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Brain computer interfaces (BCIs) are thought to revolutionize rehabilitation after SCI,

e.g., by controlling neuroprostheses, exoskeletons, functional electrical stimulation, or

a combination of these components. However, most BCI research was performed

in healthy volunteers and it is unknown whether these results can be translated to

patients with spinal cord injury because of neuroplasticity. We sought to examine

whether high-density EEG (HD-EEG) could improve the performance of motor-imagery

classification in patients with SCI. We recorded HD-EEG with 256 channels in 22 healthy

controls and 7 patients with 14 recordings (4 patients had more than one recording)

in an event related design. Participants were instructed acoustically to either imagine,

execute, or observe foot and hand movements, or to rest. We calculated Fast Fourier

Transform (FFT) and full frequency directed transfer function (ffDTF) for each condition

and classified conditions pairwise with support vector machines when using only 2

channels over the sensorimotor area, full 10-20 montage, high-density montage of the

sensorimotor cortex, and full HD-montage. Classification accuracies were comparable

between patients and controls, with an advantage for controls for classifications that

involved the foot movement condition. Full montages led to better results for both

groups (p < 0.001), and classification accuracies were higher for FFT than for ffDTF

(p < 0.001), for which the feature vector might be too long. However, full-montage 10–20

montage was comparable to high-density configurations. Motor-imagery driven control of

neuroprostheses or BCI systems may perform as well in patients as in healthy volunteers

with adequate technical configuration. We suggest the use of a whole-head montage

and analysis of a broad frequency range.

Keywords: spinal cord injury, HD-EEG, connectivity, motor imagery, BCI, ffDTF, FFT

1. INTRODUCTION

Applications of Brain computer interfaces (BCIs) for neuroprostheses and neurorehabilitation
are subject to intensive research (1–3). Potential applications include therapy of
neuropathic pain (4), improving reach-to-grasp performance (5), maintaining access to
the supplementary motor areas even years after injury (6), cooperation with robotic
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agents (7–9), and neuroprosthetics, including also electric
stimulation with closed-loop control (10–16), among others.
High interest of patients in adopting such techniques (17, 18)
encourages researchers to put these potential neurorehabilitative
measures on a fast-track of development.

The most user-friendly and applicable technology for signal
acquisition within BCIs is still the EEG (19). While non-
invasive solutions offer wide applicability, neural interfaces with
intracortical microelectrodes are believed to provide the most
useful control signals for advanced BCIs (20). Recent advances in
the field rise the hope that chronic electrode implantation might
become a viable solution 1 day (20, 21). For instance, chronic
tungsten multielectrode implants deliver reliable signals for up
to 6 months after implantation (22).

However, the EEG of patients is considerably different from
signals recorded in healthy subjects. Typical applications for
brain computer interfaces are conditions of spinal cord injury
(SCI) or stroke. Stroke is one of the most devastating conditions
related to body paralysis, and it was shown that BCIs can
contribute significantly to the rehabilitation of stroke patients
(2, 23–25).While stroke is a condition with acute central damage,
SCI-related changes develop slowly in the sense of an ongoing
neuroplasticity that reflects the loss of afferent feedback from the
detached limbs (26). As a consequence, the applicability of BCIs
developed with data from healthy subjects to patients with SCI
or other pathological changes such as stroke, amyotrophic lateral
sclerosis, or locked-in syndrome is highly questionable (27, 28).
Indeed, Müller-Putz et al. (29) presented a BCI based on the EEG
that worked with a classification accuracy of on average 85.1%
in healthy, but 66.1% in patients with SCI. At this point we must
recognize that the research results obtained from healthy subjects
cannot be transferred easily to patients.

There are several reasons why BCIs developed with healthy
subjects cannot be applied to patients with SCI. Neuroplastic
changes (30, 31) represent a challenge. Animal models
demonstrated that reinforcement learning interfaces could
be a good solution in order to address the neuroplastic changes
(32). Moreover, high inter- and intraindividual variance (33)
represents a technical challenge. The inter- and intraindividual
variance is high, but only a few studies presented specific
countermeasures such as individual localization (19) or
adaptation of imagery tasks (33). For example, movement-
related EEG potentials show abnormal patterns in patients with
SCI (34, 35).

