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Executive Summary 

The modelling of agents in the simulation models and tools is of primary importance if 

the quality and the validity of the simulation outcomes are at stake. This is the first version 

of the report that deals with the representation of electricity market actors’ in the agent-

based models (ABMs) used in TradeRES project. With the AMIRIS, the EMLab-Generation 

(EMLab), the MASCEM and the RESTrade models being in the centre of the analysis, the 

subject matter of this report has been the identification of the actors’ characteristics that are 

already covered by the initial (with respect to the project) version of the models and the 

presentation of the foreseen modelling enhancements. 

For serving these goals, agent attributes and representation methods, as found in the 

literature of agent-driven models, are considered initially. The detailed review of such as-

pects offers the necessary background and supports the formation of a context that facili-

tates the mapping of actors’ characteristics to agent modelling approaches. Emphasis is 

given in several approaches and technics found in the literature for the development of a 

broader environment, on which part of the later analysis is deployed. Although the ABMs 

that are used in the project constitute an important part of the literature, they have not been 

included in the review since they are the subject of another section. 

The identification of modelling needs follows the operational and behavioural character-

ization of actors that has already concluded with the release of the first version of D3.2. The 

operational attributes and the behaviour aspects that have been assigned to actor classes 

are used as a reference for the review of the four ABMs used in the project. The initial 

versions of the models have been reviewed against those relations, revealing the not cov-

ered relations, which are considered as potential modelling enhancing activities. Such mod-

elling enhancing directions are identified and allocated to models, with the outcome of this 

process being reported through an extra layer of information that is positioned on top of the 

relational tables that have been previously deployed, in the context of D3.2. 

A more detailed consideration of the ABMs follows next, which includes a model-by-

model analysis of the agent instances of the initial versions and a description of the sched-

uled improvements. As the agent modelling enhancement is a part of the broader process 

of ABMs evolution and coupling for enabling them to assess the market design propositions 

of D3.5, this work is closely related to other WP4 deliverables. With some being developed 

concurrently with this report and others being forthcoming there are several points where 

links are made to the deliverables related to flexibility options modelling (D4.1-D4.3) and 

the market design modelling requirements (D4.5). 

Finally, the next version that is foreseen at the end of the modelling enhancing activities, 

would include further details on agent functioning implementations as the modelling will be 

at a more mature stage and other related tasks will have been completed. 
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1. Introduction 

Market simulation models and tools have been for several years widely used in support-

ing decision making and assisting in the formation of evidence-based policy recommenda-

tions. Their evolvement has been remarkable, following the digital revolution progress, with 

the more recent versions incorporating state-of-the-art approaches that follow contempo-

rary trends in areas related to artificial intelligence, big data and cloud computing. 

Major advancements have been made in simulating systems of multiple agents that are 

characterised by complex dynamics due to multidirectional interactions, with the more no-

table case being that of electricity markets simulation tools. The agent-based modelling 

approaches present several advantages in that context, while they face certain challenges. 

The easier and more flexible representation of market structures through the adopted inter-

action framework, along with the modularity of the implementations, are among the ad-

vantages compared to other modelling approaches that aim to be solved analytically. Issues 

related to scalability combined with limitations inherited from learning and adaptation pro-

cesses are some indicative drawbacks. 

Important part of the modelling implementation is the representation of agents inside the 

models, with the incorporation of behavioural and operational aspects being directly con-

nected to the realism level of the simulation framework. The agents are at least described 

by attributes that assign characteristics and methods that provide the required functionality 

properties imposed by the operations. The identification of actors’ behavioural and opera-

tional characteristics that enhance the realism and support the validity of models is a chal-

lenge that modellers usually face, while they try to maintain a balance between the model 

complexity, the quality of results, the value of the extracted conclusions and the traceability 

of causality relationships. 

 Scope of the deliverable 

This deliverable focuses on the representation of electricity markets’ actors in the market 

simulation models and tools used in TradeRES projects, while aims to identify modelling 

priorities, sketch directions of enhancements and pave the ground towards agent-related 

developments. The four agent-based models (ABMs) that are to be linked within the model 

linkage toolbox developed in WP4 are namely the AMIRIS, the EMLab-Generation, the 

MASCEM and the RESTrade, which have been presented in D4.6. With these models put-

ting their focus on either the investment recovery or the operational dispatch problem, while 

the combinations emerging from their potential coupling cover both, the incorporation of 

actors’ characteristics can support the impact assessment of market designs. This work has 

been conducted in the context of T4.2 that aims to tackle the representation of actors, mar-

kets and policies into the models. The incorporation of elements resulted from the charac-

terization of market players, especially in the case of new flexible players, that took place in 

WP3 and provided the qualitative context for the further analysis is expected to empower 

the models to assess the performance of players and evaluate the proposed market de-

signs. Finally, it should be mentioned that an update of this first version of the “New actor 
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types in electricity market simulation tools” report with more details and further implemen-

tation concerns is about to follow on M29. 

 Structure of the deliverable 

The deliverable initially provides an overview of the agents in market simulation tools 

and agent-based models.  Section 2 considers modelling approaches at a high-level with 

the literature review providing the ground for the further, more project specific, technical 

elaboration, that follows at later parts of this report. Moreover, the consideration of different 

modelling approaches when certain market components and involved actors are at stake, 

provides some state-of-the-art indications about modelling improvements. Some methods 

of agent functioning are also covered, with emphasis on learning approaches since other 

aspects are covered afterwards. 

The conceptualization framework of actors in electricity markets that have been reported 

in D3.2 is taken into consideration in Section 3 and direct linkage is employed, following the 

survey activity that took place under the umbrella of the T3.2 and T4.2.1. An extra layer of 

information has been added on top of the relational tables deployed in D3.2, which provided 

a mapping of relations between actor classes and technologies, operational and behav-

ioural characteristics. The extra layer of information describes the coverage by the initial 

versions1 of the ABMs, while at the same time points out the directions of modelling en-

hancements that have been identified. 

Section 4 elaborates further and extends the initial version description highlighting the 

enhancement direction on a per model basis. The analysis starts with a description of agent 

representation principles and agent-related modelling concepts that have been adopted in 

the initial version of each of the ABMs. In the second subsection new agents plans and 

other model enhancing directions are presented, giving extensive overview of the undergo-

ing interventions for incorporating additional characteristics, improving the agent represen-

tation and supporting superiority of model outcomes. 

Finally, this report concludes in Section 5 with a summary of the approaches and tech-

nics adopted for the translation of actors’ types to agents by the initial versions of the sim-

ulation models used in TradeRES project and an encapsulation of the foreseen directions 

and prospects of model enhancements. 

 Relationship with other deliverables and tasks 

This deliverable builds upon concepts initially tackled in WP3 and extends the work con-

ducted in T3.2 around the characterization of electricity market actors in both the behav-

ioural and operational dimension. Therefore, the inputs received from D3.2 have been sev-

eral, with the key actor categories, the relational tables and the Actor-ID cards being among 

 

 

1 Initial are considered the versions with respect to the project. These are the most recent versions of the 

models that have been developed outside of TradeRES project and are used as the basis for modelling en-

hancements. Each model follows its own versioning system.   
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the most notable ones. Following the progress made in T4.2 and more specifically the iden-

tified modelling priorities and the implementable technics some feedback is expected to be 

provided back to the actor characterization framework considered in WP3, in the context of 

the final reporting of T3.2 developments. 

There is a strong connection with other WP4 deliverables and tasks as well. More pre-

cisely, this report considers the agent implementations of various actor classes such as 

producers, suppliers, aggregators and prosumers, which are directly related to flexibility 

aspects, namely the temporal, the sectoral and the spatial one. Several agents inherit char-

acteristics and incorporate aspects originating from distributed generation (DG), demand 

side response (DR), energy storage systems (ESS) and electric vehicles (EVs), the repre-

sentation of which has led to several interrelations between tasks and deliverables. The 

market design dimension that affects the incorporation of flexibility options puts also the 

framework of actors’ participation in markets and sets the interaction context of agents. 

Therefore, there is influence from D3.2 and D4.5 as well. Figure 1 depicts this information 

exchange between tasks and the interrelation of the deliverables. 

 

Figure 1: Schematic representation of relations with other tasks and deliverables 

This deliverable is accompanied by a series of other deliverables from TradeRES Work 

Package 4. All of these deliverables are to be published within a timeframe of a few months. 

Please refer to these deliverables to gain deeper insights on their specific topics: 

• Deliverable 4.1 covers model enhancements with respect to temporal flexibility. 

• Deliverable 4.2 focusses on the implementation of sectoral flexibility within 

TradeRES models. 

• Deliverable 4.3 describes spatial flexibility options and their implementation in 

TradeRES models. 

• Deliverable 4.5 covers modelling requirements for new market designs and policy 

options that shall be studied within TradeRES. 
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2. Overview of actors in market simulation tools 

 Overview of electricity markets and agent-based 
approaches 

Power systems across the world are currently undergoing fundamental changes, turning 

from fossil fuels to clean energy sources, mainly driven by the need of reducing the increas-

ing levels of greenhouse gases emission and mitigating the associated environmental and 

climate change concerns, while taking into consideration the increasing demand peaks and 

the electrification of other sectors. To this end, power systems are facing the challenge of 

decarbonization and there is increasing attention to the deployment of renewable energy 

sources (RES), such as solar, wind, hydro, tidal, biomass. However, the majority of these 

sources are inherently characterized by high variability and limited predictability and con-

trollability. 

Furthermore, the ongoing efforts towards the deregulation of power systems have intro-

duced competition among multiple self-interested (profit-driven) market actors, leaving be-

hind the centralized models of social welfare maximization, that were imposing perfect com-

petition conditions through the price-taking assumption and the marginal cost consideration. 

Such competitions exhibit everywhere in generation, supply, and consumption sectors [1]. 

This paradigm change implies that traditional centralized models face many limitations 

when accurate market-related insights are at stake, since self-interested market agents’ 

actions are not generally aligned with social optimality and externalities exist. New market 

models are required instead, which should be capable to simulate complex behaviours and 

even capture the strategic (price-making) interaction of self-interested market agents, for 

the assessment of market outcomes, which emerge from the interactions of these agents 

and can be controlled through the market design. 

