4 research outputs found

    Evidence of Task-Independent Person-Specific Signatures in EEG using Subspace Techniques

    Full text link
    Electroencephalography (EEG) signals are promising as alternatives to other biometrics owing to their protection against spoofing. Previous studies have focused on capturing individual variability by analyzing task/condition-specific EEG. This work attempts to model biometric signatures independent of task/condition by normalizing the associated variance. Toward this goal, the paper extends ideas from subspace-based text-independent speaker recognition and proposes novel modifications for modeling multi-channel EEG data. The proposed techniques assume that biometric information is present in the entire EEG signal and accumulate statistics across time in a high dimensional space. These high dimensional statistics are then projected to a lower dimensional space where the biometric information is preserved. The lower dimensional embeddings obtained using the proposed approach are shown to be task-independent. The best subspace system identifies individuals with accuracies of 86.4% and 35.9% on datasets with 30 and 920 subjects, respectively, using just nine EEG channels. The paper also provides insights into the subspace model's scalability to unseen tasks and individuals during training and the number of channels needed for subspace modeling.Comment: \copyright 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    HD-EEG Based Classification of Motor-Imagery Related Activity in Patients With Spinal Cord Injury

    Get PDF
    Brain computer interfaces (BCIs) are thought to revolutionize rehabilitation after SCI, e.g., by controlling neuroprostheses, exoskeletons, functional electrical stimulation, or a combination of these components. However, most BCI research was performed in healthy volunteers and it is unknown whether these results can be translated to patients with spinal cord injury because of neuroplasticity. We sought to examine whether high-density EEG (HD-EEG) could improve the performance of motor-imagery classification in patients with SCI. We recorded HD-EEG with 256 channels in 22 healthy controls and 7 patients with 14 recordings (4 patients had more than one recording) in an event related design. Participants were instructed acoustically to either imagine, execute, or observe foot and hand movements, or to rest. We calculated Fast Fourier Transform (FFT) and full frequency directed transfer function (ffDTF) for each condition and classified conditions pairwise with support vector machines when using only 2 channels over the sensorimotor area, full 10-20 montage, high-density montage of the sensorimotor cortex, and full HD-montage. Classification accuracies were comparable between patients and controls, with an advantage for controls for classifications that involved the foot movement condition. Full montages led to better results for both groups (p < 0.001), and classification accuracies were higher for FFT than for ffDTF (p < 0.001), for which the feature vector might be too long. However, full-montage 10–20 montage was comparable to high-density configurations. Motor-imagery driven control of neuroprostheses or BCI systems may perform as well in patients as in healthy volunteers with adequate technical configuration. We suggest the use of a whole-head montage and analysis of a broad frequency range

    Functional brain networks: intra and inter-subject variability in healthy individuals and patients with neurological or neuropsychiatric diseases.

    Get PDF
    The projects of this thesis sits at the intersection between classical neuroscience and aspects related to engineering, signals’ and neuroimaging processing. Each of the three years has been dedicated to specific projects carried out on distinct datasets, groups of individuals/patients and methods, putting great emphasis on multidisciplinarity and international mobility. The studies carried out in Cagliari were based on EEG (electroencephalography), and the one conducted abroad was developed on functional magnetic resonance imaging (fMRI) data. The common thread of the project concerns variability and stability of individuals' features related primarily to functional connectivity and network, as well as to the periodic and aperiodic components of EEG power spectra, and their possible use for clinical purposes. In the first study (Fraschini et al., 2019) we aimed to investigate the impact of some of the most commonly used metrics to estimate functional connectivity on the ability to unveil personal distinctive patterns of inter-channel interaction. In the second study (Demuru et al., 2020) we performed a comparison between power spectral density and some widely used nodal network metrics, both at scalp and source level, with the aim of evaluating their possible association. The first first-authored study (Pani et al., 2020)was dedicated to investigate how the variability due to subject, session and task affects electroencephalogram(EEG) power, connectivity and network features estimated using source-reconstructed EEG time-series of healthy subjects. In the study carried out with the supervision of Prof. Fornito (https://doi.org/10.1016/j.pscychresns.2020.111202) during the experience at the Brain, Mind and Society Research Hub of Monash University, partial least square analysis has been applied on fMRI data of an healthy cohort to evaluate how different specific aspects of psychosis-like experiences related to functional connectivity. Due to the pandemic of Sars-Cov-2 it was impossible to continue recording the patients affected by neurological diseases (Parkinson’s, Diskynesia) involved in the study we planned for the third year, that should have replicated the design of the first first-authored one, with the aim of investigate how individual variability/stability of functional brain networks is affected by diseases. For the aforementioned reason, we carried out the last study on a dataset we finished to record in February 2020. The analysis has the aim of investigate whether it is possible by using 19 channels sleep scalp EEG to highlight differences in the brain of patients affected by non-rem parasomnias and sleep-related hypermotor epilepsy, when considering the periodic and aperiodic component of EEG power spectra
    corecore