Nevertheless, most motor-BCI systems are based on
modulations of activity in specific frequency bands. BCI-users
can be trained to adequately modulate their µ- or β-power
in order to control devices. In one of the earliest studies,
Pfurtscheller et al. (36) trained a tetraplegic patient over
months until he was able to control a hand orthesis by motor
imagery. Instead of using a prostheses, Pfurtscheller et al. (37)
translated β-signals into functional electrical stimulation, so that
a tetraplegic patient could control his paralyzed hands to grasp a
cylinder by foot movement imagery. The β-burst was detected
online and this signal was then used in order to trigger the
functional electrical stimulation. Müller-Putz et al. (38) trained
a patient to generate EEG-power decreases by the imagination

of movements of his paralyzed left hand. These patterns were
classified by the BCI and were used to control a neuroprosthesis
for grasping actions. By use of a motor-imagery triggered BCI
that partly controlled a hybrid system of functional electrical
stimulation, a patient with cervical spinal cord injury could
transfer objects with grasp-and-release movements with an
accuracy of up to 93% (39).

In addition to these sophisticated systems, newer studies
reported a low but still above-chance accuracy of BCIs in patients
with SCI even with very simple devices such as the Emotiv EEG
system (40). Indeed, it was assumed that the location of electrodes
and the coverage of the motor cortex might be crucial for the user
in order to obtain reasonable control over the BCI (19). It should
be considered whether the fine-grained spatial solution of high-
density EEG could improve the performance of such a system.
In addition, it is a valid question whether the motor cortex is
the only source of informative signals. Channels recording the
activity from frontal brain areas could be used in order to capture
brain activity related to the planning of the movement.

Moreover, it was suggested that phase synchronization plays
an important role in decoding movement from the EEG (41).
Gentili et al. (42) reported that a linear decrease of phase
synchronization (in terms of coherence and phase locking value)
occurred during movement planning and execution. Daly et al.
(43) obtained high classification accuracies based on empirical
mode decomposition phase locking and derived mean clustering
coefficients as complex network metrics extracted from synthetic
EEG and a real-EEG with imagined and real finger tapping in
22 young, healthy subjects. As a side note, connectivity measures
were also found to distinguish various other cognitive tasks
from each other (44). It was suggested that different approaches
of spatial coverage are advantageous for motor imagery-based
BCI, such as Laplacian filtering (45) or sparse common spatial
pattern algorithm (46). An ideal BCI that meets the special needs
of patients with SCI, that is, (i) alterations in localization of
the imagery-related activity, (ii) poor motor imagery ability but
preserved desire/plan to move, could therefore be built using
HD-EEG and whole-head coverage in order to capture the most
responsive (directed) networks of the brain.

Wang et al. used a local coverage of the motor cortex with
electrocorticography and achieved a success rate of 87% in a
patient with tetraplegia (47). Magnetoencephlographic signals
were used efficiently in order to control a grasping agent in a BCI
for patients with SCI (48). However, again, only sensors from the
sensorimotor area were used. It would be of interest to examine
the systems performance with more sensors, covering the whole
cortex.

In the present study, we aim to examine the role of spatial
sampling for BCIs in healthy participants and patients. Therefore,
we aim to compare the detectability of motor imagery in low-
and high density EEG, covering only the motor cortex or the
whole head, in patients with SCI vs. healthy controls. Based on
previous work we want to replicate the finding that in healthy
controls low-density EEG with coverage of the central regions,
that is, the motor cortex, allows to achieve good BCI performance
with an accuracy well above 85%, while in patients with SCI the
accuracy is much lower (29). Consequently, we hypothesize that
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in patients with SCI the use of whole-head recordings as well as
HD-EEG might be more informative and increase the accuracy
when classifying brain signals of imagined movement.

2. MATERIALS AND METHODS

2.1. Ethics
This study was carried out in accordance with the
recommendations of Good Clinical Practice. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki. The protocol was approved by the Ethics Commission
Salzburg (Ethikkommission Land Salzburg; approval number
1541).

2.2. Subjects
We recruited a total sample of 29 participants for the
study at the Department of Neurology, Paracelsus Medical
University Salzburg, Austria. A subgroup of 22 healthy
participants was recruited via e-mail amongst the students
of the Paracelsus Medical University and the Paris-Lodron
University, both located in Salzburg. The 7 patients were
recruited among the patients of the Department as well as via
wheelchair-sport communities. In 4 patients, the experiment
was conducted repeatedly with a time between recordings of
at least 1 week. All sessions were included in the presented
analysis.