Figure 2 presents a general perspective of energy interactions among different levels of 

power system decision makers in the deregulated electricity markets. In this framework, 

electricity producers are the first-level decision makers, electricity suppliers and aggrega-

tors are the second-level decision makers and end-customers (e.g., consumers, prosumers, 

distributed energy resources (DER), local energy market) are considered as the third-level 

decision makers [2]. Other participants, due to their functionalities, may be located at each 

level of this framework. A detailed analysis of the of actors in electricity markers has been 

already performed in the project, with the overview being available in D3.2. The first- and 

second-level decision makers are coupled with each other in the wholesale electricity mar-

ket, which is managed by the market operator. The second- and third-level decision makers 

are coupled with each other in the retail electricity market level. Finally, a part of end-cus-

tomers (e.g., micro-generators and distributed energy storages) providing local generation 

and storage capability are coupled with local demands into local energy markets. As far as 

the markets are concerned, more details along with market design consideration that have 

been deployed for the needs of TradeRES project can be found in D3.5. 

So far, the existing techniques solving the deregulated electricity markets with imperfect 

competition and strategic behavioural concerns, mainly focus on the game theoretic mod-

elling (GTM) [3], [4], of which Bi-level optimization constitutes the most widely employed 
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methodological framework for developing such market models over the last decades. The 

popularity of this methodology lies in its ability to capture the interaction between the stra-

tegic decision making of self-interested players (modelled in the upper level - UL) and the 

competitive clearing of the electricity market (modelled in the lower level - LL) [5]. The Bi-

level optimization problems are usually solved after converting them to single-level Mathe-

matical Programs with Equilibrium Constraints (MPEC), through the replacement of the LL 

problem by its equivalent Karush-Kuhn-Tucker (KKT) optimality conditions. Nevertheless, 

this modelling framework exhibits several fundamental limitations: 1) the UL agents require 

knowledge of the computational algorithm of the market clearing process and the operating 

parameters of their competitors; 2) the LL problem does not include any binary/integer de-

cision variables since the derivation of the equivalent KKT optimality conditions is only pos-

sible when this problem is continuous and convex; 3) the stochastic parameters of the mar-

ket models are difficult to handle, since the computation cost is significantly increased with 

the scenario-based stochastic optimization problem [6]. 

 

Figure 2: The deregulation of electricity markets [7] 

Agent-based modelling (ABM) has received increasing attentions in recent years owing 

to its advantages in modelling large-scale complex and stochastic systems [8]. ABM refers 

to a category of computational models that invoke dynamic action, reaction and intercom-

munication protocols amongst the agents in their shared environment, which is very suitable 

for current deregulated electricity market. These models incorporate these aspects for eval-

uating the performance of agents and also, derive insights about their emerging properties 

and behaviour. Therefore, ABM can model the complex issues in the electricity markets as 
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they can model the complex behaviour of the system participants including asymmetric in-

formation, different bidding strategies etc. Also, for large systems with various system par-

ticipants interacting with each other and playing different roles, ABM is more suitable as 

they can reproduce the decision behaviours of real-world market participants. Although the 

optimal solutions are not guaranteed with respect to the game-theoretic modelling, ABM 

have been successfully used for investigating many real-world complex electricity market 

problems [9]. 

Rule-based control (RBC), Genetic algorithm (GA), and Reinforcement learning (RL) 

constitute the main methods adopted from agents in ABM approaches. RBC is the simplest 

control method that consists of a knowledge base and an inference engine. The prior de-

fines the set of rules that govern the operations, and the latter takes actions based on the 

input data and the corresponding rules [10]. GA, on the other hand, is a set of machine 

learning algorithms which are used to search for the optimal solution of a problem. The term 

“genetic” refers to the evolutionary searching manner which imitates the evolution pro-

cesses in nature: selection, crossover, and mutation [11]. Reinforcement learning (RL) is 

one of the most popular methods for Digital agents in recent years. RL solves the problem 

in a recursive fashion, the agents (i.e., electricity producers) gradually learn how to improve 

their strategies by utilizing experiences acquired from their repeated interactions with the 

environment (i.e., market clearing algorithm). In detail, the electricity market problems are 

formulated a dynamic programming, where the agents interact with the environment by ac-

quiring the experiences from bidding strategies, market outcomes of clearing prices, quan-

tities, and profits. As a result, the agent does not require any information of the market 

clearing algorithm, while assuming it as a black box. In addition, instead of solving a sce-

nario-based optimization problem, RL captures system dynamics and stochasticity by learn-

ing from the interaction with the environment. Finally, once the model is well trained, the 

policy can be tested in any dataset in milliseconds, with solving an optimization [6]. 

The electricity market is operated including different stakeholders, who are capable of 

interacting with each other and are represented in ABMs via agents. As discussed in Sec-

tion 2.1.1, the wholesale market links the operation between electricity producers and elec-

tricity suppliers and aggregators, which in its organised form usually features a centralized 

market clearing mechanism. The focus of the research around the wholesale side is on the 

market and auction design as well as on the investment and bidding strategies of large 

traders (e.g., electricity producers) [12]. Agent instances have been proposed to help these 

large traders adaptively adjust their decisions in a highly competitive, stochastic, and dy-

namic market. On the other hand, consumers (prosumers) in the retail market have less 

ability to affect the market outcomes but are difficult to be managed by the suppliers and 

aggregators, since consumers in the distribution levels are characterized by their large 

quantities and diversities.  To this end, strategic retail pricing scheme offered by suppliers 

is a symmetrical manner to address this issue and somehow mitigates the risks from both 

wholesale and retail sides. ABMs with agents that adopt learning algorithms have been 

recently used for modelling electricity retailer problems. The cases where learning technics 

have been incorporated for the forecasting of the served demand consumption (e.g., Long 

short-term memory) [13], and the pinpointing of strategic retail prices for consumers (e.g., 

RL) [14] are among the indicative ones. Finally, with the development and deployment of 



 

Page 7 of 47 

smart meter technologies, consumers with flexibility are encouraged to response to the re-

tail price signals by shifting part of their demand from peak periods with high prices to the 

off-peak periods with low prices, so as to reduce the energy bills and demand peaks. ABM 

is adopted here for its advantages of modelling the heterogeneity of consumers [15]. 

 Representation of actors through agents 

Having reviewed the electricity market mechanisms of wholesale market, retail market 

and local energy market as well as the approaches of ABM in Section 2.1, this section lies 

in discussing about the modelling approaches around the representation of operations and 

behaviours of certain key actors, including electricity producers, suppliers, aggregators, lo-

cal consumers / prosumers (e.g., distributed DR, DG, EVs, and ESS). 

2.2.1. Electricity producers 

Electricity producers play the role of energy production and behave in two-level decision-

making processes of short-term operation and long-term planning, as depicted in Figure 3 

[16]. 

 

Figure 3: Two-level decision making by electricity producers. 

In the first level, electricity producers participate into electricity market by submitting the 

short-term strategic offers and the interest of studies is focused on the resulting market 

efficiency or the excursion of market power [17]. Therefore, one of the key aspects of any 

electricity market design is the bidding structure, i.e., the format based on which market 

participants submit their techno-economic characteristics, preferences, and requirements 

to the market clearing engine. The key challenge behind determining a suitable bidding 

structure lies in the fact that the physical operating characteristics of most market partici-

pants are complex, time-coupling and non-convex. Simple bids usually consist of a set of 

pairs of energy quantity and desired price. The market clearing process lies in building a 

supply and a demand curve considering the submitted simple bids and determining the 

market clearing outcome from their intersection. Complex bids allow the market participants 

to explicitly reveal all their complex operating characteristics and factor these in the market 
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clearing process, rendering the market operator responsible for satisfying the physical con-

straints of the market participants. In addition to price-quantity pairs, complex bids include 

a representation of the entire set of the participants’ cost components and technical con-

straints. Outside of the wholesale market, electricity producers are also allowed to sign bi-

lateral contracts directly with the suppliers and large consumers. In this case, the market 

risks caused by the renewable energy and demand consumptions can be mitigated via the 

pre-determined contract. 

In the second level, long-term planning strategies are developed, with the interest of the 

studies being on the electric power system transition and the time scale varying from years 

to decades. These studies are usually performed to assess the influence of specific factors 

such as renewable energy support design and CO2 market design on the evolution of the 

system [18]. On the one hand, new market-based generation investment planning models 

are required in current deregulated setting, capturing the effort of self-interested electricity 

producers to maximize their long-term profits while accounting for the impact of their invest-

ment decisions on the competitive electricity market. On the other hand, a strategic invest-

ment decision is required to handle the stochasticity and dynamics of the market conditions 

over the planning horizon. 

2.2.2. Electricity suppliers and aggregators 

Suppliers in the retail electricity market are supposed to purchase electricity in the whole-

sale electricity market and resell it to their subscribed end-user customers through assigning 

appropriate retail prices, either in a temporal variance way or at a flat rate. Currently, the 

electricity retailer is usually operated as an entity that is independent of any generation or 

distribution company [19]. A retailer (which is a role that can also be taken in practice by 

electricity suppliers) represents a large number of end-consumers in the wholesale market 

and coordinate their operation according to the market conditions (day-ahead planning, 

real-time rescheduling) and the consumer types (residential, commercial, industrial) to max-

imize its overall profit. The decision-making process involved in buying and selling strate-

gies usually contains some volatile market risks. Especially with the further deregulation of 

the electricity market, along with the development of demand response (DR) and the prolif-

eration of DERs, suppliers participating in both the wholesale market and the retail market 

should carefully design their buying-selling trade-off and electricity portfolio [19]. 

Aggregators are responsible to coordinate local DERs to reduce the upstream genera-

tion and transmission capacity requirements, by providing local flexibility, avoiding network 

reinforcement, reducing energy costs, etc. [20]. The concept of aggregators has been pro-

posed to coordinate these local agents as virtual power plants (VPPs). A range of strategies 

have been investigated to operate a VPP, which can be broadly divided into two categories: 

direct strategies that control individual resources, and indirect strategies that send signals 

(e.g., price signals) to influence the consumption and generation decisions of prosumers. 

Different strategies have advantages for specific applications. The optimality is guaranteed 

under the direct strategies since VPP as a central coordinator can directly optimize the en-

ergy schedules of all resources. However, knowing all the operation models and technical 
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parameters are normally impractical for real-world applications. To address this issue, indi-

rect strategies via digital agents are proposed to optimize the energy schedules, that only 

require limited information. 

