532 research outputs found

    Peer-to-peer and community-based markets: A comprehensive review

    Full text link
    The advent of more proactive consumers, the so-called "prosumers", with production and storage capabilities, is empowering the consumers and bringing new opportunities and challenges to the operation of power systems in a market environment. Recently, a novel proposal for the design and operation of electricity markets has emerged: these so-called peer-to-peer (P2P) electricity markets conceptually allow the prosumers to directly share their electrical energy and investment. Such P2P markets rely on a consumer-centric and bottom-up perspective by giving the opportunity to consumers to freely choose the way they are to source their electric energy. A community can also be formed by prosumers who want to collaborate, or in terms of operational energy management. This paper contributes with an overview of these new P2P markets that starts with the motivation, challenges, market designs moving to the potential future developments in this field, providing recommendations while considering a test-case

    Control Strategies of DC Microgrids Cluster:A Comprehensive Review

    Get PDF
    Multiple microgrids (MGs) close to each other can be interconnected to construct a cluster to enhance reliability and flexibility. This paper presents a comprehensive and comparative review of recent studies on DC MG clusters’ control strategies. Different schemes regarding the two significant control aspects of networked DC MGs, namely DC-link voltage control and power flow control between MGs, are investigated. A discussion about the architecture configuration of DC MG clusters is also provided. All advantages and limitations of various control strategies of recent studies are discussed in this paper. Furthermore, this paper discusses three types of consensus protocol with different time boundaries, including linear, finite, and fixed. Based on the main findings from the reviewed studies, future research recommendations are proposed

    Advancements in Enhancing Resilience of Electrical Distribution Systems: A Review on Frameworks, Metrics, and Technological Innovations

    Full text link
    This comprehensive review paper explores power system resilience, emphasizing its evolution, comparison with reliability, and conducting a thorough analysis of the definition and characteristics of resilience. The paper presents the resilience frameworks and the application of quantitative power system resilience metrics to assess and quantify resilience. Additionally, it investigates the relevance of complex network theory in the context of power system resilience. An integral part of this review involves examining the incorporation of data-driven techniques in enhancing power system resilience. This includes the role of data-driven methods in enhancing power system resilience and predictive analytics. Further, the paper explores the recent techniques employed for resilience enhancement, which includes planning and operational techniques. Also, a detailed explanation of microgrid (MG) deployment, renewable energy integration, and peer-to-peer (P2P) energy trading in fortifying power systems against disruptions is provided. An analysis of existing research gaps and challenges is discussed for future directions toward improvements in power system resilience. Thus, a comprehensive understanding of power system resilience is provided, which helps in improving the ability of distribution systems to withstand and recover from extreme events and disruptions

    Resilience-driven planning and operation of networked microgrids featuring decentralisation and flexibility