2.3. Procedure and Setting
All participants completed a paper survey on demographic
characteristics and the paper and pencil version of the motor
imagery questionnaire (MIQ-RS). TheMIQ-RS is a questionnaire
containing 14 items that aims to assess the ability to perform
motor imagery (49). These data were not further processed for
the present study but were part of another project. Patients were
additionally examined by a medical doctor before the beginning
of the study. After that, the HD-EEG recordings were conducted.
The task was preceded by a resting state condition which
lasted for 2–3 min. Next, the patients got acoustic instructions
followed by a training session, including one repetition of each
condition. Then, the actual task started (see section 2.4). During
all conditions, including the initial resting condition, participants
were asked to keep their eyes open and to look at the videos or

a fixation cross on a screen. Participants were seated in front of
a 11-inch monitor with an approximate distance of 50 cm. All
participants had normal or corrected to normal vision (glasses
or contact lenses). All sounds were presented by the sound
system of the presentation computer at the same volume for each
participants.

The resting condition, instruction, training and task lasted in
total about 39 min.

2.4. Task
There were 7 conditions in the task:

• 2 movement conditions: Participants were asked to move
either the hand or the foot.

• 2 imagery conditions: Patients were asked to imagine the
movement of the hand or the foot.

• 2 observation conditions: Patients watched a movie showing
movement of a real hand or a real foot.

• 1 resting condition: In the resting condition patients were
instructed not to move.

The movement of the hand was a repetitive clenching of the
right hand at 1 Hz with 6 repetitions. The movement of the foot
was a repetitive tapping of the right foot, again at 1 Hz with 6
repetitions. We did not repeat the same conditions with the left
hand or foot, because the overall duration of the experiment took
already very long with 25 trials in 7 conditions and 6 s duration
per trial.

All of the 7 conditions were acoustically accompanied by 6
repetitions at 1 Hz of two alternating sounds (one alternation
per second, i.e., one sound each 0.5 s), which should ensure
performance at the required pace. An acoustic stimulation is
a better pace-maker than a visual stimulus (50). This cue
inserts additional activation e.g., of auditory type, but this
activation is the same across all 7 conditions, including the
resting condition. Each condition was preceded by an acoustic
instruction that lasted 3 s, followed by a pause of 1 s and a
startle sound, indicating the begin of the actual condition. All of
the 7 conditions were repeated in 25 trials each, in a randomly
intermixed order. All trials were separated by inter-trial
intervals of 1 s.

Figure 1 illustrates the task.

FIGURE 1 | Trial. Time-line of one trial.
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2.5. Data Registration
EEG was recorded in a quiet room. We used a 256-channel
HydroCell geodesic sensor net and a GES 300 amplifier
(Electrical Geodesic Inc., EGI, Eugene, OR). The sampling rate
was 250 Hz (4 KHz antialiasing filter). Electrode Cz served as
reference. Indeed, Cz is the prime location for foot movement
response, so that the signal is emphasized over all electrode
positions, and the neighboring central electrodes show up as a
bipolar channel with Cz. EGI’s NetStation 4.5.6 software was used
for data recording. Impedances were kept below 75 k� according
to recommendations of EGI and the literature (51, 52).

2.6. Data Preparation
Data was pre-processed with EGIs NetStation 4.5.6 software.
Preprocessing included filtering and segmenting of the data. A
high-pass IIR filter from 1 Hz and an additional notch filter for
removal of line noise (50 Hz) was applied. No further artifact
correction was carried out, all trials were included in the further
analysis. Most artifacts that were observed were eye blinking
artifacts over frontopolar regions, which are unlikely to be linked
to a special condition. However, since channels in the face and
the neck were those that contained most artifacts and data
quality was generally lower in these regions, these channels were
excluded.

The data was then segmented into 6,000 ms segments for
each participant and each trial, in order to capture the time
from onset of the pace-making tone until the end, which should
represent a segment including six repetitions of the movement
performance, imagery, or observation of the movement. Thus,
the segments lasted from the end of the starting sound until the
end of the pace-making tone. All conditions were accompanied
by the pace-making sound, so that a differentiation by means of
the acoustic response should not be possible. In order to have
the rest condition as similar as possible to the other conditions,
we designed it so that it was preceded by an acoustic instruction
and it contained also the alerting stimulus and the pace-making
sound. However, the participants were instructed to not move.
This should ensure that verbal triggering of activation of the
motor cortex is the same across all conditions. The preprocessed
data was exported toMATLAB data formatr (release R2017, The
Mathworks, Massachusetts, USA). All further steps were done in
MATLAB. First, as a measure of data augmentation, the 6,000
ms segments were additionally segmented into 6 segments of
1,000 ms each, in order to increase the size of the sample. The
motivation for this step was that a larger sample size is needed
for training the classifier.

2.7. Feature Extraction
The extraction of features was performed for each of the
participants, and for each segment. For each segment, we
estimated two features; ffDTF and the power spectrum, estimated
as the Fast Fourier Transform (FFT).