2.2.3. Electricity consumers and prosumers 

In most scenarios, customers play a role of energy consumption in retail electricity, purely 

serving as consumers of energy at the retail side. However, decentralization constitutes one 

of the main features of the emerging smart grid. Specifically, a large number of small-scale 

DERs, including flexible loads, micro-generators and micro-storages, are increasingly being 

connected to the distribution network, with the overall objective of providing the much re-

quired flexibility to support the cost-effective development of low-carbon electricity systems. 

Subsequently, traditional electricity consumers evolve to prosumers, who can proactively 

schedule their energy consumption, production and storage of electricity [21]. 

Flexible demand (FD) is based on the idea that the electricity use of consumers changes 

from their normal consumption patterns to the price of electricity over time. On the one hand, 

FD is used to induce lower electricity use at periods of high retail prices and higher electricity 

use at periods of low retail prices. On the other hand, FD involves temporal redistribution of 

consumers’ energy requirements. As a large number of researchers have stressed, con-

sumers’ flexibility regarding electricity use mainly involves shifting of their loads’ operation 

in time instead of simply avoiding using their loads. In other words, load reduction during 

certain periods is accompanied by a load recovery effect during preceding or succeeding 

periods. This shift of energy demand from different periods drives a demand profile flatten-

ing effect. 

As the energy storage system (ESS) technology is becoming more economically viable, 

the role of ESS in energy trading will be more prominent. For large-scale renewable gener-

ation (e.g., solar arrays, wind farms), the ESS will be used to smooth out the output of the 

system. For end-user applications, (distributed) community-based energy storage systems 

have already gained popularity. In this case, the goal is to deploy small size storage units 

in the residential feeders to accommodate the demand of several houses during peak de-

mand. 

Even though the primary goal of electric vehicles (EVs) is to offer environmentally friendly 

and cost-effective transportation options, the foreseen capability of EVs to store a large 

amount of electric power makes them a natural player in energy trading mechanism. With 

the use of bidirectional chargers, EVs can exchange electric power with the power grid or 

other market participants, representing as Grid-to-Vehicle and Vehicle-to-Grid. 

However, this paradigm changes greatly complicate the operation of the system, as the 

effective coordination of such large numbers of DERs involves very significant communica-

tion and computational scalability challenges as well as privacy concerns, since DER own-

ers, in certain cases, may not be willing to disclose private information and be directly con-

trolled by external entities. To develop strategies for these challenges, policy makers and 

planners need knowledge of how these DER can be integrated effectively and efficiently 

into a competitive electricity market. Local energy market (LEM) [22] has recently emerged 

as an interesting approach to deal with these coordination challenges, as the global coordi-

nation burden is broken down to the coordination of local market clusters, each grouping a 
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number of customers with DERs, coordinating the energy exchanges between them and 

the upstream grid and addressing local network problems. Beyond this coordination benefit, 

the local matching of power reduces net demand peaks and network losses, resulting in 

avoidance or deferral of capital-intensive network reinforcements. 

 Methodologies for agent-based decision-making process 

2.3.1. Rule-based Control 

Although RBC requires domain-specific expertise and knowledge to define the decision-

making criteria, a rule-based nature is easy to understand as it provides transparent links 

between causes and effects. Therefore, solutions generated by RBC can be easily inter-

preted and justified. Currently, RBC is widely used for automatic control problems in smart 

grid applications. Authors in [23] proposed a predictive rule-based control to activate the 

energy flexibility of a residential building. Authors in [24] proposed a two-step rule-based 

strategy for prosumers participating into local energy sharing market. Furthermore, RBC is 

also a popular method as the benchmark for many advanced algorithms, e.g., RBC is con-

structed as the baseline of reinforcement learning algorithm for local trading behaviour mod-

elling [25] and EV real-time smart charging behaviour [26]. However, rule bases do not scale 

efficiently; thus, RBC becomes inadequate for large and complex problems. 

2.3.2. Genetic Algorithm 

GA a type of evolutionary algorithms that can be used for optimization. GA is widely used 

in complex electricity market applications due to its ability to find good solutions with a lim-

ited number of simulation iterations. Compared to the RBC, GA does not require any 

knowledge of the examined market, but improves its solutions based on the fitness functions 

acquired from the market clearing outcomes. In [27] the authors proposed a framework for 

a generation expansion planning applicable in a competitive environment using GA. Authors 

in [28] used GA to find a strategic bidding decision in electricity market with the objective of 

maximizing economic profits and minimizing the financial risks. On the retail side, authors 

in [29] proposed a bi-level optimization approach between strategic retail pricing and de-

mand response problems, while GA is adopted to overcome the infeasibility of conventional 

Karush–Kuhn–Tucker (KKT) approach considering that the lower-level demand response 

problem is non-convex. 

2.3.3. Reinforcement learning 

• Single-agent reinforcement learning 

We now describe the background of single-agent reinforcement learning (SARL) 

[13]. In reinforcement learning, there are two objects that can interact: the agent and 

the environment. 

1. Agent can sense the status of the external environment (State) and the reward 

of feedback (Reward), and learn and make decisions (Action). The decision-

making function of the agent refers to making different actions according to the 
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state of the external environment, and the learning function refers to adjusting 

the strategy according to the reward of the external environment. 

2. Environment is everything outside the agent, and its state is changed by the 

action of the agent, and the corresponding reward is returned to the agent. 

 

Figure 4: Agent-environment interactions in SARL [30] 

In SARL, an agent acts within an environment by sequentially taking actions over 

a sequence of time steps 𝑡 ∈ 𝑇, in order to maximize a cumulative reward, as illus-

trated in Figure 4. RL can be defined as a Markov Decision Process (MDP) which 

includes: 

a) a state space 𝒮: a collection of the environment state; 

b) an action space 𝒜: a collection of the agent’s actions; 

c) a policy 𝜋(𝑎|𝑠): a function of the agent to decide the next action according to 

the environmental state; 

d) a dynamics distribution with conditional transition probability 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), sat-

isfying the Markov property, i.e. 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) = 𝑝(𝑠𝑡+1|𝑠1, 𝑎2, … , 𝑠𝑡 , 𝑎𝑡), repre-

sents the probability that the environment will change to the state 𝑠𝑡+1 at the 

next time step after the agent makes an action a according to the current state 

𝑠𝑡; 

e) a reward 𝑟: 𝒮 ×𝒜 → ℝ, that is, after the agent makes an action according to the 

current state 𝑠𝑡, the environment will give an immediate reward 𝑟𝑡 to the agent, 

and this reward is related to the next state 𝑠𝑡+1 after the action 𝑎𝑡. 

The agent’s decision in terms of which action at is chosen at a certain state 𝑠𝑡 is 

driven by a policy 𝜋(𝑠𝑡) = 𝑎𝑡. The agent deploys its policy to interact with the MDP 

and emit a trajectory of states, actions and rewards: 𝜏 =

𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, 𝑠2, … , 𝑠𝑇−1, 𝑎𝑇−1, 𝑟𝑇 , 𝑠𝑇 over 𝒮 ×𝒜 ×ℝ. The agent starts from the 

perceived initial environment 𝑠0, then decides to take a corresponding action 𝑎1, the 

environment feeds back to the agent an instant reward 𝑟1 and changes accordingly 

to the new state 𝑠1, and then the agent makes one action 𝑎1 according to state 𝑠1, 

reward 𝑟2 is rewarded and the environment is changed to 𝑠2 accordingly. This inter-

action can continue until the end of the episode 𝑇. 

Previous works employing RL in electricity market modelling have employed con-

ventional Q-learning algorithms and its variants [30]. Authors in [31], [32], [33], [34], 

[35], [36] and [37] have successfully applied Q-learning method to the strategic bid-

ding problem of electricity producers in a deregulated electricity market. In terms of 
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retailer /aggregator, previous works [38], [39], [40] and [41] employ Q-learning to the 

strategic retail pricing problems with the objective of maximizing the selling reve-

nues. Finally, a vast number of papers put efforts to the consumer/prosumer sides, 

including demand response problems [42], [43], [44] and EV smart charging strate-

gies [45], [46]. This type of algorithms relies on look-up tables to approximate the 

action-value function for each possible state-action pair and thus requires discreti-

zation of both state and action spaces. Therefore, it suffers severely from the curse 

of dimensionality; as the number of considered discrete states and actions in-

creases, the computational burden grows exponentially, soon rendering the problem 

intractable. If on the other hand a small number of discrete states and actions are 

considered, the feedback the agents receive regarding the impact of their actions on 

the environment is distorted and the feasible action space is adversely affected, 

leading to sub-optimal bidding decisions. This challenge is aggravated in the setting 

of the examined market modelling problem, since both states of the environment 

(market clearing prices and dispatches) and agents’ actions (strategic bidding deci-

sions) are not only continuous, but also multi-dimensional (due to the multi-period 

nature of the problem). 

In the context of addressing such dimensionality challenges, deep reinforcement 

learning (DRL) [30] which combines RL with deep learning principles and is driven 

by the universal function approximation properties of deep neural networks (DNN), 

has been a growing interest in a new promising research area. As an extension of 

Q-learning on multi-dimensional continuous state space, authors in [47] proposed 

the deep Q-network (DQN) method which employs a DNN to approximate the action-

value function and has performed at the level of expert humans in playing Atari 2600 

games. Inspired by this pioneering work, several recent papers have employed the 

DQN method to various electricity market applications such as strategic bidding 

problem of electricity producers [48], smart pricing determinations [49], and demand 

response problem of consumers [50] - [51] and smart EVs [52]. However, although 

previous work has demonstrated high quality performance of the DQN method in 

problems with continuous state spaces, its performance in problems with continuous 

action spaces is less satisfactory because the employed DNN is trained to produce 

discrete action-value estimates rather than continuous actions, which significantly 

hinders its effectiveness in addressing the examined market modelling problem, 

since market players’ actions are continuous and multi-dimensional. In order to ad-

dress the curse dimensionality of DQN method in discrete action space, deep deter-

ministic policy gradient (DDPG) method [53] featuring an actor-critic architecture, 

which is able to handle the high-dimensional continuous state and action spaces. 