    Get PDF
    High-impact and low-probability extreme events including both man-made events and natural weather events can cause severe damage to power systems. These events are typically rare but featured in long duration and large scale. Many research efforts have been conducted on the resilience enhancement of modern power systems. In recent years, microgrids (MGs) with distributed energy resources (DERs) including both conventional generation resources and renewable energy sources provide a viable solution for the resilience enhancement of such multi-energy systems during extreme events. More specifically, several islanded MGs after extreme events can be connected with each other as a cluster, which has the advantage of significantly reducing load shedding through energy sharing among them. On the other hand, mobile power sources (MPSs) such as mobile energy storage systems (MESSs), electric vehicles (EVs), and mobile emergency generators (MEGs) have been gradually deployed in current energy systems for resilience enhancement due to their significant advantages on mobility and flexibility. Given such a context, a literature review on resilience-driven planning and operation problems featuring MGs is presented in detail, while research limitations are summarised briefly. Then, this thesis investigates how to develop appropriate planning and operation models for the resilience enhancement of networked MGs via different types of DERs (e.g., MGs, ESSs, EVs, MESSs, etc.). This research is conducted in the following application scenarios: 1. This thesis proposes novel operation strategies for hybrid AC/DC MGs and networked MGs towards resilience enhancement. Three modelling approaches including centralised control, hierarchical control, and distributed control have been applied to formulate the proposed operation problems. A detailed non-linear AC OPF algorithm is employed to model each MG capturing all the network and technical constraints relating to stability properties (e.g., voltage limits, active and reactive power flow limits, and power losses), while uncertainties associated with renewable energy sources and load profiles are incorporated into the proposed models via stochastic programming. Impacts of limited generation resources, load distinction intro critical and non-critical, and severe contingencies (e.g., multiple line outages) are appropriately captured to mimic a realistic scenario. 2. This thesis introduces MPSs (e.g., EVs and MESSs) into the suggested networked MGs against the severe contingencies caused by extreme events. Specifically, time-coupled routing and scheduling characteristics of MPSs inside each MG are modelled to reduce load shedding when large damage is caused to each MG during extreme events. Both transportation networks and power networks are considered in the proposed models, while transporting time of MPSs between different transportation nodes is also appropriately captured. 3. This thesis focuses on developing realistic planning models for the optimal sizing problem of networked MGs capturing a trade-off between resilience and cost, while both internal uncertainties and external contingencies are considered in the suggested three-level planning model. Additionally, a resilience-driven planning model is developed to solve the coupled optimal sizing and pre-positioning problem of MESSs in the context of decentralised networked MGs. Internal uncertainties are captured in the model via stochastic programming, while external contingencies are included through the three-level structure. 4. This thesis investigates the application of artificial intelligence techniques to power system operations. Specifically, a model-free multi-agent reinforcement learning (MARL) approach is proposed for the coordinated routing and scheduling problem of multiple MESSs towards resilience enhancement. The parameterized double deep Q-network method (P-DDQN) is employed to capture a hybrid policy including both discrete and continuous actions. A coupled power-transportation network featuring a linearised AC OPF algorithm is realised as the environment, while uncertainties associated with renewable energy sources, load profiles, line outages, and traffic volumes are incorporated into the proposed data-driven approach through the learning procedure.Open Acces

    A Study on the Hierarchical Control Structure of the Islanded Microgrid

    Get PDF
    The microgrid is essential in promoting the power system’s resilience through its ability to host small-scale DG units. Furthermore, the microgrid can isolate itself during main grid faults and supply its demands. However, islanded operation of the microgrid is challenging due to difficulties in frequency and voltage control. In islanded mode, grid-forming units collaborate to control the frequency and voltage. A hierarchical control structure employing the droop control technique provides these control objectives in three consecutive levels: primary, secondary, and tertiary. However, challenges associated with DG units in the vicinity of distribution networks limit the effectiveness of the islanded mode of operation.In MV and LV distribution networks, the X/R ratio is low; hence, the frequency and voltage are related to the active and reactive power by line parameters. Therefore, frequency and voltage must be tuned for changes in active or reactive powers. Furthermore, the line parameters mismatch causes the voltage to be measured differently at each bus due to the different voltage drops in the lines. Hence, a trade-off between voltage regulation and reactive power-sharing is formed, which causes either circulating currents for voltage mismatch or overloading for reactive power mismatch. Finally, the economic dispatch is usually implemented in tertiary control, which takes minutes to hours. Therefore, an estimation algorithm is required for load and renewable energy quantities forecasting. Hence, prediction errors may occur that affect the stability and optimality of the control. This dissertation aims to improve the power system resilience by enhancing the operation of the islanded microgrid by addressing the above-mentioned issues. Firstly, a linear relationship described by line parameters is used in droop control at the primary control level to accurately control the frequency and voltage based on measured active and reactive power. Secondly, an optimization-based consensus secondary control is presented to manage the trade-off between voltage regulation and reactive power-sharing in the inductive grid with high line parameters mismatch. Thirdly, the economic dispatch-based secondary controller is implemented in secondary control to avoid prediction errors by depending on the measured active and reactive powers rather than the load and renewable energy generation estimation. The developed methods effectively resolve the frequency and voltage control issues in MATLAB/SIMULINK simulations

    Review on Control of DC Microgrids and Multiple Microgrid Clusters

    Get PDF
    This paper performs an extensive review on control schemes and architectures applied to dc microgrids (MGs). It covers multilayer hierarchical control schemes, coordinated control strategies, plug-and-play operations, stability and active damping aspects, as well as nonlinear control algorithms. Islanding detection, protection, and MG clusters control are also briefly summarized. All the mentioned issues are discussed with the goal of providing control design guidelines for dc MGs. The future research challenges, from the authors' point of view, are also provided in the final concluding part
    • …
    corecore