Directed transfer function represents information that flows
from one region to another over many possible alternative
pathways (53). The difference between the directed transfer
function and the ffDTF (54) is that the directed transfer function
is normalized by the total frequency content of the considered

frequency band, while the ffDTF is normalized with respect to all
the frequencies in the predefined frequency interval. As such, the
ffDTF emphasizes those frequencies which contribute the most
to the power of the signal (55). It was shown that the ffDTF
is superior over other measures derived from the multivariate
autoregressive model in classifying hand vs. foot motor imagery
in 14 healthy subjects (56). In a recent publication we could show
that the ffDTF is not only highly reliable in general, its reliability
is also very robust against artifacts (57), which was highly
desirable since exclusion of artifacts was impracticable in the
present study due to the low number of trials. In order to estimate
the multivariate autoregressive model from which ffDTF can be
derived, we used partial correlation estimation with unbiased
covariance estimates (58), which was found to be the most
accurate estimationmethod according to Schlögl (59). Themodel
is then transformed from the time-domain into the z-domain and
the f -domain, which yields two transfer functions, accordingly.
The multivariate parameters in the frequency domain that can
be derived from these transfer functions were computed at 1 Hz
frequency steps between 1 and 48 Hz.

Thus, for each segment, we formed 8 feature vectors to be
submitted for classification analysis; 2 for the two measures
ffDTF and FFT, and 4 for the 4 spatial configurations: low-
density sensorimotor (central electrodes left and right in 10-
10 electrode system, C3 and C4), low-density whole brain (all
19 10-10 electrode positions), high-density sensorimotor (27
channels from the central region of the HD-EEG sensor net),
and high-density whole brain (all 256 channels of the HD-EEG
sensor net except the above listed electrodes in the face and the
neck, thus resulting in 197 channels). Figure 2 demonstrates the
configurations.

The measure ffDTF was calculated with the functions
mvfreqz.m and mvar.m from the BioSig toolbox (60). We chose
model orders which satisfied the balance between the coefficients
that needed to be estimated and available samples. That is, it
was suggested that N/(M · p) > 1 where N is the number of
samples,M the number of channels, and p themodel order. Given
that we had up to 256 channels in the HD-EEG case and 250
samples for each of the 1-s segments, we had to exclude electrodes
a priori in order to obtained a ratio of N/(M · p) > 1 for a
model order p. Therefore, we excluded the electrodes in the neck
and in the face, since the electrodes in the face contain mostly
muscle artifacts and those in the neck in addition low-quality data
because of poor contact with the skin when participants had long
hair.

Model orders were chosen for each of the 4 spatial
configurations for the estimation of ffDTF, depending on
the number of channels. We chose the maximum possible
model order, which was p= 1 for the high-density whole
brain configuration, p= 9 for the high-density sensorimotor
configuration, p= 12 for the low-density whole brain
configuration. However, we used p = 50 for the low-density
sensorimotor configuration, since this is already a high model
order ensuring high reliability (57). That way we follow the rule
that the maximum possible model order should be chosen, and
keep the ratio N/(M · p) consistent across conditions, except for
the low-density sensorimotor configuration.
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FIGURE 2 | Sensor layout. Sensor layout of EGI’s 256-channel sensor net, with the sensor configurations examined in this study marked with different colors. All

channels except those with a black circle were used for the high-density whole brain configuration, all sensors with a blue circle were used for the high-density

sensorimor configuration, all sensors with a yellow circle were used for the low-density whole brain configuration, and the two sensors with a magenta circle represent

C3 and C4, used for the low-density sensorimotor configuration. Multiple overlaying colors represent channels that were used/not used in multiple configurations.

E.g., Black and yellow indicates that this sensor was used in the low-density whole brain but not in the high-density whole brain configuration, while a

yellow-blue-magenta circle means that the sensor was used in all 4 configurations. Red circles are retained from the original image, which is provided by EGI

according to the manual. These electrodes serve as orientation points when mounting the nets. The electrode Cz was actually not used as an additional channel, but

the signal from this location was included in all channels because it served as a reference.

In order to increase robustness of the measures (57) we
averaged the obtained values of FFT and ffDTF in frequency
bands 1–2 Hz, then in 2 Hz bands up to 20 Hz, and then for
20–30, 30–40, and 40–48 Hz, thus, resulting in 13 frequency
bands.