The exist literature has successfully applied DDPG method to the strategic bidding 

problem of electricity producer in a non-convex unit commitment (UC) problem [6], 

strategic pricing problem of an EV aggregator considering EV discrete charging lev-

els [14], and the real-time home energy management problem [54]. 
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• Multi-agent reinforcement learning 

If there are multiple agents in the electricity market, the Partially Observable Mar-

kov Game, an extension of Markov Decision Process (MDP) under a multi-agent 

setting, is normally considered as a concept. The electricity market problem in-

cludes 𝐼 agents indexed by 𝑖 ∈ ℐ = {1,2,… , 𝐼} with a set of environment state 𝒮 

representing the global state; a collection of agents’ action sets 𝒜 = {𝒜1, … ,𝒜𝐼}, 

and a collection of private observations 𝒪 = {𝒪1, … , 𝒪𝐼}. Each agent 𝑖 employs a 

policy conditioned on its own private observation 𝜋𝑖(𝑎1|𝑜1): 𝒪𝑖 ×𝒜𝑖 → [0,1] to 

choose actions executed to the environment and transit to the next state based 

on the transition function 𝒯: 𝒮 ×𝒜1 × …×𝒜𝐼 → 𝒮. At each time step 𝑡, all agents 

𝑖 ∈ ℐ simultaneously take actions 𝑎𝑖,𝑡 according to their individual observation 𝑜𝑖,𝑡, 

then each obtains the immediate reward 𝑟𝑖,𝑡: 𝒮 × 𝒜𝑖 → ℝ as well as a new private 

observation 𝑜𝑖,𝑡+1. The objective of each agent 𝑖 is learning a policy that can max-

imize its own total expected return over the game. 

Prior applications of MARL approaches in the area of power systems are still 

limited but emerging. The independent learning approach aims at training a policy 

for each agent by mapping its private observations to an action, and has been 

adopted for producers’ bidding problem [55], demand response problem of con-

sumers [56], and peer-to-peer (P2P) energy trading problem [57]. However, train-

ing independent policies does not generally scale well to large numbers of agents 

and the change in the policies makes the environment dynamics non-stationary 

in the view of any individual agent and may lead to instability.  

To overcome the non-stationarity issue, the multi-agent deep deterministic pol-

icy gradient (MADDPG) method has been employed by various researchers to 

address the optimal demand response problem in a smart city context [58] and 

energy management problem for manufacturing systems [59]. The advantage of 

this method lies in the employment of a central critic network which takes the 

observations and actions of all agents as the input for eliminating the environ-

mental non-stationarity. Furthermore, authors in [15] propose a parameter shar-

ing (PS) method, an extension of MADDPG, to optimize the P2P energy trading 

problem among a large number of prosumers. 

If the agents are homogeneous and exhibit similar learning behaviours, their 

policies may be trained more efficiently using PS. Under this approach, all agents 

are allowed to share the parameters of a single policy, which enables the policy 

to be trained with the experiences of all agents simultaneously and the learned 

policy becomes a generalized strategy for agents. In addition, each agent can 

benefit from other agents’ episodic experience and learned knowledge. This sub-

stantially accelerates the learning speed and reduces the computational burden 

of the algorithm. However, in the large-scale multi-agent systems, training of the 

centralized critics is intractable since the joint action and state spaces grow ex-

ponentially with the number of agents, a common bottleneck for both MADDPG 

and PS approaches. Furthermore, the assumption of agents’ homogeneity in 

terms of their energy characteristics fails to capture the natural diversity of agents 

with respect to their economic and environmental perspectives. 
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3. Modelling improving directions 

Beyond any model coupling and information exchange between models that is to take 

place in the context of TradeRES project, the four ABMs, namely AMIRIS, EMLab-Genera-

tion, MASCEM and RESTrade, are also enhanced to incorporate further options and enable 

more extensive evaluation of market designs. Subject to improvements are also the optimi-

zation models used in the project, Backbone and COMPETES, with the relevant work taking 

place in WP2 and the details foreseen to be reported in D2.2. 

Three main pillars of improvement are about including flexibility options into the models 

from the temporal, sectoral and special point of view and for those special attention is paid, 

with the analysis and the implementations taking place in the relevant subtasks of WP4 and 

being presented in the corresponding deliverables, namely D4.1, D4.2 and D4.3. These 

aspects are also combined and supported by market functionality implementations that will 

enable the simulation and assessment of proposition of D3.5. The other improving aspect 

is that of the agent modules, which should get harmonised with all other modelling interven-

tions and being enhanced towards directions that emerge from the synthesis of work con-

ducted in D3.2 and follow the two dimensions identified there, the operational and the be-

havioural one, respectively. 

Based on D3.2, there have been eight classes of actors that have been identifies as 

playing a key role in electricity markets. These are the prosumer, the producer, the supplier, 

the aggregator, the trader, the ESCo, the operator and the regulator, with a summary of the 

adopted definitions, the technologies with which an interrelation exists, the operational and 

the behavioural characteristics being provided in a per actor basis by the Actor-ID cards of 

Section 5 of D3.2. Another critical part of the qualitative analysis of actors that took place in 

T3.2 have been the relational tables that were also reported in D3.2. Following a table-

based survey that was circulated among the TradeRES project consortium, the intensity of 

relations the suggested actors have with a wide range of technologies, many operational 

attributes and several behavioural aspects were identified. The three so-called relational 

tables of D3.2, using a heatmap visualization approach, presented through the intensity the 

importance the relations play in modelling, since they were perceived solely from the per-

spective of project needs, while further elaboration and details are provided in the corre-

sponding deliverable. 

For the identification of the direction of improvements, given the relational tables of D3.2, 

an extra layer of information is added on top of each table for indicating either the coverage 

by initial versions of the models or the need for consideration for future inclusion (Figure 5). 

This per ABM indication, although it adds some extra complexity in the already informa-

tional-rich relational tables, constitutes a systematic and compact representation that sup-

ports (i) the identification of enhancing directions towards which the modelling efforts should 

focus, (ii) the provision of an actor-related coverage overview that facilitates the coordina-

tion of intervention priorities and (iii) the monitoring of the extent the improvements fulfil the 

identified needs. The concept of developing enhanced relational tables that include the ex-

tra layer of information about the ABMs’ coverage is presented in the schematic of Figure 

5 and aims to make the mapping of actors and agents, by linking D3.2 with the current 

deliverable. 
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Figure 5: Development of enhanced relational tables with extra layer of information. 

Following the order of D3.2, the first enhanced relational table is the one that links actor 

classes with the technologies. On the one hand, technologies act as enablers and as they 

go through the lifecycle stages, they drive the emergence of new actors and roles, while on 

the other hand, influence directly the operation of assets as they set boundaries due to 

technical limitation and dictate the interaction of components. Table 1 includes the eight 

actor classes along with their type and various technologies given previous project devel-

opments. By considering equivalent agent classes, the extra layer of information that consist 

of a set of coloured letters positioned in each corresponding cell, represents (i) the relations 

that are present in the initial versions of the models, (ii) the relations that indicate directions 

of new developments and (iii) the relations that although are already present are to be ex-

tended or improved. Those three cases are indicated by the colour of the letters, while “A” 

stands for AMIRIS, “E” for EMLab-Generation, “M” for MASCEM and “R” for RESTrade. 

Considering in more detail Table 1, it can be seen that regarding the prosumers there 

has been some coverage of inflexible demand and distributed generation by certain models, 

with potential of improvements, while the incorporation of DR, EVs and ESS is foreseen by 

the majority of the models with operational orientation. Producers, which are considered 

being either large or distributed and represent either generation or storage, are and will be 

further represented in models. EMLab-Generation, the long-term investment ABM that 

participates includes a wide range of technologies found in large scale power generation 

and storage, while the slight enhancement of certain existing ones is expected. On the other 

hand, operational ABMs concentrate their interest in flexible technologies (EVs, ESS) and 

renewable generation technologies with distributed versions by introducing new compo-

nents into their models. Certain technologies are also to be related to suppliers, aggrega-

tors, and traders as after their introduction at the distributed level through the prosumers 

and producers, the concentration for participation/expression in markets is required. More-

over, relations of operators and the regulator with several technologies that exist through 

the anticipation of technical parameters in operations are present and enhanced in some 

cases. Overall, by observing Table 1 it can be said that there the overall coverage of the 

identified relations is extensive, with only some minor ones not being covered by a model. 
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Table 1: Relational table between actors and technologies with ABM coverage 
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 Operational Dimension 

The operational dimension as considered in the technoeconomic analysis framework of 

D3.2 aimed to focus on the technical side of the relation of actors to either a single or a set 

of technologies that either set the nature of their role by providing the main characteristics 

or impose operational constraints. Several operational attributes, such as the flexible and 

inflexible demand, the controllable and non-controllable generation, the storage and the 

EVs, and the networks, were considered for the for the various groups of technologies taken 

into account in TradeRES project and mentioned earlier. An in-detail presentation of the 

most common parameters involved is provided in D3.2. 

As far as the modelling initial and future status of those relations is concerned, Table 2 

gives an overview. By observing the table, it can be said that many modelling interventions 

are expected, which will lead to almost all identified operational aspects to be incorporated 

in the final versions. Detailed presentation of operational aspects in the initial model ver-

sions, which constitute the starting point of the model enhancement process, are provided 

in Section 4.1. Moreover, elaboration on the modelling priorities identified for the enhance-

ment of each model, along with presentation of the implementation plans, are provided in 

Section 4.2. 

The operational dispatch models focus particularly on the improved representation of 

prosumers as it can be been seen in Table 2, where although the initial concern has been 

limited in the inflexible demand part and especially in the profiles, the plan is the consider-

ation of load shedding options, flexible demand and storage asset capabilities. AMIRIS has 

the ability to simulate generic prosumers with an inflexible demand, through the cost mini-

mising dispatch. RESTrade considers prosumers in the context of retail markets, where 

they can negotiate bilateral contracts with suppliers. MASCEM assumes they are able to 

buy or sell in the market, at the defined price and according to their goals. As far as the 

investment simulation model EMLab-Generation is concerned a single agent for consumers 

is considered for the representation needs of the demand. 

