that are used in the project constitute an important part of the literature, they have not been included in the review since they are the subject of another section.N/

    Peer-to-peer and community-based markets: A comprehensive review

    Full text link
    The advent of more proactive consumers, the so-called "prosumers", with production and storage capabilities, is empowering the consumers and bringing new opportunities and challenges to the operation of power systems in a market environment. Recently, a novel proposal for the design and operation of electricity markets has emerged: these so-called peer-to-peer (P2P) electricity markets conceptually allow the prosumers to directly share their electrical energy and investment. Such P2P markets rely on a consumer-centric and bottom-up perspective by giving the opportunity to consumers to freely choose the way they are to source their electric energy. A community can also be formed by prosumers who want to collaborate, or in terms of operational energy management. This paper contributes with an overview of these new P2P markets that starts with the motivation, challenges, market designs moving to the potential future developments in this field, providing recommendations while considering a test-case

    Catching Cheats: Detecting Strategic Manipulation in Distributed Optimisation of Electric Vehicle Aggregators

    Full text link
    Given the rapid rise of electric vehicles (EVs) worldwide, and the ambitious targets set for the near future, the management of large EV fleets must be seen as a priority. Specifically, we study a scenario where EV charging is managed through self-interested EV aggregators who compete in the day-ahead market in order to purchase the electricity needed to meet their clients' requirements. With the aim of reducing electricity costs and lowering the impact on electricity markets, a centralised bidding coordination framework has been proposed in the literature employing a coordinator. In order to improve privacy and limit the need for the coordinator, we propose a reformulation of the coordination framework as a decentralised algorithm, employing the Alternating Direction Method of Multipliers (ADMM). However, given the self-interested nature of the aggregators, they can deviate from the algorithm in order to reduce their energy costs. Hence, we study the strategic manipulation of the ADMM algorithm and, in doing so, describe and analyse different possible attack vectors and propose a mathematical framework to quantify and detect manipulation. Importantly, this detection framework is not limited the considered EV scenario and can be applied to general ADMM algorithms. Finally, we test the proposed decentralised coordination and manipulation detection algorithms in realistic scenarios using real market and driver data from Spain. Our empirical results show that the decentralised algorithm's convergence to the optimal solution can be effectively disrupted by manipulative attacks achieving convergence to a different non-optimal solution which benefits the attacker. With respect to the detection algorithm, results indicate that it achieves very high accuracies and significantly outperforms a naive benchmark

    Characterization of new flexible players: Deliverable D3.2

    Get PDF
    Project TradeRES - New Markets Design & Models for 100% Renewable Power Systems: https://traderes.eu/about/ABSTRACT: The subject matter of this report is the analysis of the electricity markets’ actors’ scene, through the identification of actor classes and the characterisation of actors from a behavioural and an operational perspective. The technoeconomic characterization of market participants aims to support the upcoming model enhancements by aligning the agent-based model improvements with the modern market design challenges and the contemporary characteristics of players. This work has been conducted in the context of task T3.2, which focuses on the factorization of the distinctive operational and behavioural characteristics of players in market structures. Traditional parties have been considered together with new and emerging roles, while special focus has been given on new actors related to flexible technologies and demand-side response. Among the main objectives have been the characterization of individual behaviours, objectives and requirements of different electricity market players, considering both the traditional entities and the new distributed ones, and the detailed representation of the new actors.N/

    Reinventing the Utility for DERs: A Proposal for a DSO-Centric Retail Electricity Market

    Full text link
    The increasing penetration of intermittent renewables, storage devices, and flexible loads is introducing operational challenges in distribution grids. The proper coordination and scheduling of these resources using a distributed approach is warranted, and can only be achieved through local retail markets employing transactive energy schemes. To this end, we propose a distribution-level retail market operated by a Distribution System Operator (DSO), which schedules DERs and determines the real-time distribution-level Locational Marginal Price (d-LPM). The retail market is built using a distributed Proximal Atomic Coordination (PAC) algorithm, which solves the optimal power flow model while accounting for network physics, rendering locationally and temporally varying d-LMPs. A numerical study of the market structure is carried out via simulations of the IEEE-123 node network using data from ISO-NE and Eversource in Massachusetts, US. The market performance is compared to existing retail practices, including demand response (DR) with no-export rules and net metering. The DSO-centric market increases DER utilization, permits continual market participation for DR, lowers electricity rates for customers, and eliminates the subsidies inherent to net metering programs. The resulting lower revenue stream for the DSO highlights the evolving business model of the modern utility, moving from commoditized markets towards performance-based ratemaking

    Ancillary Services 4.0: A Top-To-Bottom Control-Based Approach for Solving Ancillary Services Problems in Smart Grids

    Get PDF
    Power systems are experiencing a large amount of renewable generation with highly stochastic and partly unpredictable characteristics. This change in energy production implies significant consequences related to the provision of ancillary services (AS). Current markets dedicated to the provision of AS are not able to benefit from the flexible energy resources. They also cannot cope with the new level of stochasticity, non-linearity and dynamics of generation and flexibility. To overcome such issues and exploit the potential of flexibility resources, a new strategy is required. In this paper, by capitalising on flexibility resources’ potential, AS 4.0 approach is proposed, which offers a comprehensive solution for the AS provision in the smart grid era

    Renewable energy sources offering flexibility through electricity markets

    Get PDF

    Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models

    Get PDF
    The emergence of peer-to-peer, collective or community self-consumption, and transactive energy concepts gives rise to new configurations of business models for local energy trading among a variety of actors. Much attention has been paid in the academic literature to the transition of the underlying energy system with its macroeconomic market framework. However, fewer contributions focus on the microeconomic aspects of the broad set of involved actors. Even though specific case studies highlight single business models, a comprehensive analysis of emerging business models for the entire set of actors is missing. Following this research gap, this paper conducts a systematic literature review of 135 peer-reviewed journal articles to examine business models of actors operating in local energy markets. From 221 businesses in the reviewed literature, nine macro-actor categories are identified. For each type of market actor, a business model archetype is determined and characterised using the business model canvas. The key elements of each business model archetype are discussed, and areas are highlighted where further research is needed. Finally, this paper outlines the differences of business models for their presence in the three local energy market models. Focusing on the identified customers and partner relationships, this study highlights the key actors per market model and the character of the interactions between market participants
    • 

    corecore