Large generation has been found to be affected by the capacity and the power limits, 

while the generation profile seems to be among the important aspects for the case of non-

controllable units. Many of those, along with all other generation attributes are considered 

in several ABMs. The main agents included in EMLab-Generation are the electricity gener-

ation companies that possess a portfolio of generators. The producer agents sell electricity, 

purchase fuels based on their expected fuel prices, and acquire CO2 emission rights, apart 

from making investment or disinvestment decisions. On the operational dispatch models, 

large as well as distributed producers are aggregated as for example in AMIRIS, including 

conventional and renewable electricity generation as well as the operation of flexibility op-

tions. RESTrade’s producer agents are operators of a set of power plants of various tech-

nologies and where suitable are enabled to assess their optimal market strategic participa-

tion between spot and bilateral markets, considering a profit maximization and taking into 

account technical and economical characteristics of the underlying technologies. In MAS-

CEM, the producer agent is connected with the aggregator, the wholesale market and the 

local/community market agents, while its objective is to sell in the market, with its bids being 
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set according to its goals/generation costs. Similarly for storage, either large or distributed, 

attributes like the energy limit, the charging/discharging limit and charging/discharging effi-

ciency appear to matter and getting incorporated in AMIRIS model. 

The supplier and aggregator classes that are next in order in Table 2, are also among 

the classes of actors that are interrelated to demand response attributes and generation as 

well as storage characteristics. In terms of modelling, related agents inherit operational 

properties by the entities they aggregate. Therefore, operational dispatch models such as 

RESTrade and MASCEM pay much attention in the integration of those aspects. On RE-

STrade suppliers, the goal of which is to maximize their return, can negotiate bilateral agree-

ments with end-use consumers obtaining a private portfolio to manage. At the same time, 

on the production side, wind power plants are aggregated with ultimate goal of their unified 

representation to the market the increase of the value of products/services offered. In MAS-

CEM aggregator’s agent objective is close to the prosumer’s one, as it aims to serve its 

goals be managing resources of its portfolio and participating in the market. In AMIRIS, 

aggregators are a subclass of traders but as they optimize supply and demand of an energy 

community the relative operational relations have been accounted in energy communities 

of prosumers. Optimisation of demand response for industrial consumers through load 

shedding and load shifting as well as consideration of flexible heating with heating storage 

for households are foreseen for consideration in AMIRS, with the attributes accounted in 

the relevant prosumer types. 

Finally, the TSO and the DSO have been related to network operational attributes since 

their operations are affected by the topology of the networks, the line characteristics and 

the technical limits. In RESTrade, where the TSO agent is responsible for managing the 

balancing markets and the cross-border exchange, beyond being equipped with the corre-

sponding market mechanisms of the balancing markets, considers the line characteristics 

in the either constant seasonal or dynamic line rating (DyLR) approaches deployed. The 

validation of the transmission or distribution network operation is the objective of the TSO 

and DSO agent in MASCEM, respectively, while power flows are considered with several 

operational attributes being under consideration. 
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Table 2: Relational table between actors and operational attributes with ABM coverage. 
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 Behavioural dimension 

Regarding the behavioural dimension, characteristics that influence and govern the be-

haviour of actors have been highlighted in D3.2. Several behavioural aspects have been 

considered in the qualitative part of the analysis, which have been grouped into four cate-

gories. These are the self-interest drivers, the non-self-interest drivers, the influencing 

standards and the other characteristics that are common in behavioural economics. 

The self-interest drivers, which conceptualize the most common goals of actors, are the 

utility maximization, the cost minimization, the profit maximization and the return on invest-

ments. These follow the assumptions of classical economics for modelling of consumers, 

social planners, producers and investors, respectively and capture the main behavioural 

driver of actors when they interact and participate in the markets. Table 3 offers a full over-

view of the coverage offered by each ABM on the identified relations from behavioural point 

of view, considering the initial versions of the models as well as the intervention directions 

that have been prioritised. 

On the generation side, profit maximizing rules are used in AMIRIS for conventional 

power plants, while renewable units use mechanics for market participation that depend on 

the assumed support instruments. Traders have a central role as they contract producers 

and determine the bidding strategies, and hence, they constitute an important component 

as far as decision making is concerned. Selection of the most suitable among the support 

instruments, choice of the most appropriate marketplace and finally determination of bidding 

strategies are the decisions that the class of traders is expected to undertake. Several strat-

egy variations can be implemented, with indicative example for the storage trader case be-

ing the minimization of system’s cost or the maximization of own profits with or without using 

market power. 

In RESTrade, prosumer agents are equipped with utility and optimization functions and 

consequently are able to respond to dynamic price signals, adapting their consumption pat-

terns following the notion of elasticity of demand. Producers on the other side are able to 

assess their optimal participation between markets given their profit maximization goal. 

Suppliers and aggregators operate with the maximization of their returns as their main driver 

and of the overall revenue streams of the aggregated wind plants in the case of VPPs, with 

their allocation being subject to the adopted business model. 

Environmental, social and sustainability concerns as well as internalization of legislation 

standards are applicable to almost all actors and will be considered in an appropriate way 

in MASCEM. In addition, cost minimization, utility maximization and profit maximization be-

haviours are to be related to prosumers, producers, suppliers, aggregator, wholesale trader, 

ESCo and for the local/community market. Comfort standards are to be accounted as well, 

especially for prosumers and the aggregator, safety standards for TSO, DSO and regulator, 

and, finally, attitude to risk, for prosumers, producers, suppliers and aggregator. 

Finally, on the investment side special attention is to be paid to the attitude to risk as in 

EMLab-Generation where energy producer agents are modelled as risk neutral investors, 

meaning they are economically rational, will be extended so that a risk aversion factor is 

incorporated. 
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Table 3: Relational table between actors and behavioural aspects with ABM coverage. 
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4. Model capabilities and enhancements 

The previous section provided an overview of the coverage that participating ABMs 

offer through their initial versions and highlighted the main directions of enhancing the mod-

els towards a more complete, realistic and contemporary representation of actors in market 

simulation tools. This analysis begun by considering the relations of actor classes with the 

operational attributes and the behavioural characteristics that have been identified earlier 

in the project and continued by bringing the agents’ implementation into that canvas. In this 

section, the ABMs participating in TradeRES project are reviewed in detail with respect to 

their agent representations, while the foreseen enhancements are further described. 

 Existing agents and modelling principles 

The presentation of the agents in the initial versions of the model is performed in an 

alphabetical order, considering the four participating ABMs. It is worth mentioning that not 

all of the models represent all the classes of actors through their agents, as according to 

the special objective of each model the attention is paid to certain segments of the actor 

scene or the perspective is more micro- or macro- founded. 

4.1.1. AMIRIS 

The agent-based simulation model AMIRIS offers an innovative approach for the anal-

ysis and evaluation of energy policy instruments and mechanisms for the integration of re-

newable energies into the electricity markets. One of the main focusses of AMIRIS is to 

model the energy market actors’ micro-economic behaviour under imperfect foresight and 

information asymmetries. AMIRIS represents energy system actors by prototypical agents 

which are assumed to behave economically rational under given but possibly incomplete 

information. Due to this approach most of the agents seek to maximise their profit using, 

e.g., rule-based strategies. These might not always result in the best possible solution, but 

contain model calculation efforts. 

In general, the number of agents is not defined in AMIRIS and can be scaled up arbi-

trarily. Thus, it would be technically possible to simulate every individual participant of the 

energy system. However, the level of (dis-)aggregation should be adjusted to the research 

question and available data – to retain a parsimonious and computationally feasible model. 

More details about the models can also be found in D4.1, while in the paragraphs that follow 

some key remarks about the actor classes in the initial model version are provided. 

• Prosumers: 

In AMIRIS’ current state, national power demand is modelled as an aggregated 

block at first. With regard to the special case of energy communities, AMIRIS can 

simulate the cost minimising dispatch of generic prosumers with an inflexible de-

mand (see item 4, “Aggregators”). Those prosumers are depicted as agents without 

potential for demand response. 

• Producers: 

Large as well as distributed producers are aggregated for AMIRIS simulations by 
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their generation technologies. They cover conventional and renewable electricity 

generation as well as the operation of flexibility options. For conventional generation 

typically one fleet of power plants per energy carrier and technology type is used. 

Parameters for this fleet are fuel type, minimum and maximum efficiency, total in-

stalled power, power per plant, etc. Conventional generation is marketed using the 

same profit maximizing rules for all power plants.  

Renewable generation can be split into power segments. These segments can con-

sider any criterion for distinction (e.g., power limits, remuneration preconditions, lo-

cation, etc.). As of now, one segment per technology is considered in the default 

configuration. Time series for the yield potential are used to determine the feed-in of 

fluctuating renewable units. Marketing mechanics of renewable units depend on the 

associated support instrument. 

Storage units are modelled using aggregated and generic power-to-X-to-power stor-

age units. Technical specifications for these units include energy-to-power ratio, 

charge & discharge power and efficiencies. Other parameters control the marketing 

strategies and the numeric precision of dispatch scheduling. 

It must be mentioned that in AMIRIS producers are contracted to wholesale traders 

who determine the bidding strategies. Producers are only tasked to determine which 

power generation unit of their fleet to dispatch in order to fulfil any awarded bid, i.e., 

to deliver sold energy. Due to this separation of concerns, agents for plant operation 

and trading require a strong communication link within AMIRIS. 

• Suppliers: 

The class of suppliers is not yet directly considered in AMIRIS. However, the “com-

munity aggregator” agent integrates some functions of suppliers. It is managing the 

electricity load and feed-in of the local grid with households as inflexible prosumers 

and an energy community storage (see item 4, “Aggregators”). 

• Aggregators: 

Aggregators are represented as a subclass of traders in AMIRIS. They optimize 

supply and demand of an energy community. The aggregator in an energy commu-

nity manages electricity load and feed-in of the local grid. In the current implemen-

tation, households as inflexible prosumers and a community energy storage (CES) 

are assigned to a retailer, serving as the energy community aggregator. The retailer 

can apply strategies like maximisation of its profit and maximisation of the energy 

community’s autarky to the operation of the CES. 

• Traders: 

Previous work in the model development of AMIRIS has focused on direct marketing 

of renewable electricity in Germany. Therefore, existing central actors in the model 

are differently prototyped trading agents. These contract suppliers, either electricity 

generators or flexibility option operators and sell their generated electricity to the 

electricity markets. The electricity demand is also modelled by trading agents which 

request energy from the market to satisfy electric load and charging of storages. 
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Accordingly, the class of traders covers the widest scope of decision making in 

AMIRIS. They choose available support instruments, marketplaces and bidding 

strategies. Depending on the actual trading agent, often several strategy variations 

are implemented. For the storage trader, e.g., strategies to minimise system cost, to 

maximise own profits with or without using market power are available. In addition, 

traders may decide upon including individual markups and markdowns for conven-

tional and renewable generation units. 

Forecast errors are artificially created at the central forecasting agent. However, the 

trader agents can control the level of error they have to deal with – similar to a real-

world situation where traders may improve their forecast quality, e.g., by combining 

multiple different forecasts. 

Typically, one wholesale trader is assigned to market the volume for one conven-

tional power plant fleet, although less or more coarse assignments can be made. 

The same applies for marketing of renewable electricity generation technologies. 

However, by default the trading agents are distinct with respect to the support in-

strument they offer to the associated power plants. 

• ESCos: 

The class of ESCos is not implemented in AMIRIS. 

• Operators: 

AMIRIS provides several classes of operators: The agent representing the whole-

sale market operator clears the market, determines the wholesale power price and 

disburses the market revenue to the corresponding agents according to their 

awarded bids and asks. For the calculation of the market clearing price a merit order 

model is implemented. 

• Regulators: 

AMIRIS features a regulator class to host support instruments and provide remuner-

ation to market participants. A second agent is planned to collect dues from the 

market participants. These agent types, however, do not feature active decision 

making but rather provide pre-configured policy instruments to other agents. 

4.1.2. EMLab 

The purpose of modelling generation investment with an agent-based approach is to 

simulate imperfect behaviour of investors due to limited information. In comparison to opti-

mization models, in ABMs producers might over- or under invest, as it occurs in reality. In 

EMLab, agents are programmed as objects. The agents’ decisions change their own port-

folio but also affect the surrounding. An overview of the agents can be found in Table 4. 

The main agents are the electricity generation companies “EnergyProducer” that pos-

sess a portfolio of generators. In the basic implementation of EMLab, the “EnergyProducer” 

agents are modelled as risk neutral, meaning they are economically rational. This can be 

modified to add a risk aversion factor. In its current version, EMLab does not consider in-

vestors potential strategic behaviour, nor market power dynamics. 
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To make an investment decision, each simulation year, the agents make a forecast of 

a future electricity market. Taking past data (4 to 6 years) of the demand, fuel prices and 

CO2 prices, these variables are projected to a future reference year. In each iteration a 

randomly selected agent simulates the cash flow of a new plant with the projection of future 

prices. The projected plants are expected to run if their variable costs are below the ex-

pected electricity prices. Their cash flow is calculated considering the revenues from the 

future electricity prices (which consider the forecasted fuel prices), the running hours and 

the costs of the projected plant. For the net present value (NPV) calculations, the construc-

tion time and the expected lifetime of the plant is considered. This iteration is done for all 

new possible technologies. The agent in turn selects the technology with the highest NPV 

and if it has a sufficient cash flow for the down payment, then it invests. The equity costs 

are considered immediately, and the debt costs are considered during the depreciation time 

on future cash flows. This procedure is repeated for the next agent which projects the future 

system considering the plant that the previous agent decided to invest in. The iteration con-

tinues until the agents stop being willing to invest because the projected cash flows are 

negative (negative NPV) or because their cash flow is insufficient to finance the equity. The 

agents make disinvestment decisions by considering the age or the profitability of the power 

plants. If the cash flow of a plant is negative for several years (user-defined) and it is also 

forecasted to have a negative cash flow, then the plant is dismantled. A more detailed de-

scription of the model can be found in [60]. 

The intermittence of renewable energies is taken into account considering the ratio of 

their capacity to be available during the different load duration segments. To simulate the 

renewable energy support, a renewable target investor agent “TargetInvestor” is imple-

mented. If the investment in renewable generation is below the policy target, then this agent 

covers the difference between the target and the invested capacity. The investment is made 

even if the technologies are not profitable, resembling the subsidies that these technologies 

receive. 

Apart from investment the “EnergyProducer” agents sell electricity, purchase fuels 

based on their expected fuel prices, and acquire CO2 emission rights. The demand is rep-

resented by a single “EnergyConsumer” agent.  

An agent called “Government” defines the rules for the CO2 market (CO2 caps, CO2 

penalty, CO2 price trend, etc) and the market stability reserve. Similarly, there are other 

agents that define the rules of mechanisms, such as the Strategic reserve operator. The 

rest of the agents (PowerPlantManufacturer, PowerPlantMaintainer, BigBank, Commod-

itySupplier, ElectricitySpotMarket, CommodityMarkets) have simple functions and are 

unique agents that do not present group interactions nor emergent behaviour. 
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Table 4: Agents in EMLab Generation [60] 

Agent Names Complexity Class 

EnergyProducer High  domain.agent.EnergyProducer 

TargetInvestor Simple Rules domain.agent.TargetInvestor 

PowerPlantManufacturer Accounting  domain.agent.PowerPlantManufacturer 

PowerPlantMaintainer Accounting PowerPlantMaintainer 

BigBank Accounting domain.agent.BigBank 

CommoditySupplier  Accounting domain.agent.CommoditySupplier 

EnergyConsumer Accounting domain.agent.EnergyConsumer 

Government Simple Rules domain.agent.Government 

ElectricitySpotMarket High  domain.market.electricity.ElectricitySpotMarket 

CommodityMarkets  Simple Rules domain.market.electricity.CommodityMarket 

4.1.3. MASCEM 

MASCEM is also a simulation and modelling tool developed for studying and simulating 

electricity market operation. To achieve its design goals, MASCEM models the main market 

entities and their interactions, with players' decisions being in accordance with their specific 

characteristics. The main market entities are implemented as software agents and in the 

current version of the model there are eight different classes of actors that can be classified 

as follows:  

• Prosumer: 

one agent with as many instances and parameters as needed by the case study. 

• Producer: 

One agent with as many instances and parameters as needed by the case study. 

• Supplier: 

One agent with as many instances and parameters as needed by the case study. 

• Aggregator: 

One agent with as many instances and parameters as needed by the case study. 

• TSO: 

One agent with one instance. 

• DSO: 

One agent with one instance. 
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• Wholesale market: 

Three agents, MIBEL (Iberian Electricity Market), EPEX (Environment for Parallel 

Execution) and NordPool (Nominated Electricity Market Operator). 

• Local/Community market: 

One agent with one instance. 

In what concerns the model’s functionality, in the scope of TradeRES none of the actors 

is considered to undertake autonomous decisions. These agents perform specific tasks in 

the market environment, with their actions being specified a-priori. For example, the 

prosumer, producer, supplier and the aggregator need to define the price, volume and any 

specifications to be submitted in the market for each negotiation period. 

Furthermore, when considering the objective function or the agent´s objective in this 

model: 

• For the TSO and DSO, the objective is to validate the network, either at a transmis-

sion or distribution network level, considering the market economic results; and 

communicate these validated results to the respective market operator, so that ac-

tions may be performed in case there are power flow problems; 

• For the wholesale market and the local/community market agents, the objective is 

to run the market itself, calculating the market social welfare, finding the market 

price and defining accepted/refused bids from all market players for each market 

negotiation period;  

• For the prosumer, the goal is to buy or sell in the market, at the defined price ac-

cording to its goals.  

• The objective of the producer is to sell in the market, at the defined price according 

to its goals/generation costs.  

• Finally, the aggregator’s objective is close to the prosumer’s one, it is to buy or sell 

in the market, at the defined price according to its objectives and the resources 

being managed by it.  

Table 5 illustrates the existing direct connections between the different actors. It is im-

portant to notice that the aggregator is the only entity that interacts with all other actors, 

being able to manage consumers, generators and prosumers, participating in wholesale 

and local markets, and potentially enrolling in power network validation roles as well. The 

DSO and TSO interact (besides the aggregator) with the local market and wholesale market 

operators, respectively; for power network validation purposes, at the different levels. 

Prosumers, producers and suppliers are able to participate in the market directly, and also 

indirectly, via an aggregator. 
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Table 5: Direct connections between actors 
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Prosumer - - - x - - x x 

Producer - - - x - - x x 

Supplier - - - x - - x x 

Aggregator x x x - x x x x 

TSO - - - x - - x - 

DSO - - - x - - - x 

Wholesale Market x x x x x x - x 

Local/Community Market x x x x - x x - 

Based on the current stage of the model and the purpose and characteristics of the pro-

ject, some enhancements regarding the actors’ capabilities are planned as described in 

Section 4.2.3. 

4.1.4. RESTrade 

RESTrade – LNEG’s open-access model - is supported by the Multi Agent Trading in 

Electricity Markets (MATREM) system that has been developed at LNEG [61] in recent 

years. MATREM is capable of simulating long-term futures, bilateral and contracts for dif-

ferences (CfDS) but also short-term day-ahead, intraday, and balancing markets (BMs). It 

is equipped with traditional models of consumers, suppliers, and producers' agents, but also 

of the Power Exchange (PX) that is equipped with the markets algorithms of the aforemen-

tioned markets, with exception of BMs that are managed by the Transmission System Op-

erator (TSO). Although MATREM is available for use within TradeRES project, it is not an 

open-access system. 

RESTrade is an ABM model that includes the agents and features below. 

• Consumers: 

RESTrade is capable of representing traditional consumers. On RESTrade these 

agents are only able to operate in retail markets and negotiate bilateral contracts 
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with suppliers [62]. They are equipped with utility and optimization functions that 

enable them to respond to time-of-use (ToU) rates, changing their consumption be-

havior according to their elasticity, considering shifting or curtailing demand, i.e. de-

mand-side management (DSM). While negotiating bilateral contracts they are also 

able to negotiate a direct load control mechanism with suppliers, that consists of a 

demand-response (DR) program [63]. Their optimization functions have the goal of 

minimizing costs according to ToU rates and their flexible demand. RESTrade also 

supports coalitions of consumers [64]. For the time being RESTrade does not mod-

els prosumers. 

• Producers: 

RESTrade’s producer agents can be operators of a power plant or a set of power 

plants of the following technologies: a) fuel oil, b) carbon, c) natural gas CCGT , d) 

nuclear, e) hydro, and f) vRES. Producers with traditional technologies are equipped 

with the technical and economical characteristics of these technologies enabling 

them to assess their optimal market strategic participation between spot and bilat-

eral markets considering a profit maximization function [65], [66], [67]. The produc-

ers receive the prices of current bilateral contracts and expected prices of future 

bilateral and spot markets. Furthermore, they also receive their vRES plants pro-

duction to plan their market participation and dispatch. These agents set agree-

ments/make a bid for each power plant considering (only) its marginal cost, except 

for hydroelectric power plants. For hydro plants, that are also equipped with a water 

value function, the agent enables producers to compute and maximize each time 

step's economic value between selling energy and the expected value of stored wa-

ter [68]. The power plants that can participate in balancing markets are pre-defined 

according to their technical characteristics and they are obliged to do. All producers 

can also negotiate bilateral agreements with suppliers or send bids to the balancing 

markets managed by the TSO [69]. 

• Suppliers: 

A supplier agent can participate both in wholesale and retail markets. On RESTrade 

suppliers can negotiate bilateral agreements with end-use consumers obtaining a 

private portfolio to manage. Their goal consists in maximizing their return. Consid-

ering a target return, they propose tariffs to end-use consumers based on expected 

spot prices [70]. Then, they buy energy from spot markets to satisfy their portfolios. 

While negotiating different tariffs with consumers, suppliers incentivize DSM and 

can also negotiate and contract DR programs with them [71]. 

• Aggregators: 

Currently, RESTrade only has aggregators of wind power plants. These aggregators 

have the goal of increasing the wind power value to the market, by improving the 

forecast accuracy, when the combined power output of these power plants is used 

[72]. This aggregation is spatially limited to a control region within the power system. 

They only negotiate at spot markets [73]. 
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• TSO: 

Under the TradeRES project, the TSO agent of RESTrade will only be responsible 

for managing the balancing markets and the cross-border exchange using constant 

seasonal line rating (SLR) or dynamic line rating (DyLR) approaches [74]. It is 

equipped with the market mechanisms of the balancing markets [75]. This agent is 

responsible for the aFRR capacity procurement, using the ENTSO-E recommended 

formulation [76]. It is also responsible for clearing the aFRR capacity and mFRR 

energy market based on the marginal pricing approach. It also can detect cross-

border congestion when using SLR. For this situation, a DyLR approach is applied 

to (potentially) obtain an extra capacity, thus avoiding those grid congestions when-

ever feasible [74]. 

Under this project, the TSOs functions of MASCEM (developed by ISEP) and RE-

STrade are being coupled using the Spine Toolbox and will be applied to MIBEL’s 

case study. On Spine Toolbox, the TSO agent already has the market algorithms of 

the day-ahead and balancing markets.  

Table 6 illustrates the main characteristics of these agents. 

Table 6: RESTrade’s agents characteristics 

Class of Actor Number of Agent(s) Functions Interacts with 

Consumer >10 aggregated 

Minimize costs, maxim-

ize utility. Respond to 

DSM and DR programs 

Suppliers 

Producer 
>10 with multiple power 

plants 

Maximize profit or utility. 

Bids based on optimal 

operation and marginal 

costs. 

Suppliers and TSO 

Supplier 
~6 representatives of 

the Iberian market 

Maximize return or util-

ity. Incentivize DSM and 

DR programs. 

Consumers, Producers 

and TSO 

Aggregator 

>10 considering the 

number of control 

zones 

Minimize deviations and 

maximize profit. 
TSO 

TSO 1 

Manage the balancing 

markets and cross-bor-

der congestion. 

Producers, Suppliers 

and Aggregators 
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 New agents and other agent enhancements 

The enhancements as well as the introduction of new agents is presented in this sub-

section, in a model-by-model way, following the same sequential order as before. Several 

implementation plans are described here, while there are many links to other deliverables, 

e.g. D4.1, D4.2 and D4.3, that include details on flexibility options modelling. 

4.2.1. AMIRIS 

It is planned to include new agents as well as to improve the representation on the 

prevalent ones in AMIRIS in the course of TradeRES. Besides the agent enhancements 

described in the following, it is planned to improve parameterization and granularity for the 

case studies in TradeRES Work Package 5. Please refer also to the deliverables D4.1, D4.2 

and D4.5 for a more complete picture of TradeRES-related enhancements of AMIRIS. 

• Prosumers: 

The representation of demand side flexibility has been developed within the aggre-

gators’ strategies (see item 4, “Aggregators”). 

• Producers: 

No immediate enhancements are foreseen with respect to the representation of Pro-

ducers in AMIRIS since corresponding implementations are already quite detailed. 

• Suppliers: 

It is not intended to enhance suppliers beyond existing implementations. 

• Aggregators: 

A new class of aggregators in AMIRIS is optimising demand response for industrial 

consumers. Demand response can be operated in two ways: Load shedding and 

load shifting. To depict load shedding, the overall demand is sliced into segments. 

There is one agent marketing all the demand segments at their attributed value of 

lost load. The number of segments can be adapted as required. Load shifting is 

implemented using a dynamic programming approach with a newly developed two-

dimensional state definition comprising the time spent for load shifting and a corre-

sponding energy level. 

Another new class of aggregators is optimising heat pumps with heat reservoir ca-

pacities for households. Corresponding operation strategies have been already de-

veloped and will be integrated into the latest version of AMIRIS. The required data 

has to be calibrated in accordance to the scenario data defined in WP 2. 

To represent the demand of electric vehicles and its potential for flexibility a further 

class of aggregators has to be developed in the future course of TradeRES. It is 

foreseen to use a method similar to the two-dimensional dynamic programming ap-

proach taken for operation of load-shifting portfolios. 

• Traders: 

In AMIRIS the newly developed demand response aggregator agents (see item 4, 
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“Aggregators”) are classified as trader agents. Thus, corresponding developments 

would fit here, too. Beyond that it is not planned to create new trader-agent classes 

in the context of TradeRES, since traders have already experienced a very high 

degree of differentiation in AMIRIS. Still, revisions or adaptations of marketing strat-

egies of existing trader agents might be necessary with regard to newly developed 

policy instruments (see item 8 “Regulators”). 

• ESCos: 

It is not intended to implement ESCos in AMIRIS, since energy efficiency and con-

tracting are out of scope. The demand level is taken from external time series. 

• Operators: 

As far as new market design options require further market rules or market places, 

these will be implemented as further instances of the class of market operators. In 

this respect, it is planned to implement variations of wholesale market rules directly 

at the corresponding market agents (e.g., new market products with shorter time 

units) - please refer to Deliverable D4.1 for details. 

• Regulators: 

Further elements for regulatory frameworks are to be implemented in AMIRIS. This 

comprises different RES remuneration policies (e.g., contracts for differences, sev-

eral variations of market premia, or feed-in tariffs) and capacity mechanisms (e.g., 

capacity premia, or capacity subscriptions) as well as retail market elements to im-

pose agents to different taxes and levies, depending on the type of agent and or 

application. These elements are currently under development. 

4.2.2. EMLab 

The current EMLab implementation uses a segmented load duration curve. This was 

originally designed to speed up the calculations. A major drawback is that this implementa-

tion doesn’t allow to model energy storage and demand side response. For this reason, the 

most suitable improvement is to couple EMLab with another model that has implemented a 

more detailed dispatch model. It can be coupled with an optimization dispatch model that 

reflects the optimal dispatch decisions or another ABM, e.g. AMIRIS. 

The advantage of coupling with an optimization model is that these types of models 

have detailed information on generation technologies, sector coupling, cross-border flows 

(grid constraints) as well as the dispatch details (i.e. start-up times, ramp rates) that allow 

to model demand response, demand curtailment, energy storage, vRES curtailment, etc. 

COMPETES, for example, can model the power trade among the EU28+ countries. 

Besides the replacement of the dispatch algorithm, the investment module of EMLab 

can also be replaced with an optimization algorithm. The native EMLab investment deci-

sions are rule-based, where the rules model real-world investor behaviour. This logic can 

be replaced by optimal decision making, in which we assume that agents make investments 

to maximize social welfare. If such a replacement is made, the capacity mechanism (CM) 

of EMLab and the CO2 market of EMLab can allow an endogenous calculation of CO2 price 

and CM support. 
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EMLab can also be linked with agent-based dispatch models, for example AMIRIS. In 

comparison to EMLAB, in AMIRIS the producer agents are distinguished by technology, not 

by owner. For this reason, coupling of the EMLAB investment algorithm with the AMIRIS 

dispatch algorithm requires some adjustments to the logic of the investment iteration. Nev-

ertheless, the myopic behaviour of the investors can be equally modelled. 

Apart from the model coupling, only minor additions to EMLab are anticipated. One such 

enhancement is addition of the capacity subscription mechanism. This addition requires 

enhancements on the consumer agents in the dispatch algorithm, as described in Deliver-

able 4.5. 

4.2.3. MASCEM 

Considering the project goals and characteristics, new features will be designed and 

implemented, including the enhancement of the considered actor characteristics and a set 

of actors’ behavior capabilities. 

In what concerns the technology already implemented in the model, MASCEM consid-

ers inflexible demand and flexible heating and cooling (H&C) for prosumers and aggregator. 

It also considers the possibility of adding PV and wind generation. 

Considering the existing features, during this project demand side response and electric 

vehicles management models are being designed for integration with prosumers and the 

aggregator (details in D4.1 and D4.2). In specific, a load curtailment model is being de-

signed for the inflexible demand and a load shedding and shifting model is being developed 

for flexible loads. Besides the cost factor, these models consider the relative importance of 

end-user comfort and the effect of local produced generation and real-time pricing. The 

models are applied to the consumers and prosumers, taking advantage on the management 

role of the aggregator entity. The aggregator, besides managing and suggesting load man-

agement actions to its aggregates, will also apply new models that are being developed for 

resources’ aggregation. The aggregation models (described in D4.2) will enable the aggre-

gator to identify the players that should be approached for the application of demand re-

sponse actions and events, considering the characteristics of these players and their influ-

ence on the power network flow. In this way, the MASCEM market models can be executed 

at different levels, at different timings, and considering different modes of participation from 

the diverse actors. As an example, the MASCEM model will enable running the wholesale 

market considering an aggregator that represents a fixed set of consumers and generators; 

or an aggregator that represents a restrictive set of consumers/prosumers, negotiating their 

flexibility in the market. On the other hand, the aggregator can be a negotiating player (sell-

ing or buying) in the wholesale market, but can also be a market operator in a local market 

executed at a zone managed by itself (including the necessary interactions with the local 

DSO). 

Other operations that are being added for prosumers and the aggregator are related to 

battery storage systems and electric vehicles. For that, two models are being designed. The 

first considers the aggregation of electric vehicles considering their zonal distribution 

throughout time. This model is used to support the actions of the aggregator when negoti-

ating energy in the market, when negotiating flexibility and also when managing local areas 

and running local markets. Minimum/maximum energy limit, charging/discharging power 
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and charging/discharging efficiency are considered in this model. The second model is re-

lated to potentiating load shifting by making use of the flexibility brought by the electric 

vehicles and the batteries. The battery energy storage management system considering 

real time pricing is also being designed for the use of prosumers, producer, aggregators, 

wholesale market and local/community market with particular focus on potentiating demand 

flexibility (details also in D4.1). Pumped hydropower storage will also be designed for pro-

ducers, suppliers and the aggregator. 

Using the mentioned models requires that the considered players, namely the aggrega-

tor and market operators, need to interact with the TSO and DSO for the sake of power 

network stability. In this way, new models are also being designed for supporting the capa-

bilities of the TSO and DSO agents. A Power Flow Service (PFS) is being developed, and 

details are provided in D4.5, to enable any actor with the role of power network validation 

(e.g. DSO, TSO, aggregator) to perform a network validation considering any type of power 

network (distribution or transmission network, with any topology), using any from a large set 

of power flow algorithms. This model aims to address all relevant aspects related to the 

network, including network topology, voltage limits, thermal capacity and line/node charac-

teristics. In this way, the actors will be able to undertake network validation actions that will 

enable enriching the diversity of flexibility of the market models and scenarios to be exper-

imented by the project. 

The current model does not consider the automatic definition of actors’ behaviour. How-

ever, considering the project objectives, some behaviours will be considered in the model: 

• Utility maximization, environmental, social and sustainability concerns and legisla-

tion standards are applicable to all actors and will be considered as appropriate.  

• Cost minimization and profit maximization are to be considered for prosumers, pro-

ducers, suppliers, aggregator, wholesale trader, ESCo and for the local/community 

market.  

• Comfort standards are to be considered for prosumers and the aggregator, safety 

standards for TSO, DSO and regulator, and, finally, attitude to risk, for prosumers, 

producers, suppliers and aggregator. 

4.2.4. RESTrade 

Under the TradeRES project, the traditional agents are going to be improved concerning 

the new market designs of power systems with near 100% RES. The upgrades of the agent 

models will be performed under a strong collaboration with ISEP. LNEG will focus on the 

supply side, while ISEP will have a stronger contribution on the consumers’ side. 

• Producers: 

Producer agents that own vRES power plants will adapt their participation on mar-

kets according to i) the different vRES support schemes, ii) no support mechanisms, 

and iii) also considering the possibility of these players participating in the balancing 

and reserves markets. Producers will also adapt the planning process of their tradi-

tional power plants operation, according to the new markets’ gate closures and to 

the new time units. Producers will have their optimization formulation adapted to 
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consider their participation in capacity markets. The participation of vRES in bilateral 

markets is also considered. 

• Aggregator: 

Within the TradeRES project, an “aggregator” is a player that aggregates the con-

sumption and/or production of electricity acting as a single entity [77]. This player 

embeds different approaches/concepts being responsible for i) the interactions with 

the electricity markets, and ii) providing ancillary services to TSO under some con-

cepts. Thus, several subclasses of aggregators have already been designed within 

the TradeRES project, such as single technology aggregation as the aforemen-

tioned wind aggregator, but also vRES aggregators, citizen energy communities 

(CECs), and hybrid renewable power plants (HyPPs). Each subclass is differenti-

ated according to its intrinsic features (for example, objective function or technolo-

gies included) as presented below. 

- Generation aggregation: Further enhancements of the existing single technol-

ogy aggregation approaches will be pursued in TradeRES using optimization 

strategies instead of clustering-based approaches. These approaches will be ex-

tended for solar PV to identify the potential benefits of aggregation of different 

vRES technologies, as reported by some authors [78]. This step is particularly 

important for devising an aggregation dispatch strategy that can increase the 

value of vRES generation into electricity markets while contributing to transform 

the power production from these technologies into a more reliable energy source. 

The aggregation strategies are defined a priori by indicating desirable connec-

tions (physical or virtual) of a set of vRES power plants according to the optimi-

zation strategies. The interaction with the electricity market is performed through 

the aggregator agent. 

- CECs are composed of the same parties of a typical aggregator: RES, consum-

ers, prosumers, batteries, etc. However, it only operates on the distribution level 

and its main behavior comprises a cost minimization and a maximization of the 

efficiency regarding the use of the local energy resources considering DSM and 

DR [79]. It can participate in spot and bilateral markets. Its participation in bal-

ancing markets will be tested considering its technical capabilities to do so. It can 

negotiate bilateral agreements with producers and suppliers. Considering that 

this player is composed of consumers and producers a strong collaboration be-

tween ISEP and LNEG will exist while developing it. 

- HyPPs are co-located power plants that combine two or more renewable re-

sources, with (or without) energy storage systems [80]. One of the main goals of 

this concept is to explore the natural complementarity between the primary re-

sources of renewable energy sources within a HyPP and their synergy to attain 

operational set-points. It is a crucial step to obtain a smart energy management 

of renewable energy generation through a strategic bidding/participation in the 

different electricity market frameworks. Other main recognized advantages of 

HyPPs include [81]: 
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▪ An increased load factor of transmission lines, allowing to postpone new in-

vestments in grid infrastructure. 

▪ An increased capacity factor and smoother power output, taking advantage 

of renewable resources' natural complementarity. 

▪ Reduced power system's balancing costs due to “more dispatchable" gener-

ation, especially if a storage system is in place. 

▪ These power plants can be operated both in stand-alone and grid-connected 

mode. Their behaviour typically follows a cost minimization when operating 

in stand-alone applications [82], [83] and a maximization of profit in grid con-

nect applications [84]. 

▪ These power plants can participate in spot and bilateral markets. The partic-

ipation of these power plants in ancillary services markets will be tested con-

sidering their technical capabilities and the regulations in place. 

• TSO:  

The TSO agent will be enhanced by incorporating the new market designs, mecha-

nisms, products, and rules developed in TradeRES project [73]. This agent will in-

teract with the traditional and new players according to the rules defined for each 

agent. Furthermore, the TSO will also be responsible to apply different mechanisms 

of the aFRR capacity procurement namely, considering also the vRES forecast and 

an asymmetrical procurement, which according to [85] may allow increasing the 

level of efficiency of this mechanism and is already in place in some countries [86]. 

The TSO will also be responsible for managing the cross-border balancing market 

considering a DyLR analysis in case of congested tie-lines between different market 

zones. 

Table 7 illustrates the main characteristics of these agents under development 

Table 7: RESTrade’s (future) agents characteristics 

Class of Actor Number of Agent(s) New Functions Interacts with 

Producer ~10 with multiple power 

plants 

Profit maximization 

considering capacity 

markets and vRES 

support schemes.  

Suppliers, Aggregators 

TSOs and CECs 

Aggregator 

- vRES 
- CEC 
- HyPP 

>10 considering differ-

ent types of aggrega-

tions 

 

vRESs have the goal 

of maximizing their 

profit 

Consumers, Producers, 

Suppliers and TSO 

TSO 1 CECs have the goal of 

minimizing costs and 

maximizing energy 

sustainability 

Consumers, Producers, 

Suppliers and TSO 
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Figure 6 presents the architecture of the RESTrade system that already has several agents 

and mechanisms, but also foregrounds models under development. 

 

Figure 6: Main architecture of the RESTrade system. Blue-filled boxes correspond to back-

ground and foreground modules with open access within the project. 
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5. Conclusion 

Summarizing this first version of the report about the representation of actor types and 

behaviours in the market simulation models, it can be said that the ABMs have been found 

even in their initial version to offer an extensive coverage of operational attributes and be-

havioural aspects identified in earlier stages of the project. The modelling enhancements 

related to agents, aim to provide a more complete, realistic and contemporary representa-

tion of actors in market simulation tools through agents. 

Initially a detailed review of the literature has offered the necessary background for con-

sidering attributes and methods, linked and adopted by agents, respectively. After an over-

view of the electricity markets and the agent-related modelling approaches, an elaboration 

on the representation of actors through agents provides the framework for translating the 

operational and behavioural characteristics of actors to modelling functionalities of agents. 

In that context, common entities such as the producers, from both the operational and in-

vestment existence, the suppliers, the aggregators, the consumers and the prosumers are 

considered. Additionally, as far as the methods related to decision-making functioning are 

concerned, the rule-based control of agents, the adoption of generic algorithms for finding 

heuristically stationary points and the incorporation of adaptation/learning processes have 

been reviewed. It should be stated that although the ABMs that participate in TradeRES 

constitute an important part of the literature, they haven’t been included in this review as 

they are analysed in more detail in the other sections. 

Given these agent-based modelling principles, the characteristics of actors, as identified 

in earlier stages of the project, are considered. The four ABMs that are used in the project 

are examined under the two dimensions adopted for the characterization of actors’ needs. 

Therefore, the coverage of the relations of market actors with (i) technologies, (ii) opera-

tional attributes and (iii) behavioural aspects offered by the initial versions of ABS is identi-

fied. Similarly, enhancing directions towards the inclusion of further relations are highlighted 

for the models. This process has been facilitated by the relational tables of D3.2, on top of 

which an extra layer of information has been added. The support to the further analysis 

these new enriched relational tables offered has been threefold. They assisted the identifi-

cation of enhancing directions towards which modelling efforts should focus, they offered a 

coverage overview with respect to the actors’ characterization that facilitated coordination 

of interventions and they enabled the monitoring the improvements added coverage and 

value given the pre-identified needs. 

In a similar sense, the more detailed consideration of the ABMs that follows exactly after 

the initial evaluation of existing features, the identification of enhancing priorities and allo-

cation of modelling improvement between models. In a per model basis, the agent instances 

in the initial versions of the four ABMs are described, while the scheduled improvements 

have been described. There have been several points where reference to other WP4 deliv-

erables is needed, as the concepts involved may lay on the boundary or even be strongly 

related to the modelling of flexibility options (D4.1-D4.3) or the market design modelling 

requirements (D4.5). 

It also needs to be highlighted that this is the first version of the deliverable related to the 

representation of actors in simulation models and tools, with the next final version being 
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expected on M29, when modelling enhancing activities will be in a more mature stage and 

other related tasks being completed. At that point further details on agent implementations 

are expected to be reported, following of course the directions that have been already iden-

tified, prioritized and allocated between the ABMs. 
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