2.8. Classification Analysis
We performed classification for pairs of conditions, separately
for each type of spatial configuration, and for each recording
of each participant. We compared each of the imagination
and movement conditions with rest, and we compared the
imagination of hand vs. foot, the movement of hand vs. foot,
and the observation of hand vs. foot. We did not include a
comparison of observation of hand or foot with rest, since
the classification of observation of hand vs. foot should just
demonstrate that the classification performance was mainly
triggered by visual imagination.

In order to determine practicability of the different HD-EEG
configurations we implemented a machine-learning approach
which is likely to serve the system-training stage of a BCI, that
is, supervised learning.

We decided to use support vector machines for classification,
because they are well suited for non-linear properties of
the data even when a linear kernel is used. When data
are only non-linearly separable, the data is mapped into a
feature space in which the linearly separating hyperplane
can be used. We performed a classification in the sense of
supervised learning with a linear kernel function (dot product)
and quadratic programming in order to find the separating
hyperplane, resulting in a 2-norm soft-margin support vector
machine, by using the MATLABr functions svmtrain and
svmclassify from the statistics and machine learning
toolbox.

2.9. Feature Subset Selection
Weperformed a nested cross-validation with 3 layers with feature
vector optimization, that is, feature subset selection as illustrated
in Figure 3.

This procedure was used for three purposes. First, it is known
that when the length of the feature vector exceeds the size of the
sample, it can cause artificially high accuracies due to overfitting.
Thus, shortening the feature vector to a length that is smaller
than the training sample prevents us from running into the
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FIGURE 3 | Classification and feature subset selection procedure. A nested-cross-validation procedure with an outer-loop for estimation of generalization and an

inner-loop for feature vector optimization was implemented.

small sample size problem. This is easily the case for the ffDTF
feature vectors, because then the length of the feature vector
is up to N − channels × N − channels × N − frequencies =
197× 197× 13. Second, a long feature vector with uninformative
features prevents the machine learning algorithm from finding
a good solution. Therefore, the shortest possible feature vector
should be found in the sense of a feature vector optimization.
Third, we wanted to restrict the length of the feature vector to
the shortest available number of features across the 4 spatial
configurations and the two types of features (ffDTF and FFT).
Because the maximally available features was 30 for the low
density sensorimotor configuration and the FFT feature vector,
we limited the maximally acceptable length of the feature vector
to 30 entries in the inner loop of the feature vector optimization
process, and 31 entries as a final selection.

As described in Figure 3, the classification and feature subset
selection procedure was done in a nested design with 3 layers.
Before submitting the segments to the classification, they were
shuffled, so that the divisions into outer, middle, and inner
layer contained a random set of segments from each of the
conditions.However, we kept the subsegments of each trial (i.e., 6
subsegments per trial) within one subdivision, so that trials were
strictly separated.

We implemented an outer layer as a 3-fold cross validation,
and thus, a division of the data into one third of the data for
testing the resulting model, and two thirds for feature vector
optimization and cross validation, i.e., submitted to the middle

layer. The middle layer is a first inner loop, implemented with 5-
fold cross-validation. This loop aims to estimate the consistency
of selected features, since each run yields a different feature
vector. Thus, for each of the selected features one can count the
times it was selected across the 5 runs. The inner layer is a second,
thus, nested inner loop, again with 5-fold cross-validation in
order to perform adequate feature subset selection. So-called k-
fold cross-validation consist of k repetitions of leaving out N/k
segments as the training set, while the remaining N − (N/k)
segments are used during the training step.

All subsets were drawn in order to maintain the original
proportion of the two groups.

Thus, the whole algorithm can be described as follows:

1. First, one third of the segments were excluded as the outer-
layer test set for the final validation step in the outer layer,
while the remaining two thirds of segments were used as the
outer-layer training set, submitted to the next step

2. The outer-layer training set obtained from the outer loop was
divided into 5 equal sized subsets, each one maintaining the
proportion of condition sizes (25:25) from the original sample.
For each of these 5 sets, the following steps were repeated:

a. The set was left out, the other 4 sets were merged to form
the middle-layer training set.

b. A t-test for the middle-layer training-set segments was
calculated between the two conditions, thus yielding one
p-value for each entry of the feature vector.
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c. The resulting p-values were sorted in ascending order.
d. The feature vector was initiated by taking the feature with

the smallest p-value, thus, the initial length was one.
e. For this feature vector, the classification accuracy was

calculated with 5-fold cross-validation, thus, the middle-
layer training set was divided into an inner-layer 5-fold
partition with an inner-layer training- and testing set

f. Now, the next feature from the sorted list was added. For
this feature vector, the inner-layer classification with 5-fold
cross-validation was repeated.

g. Now the result was compared to the previous result. The
new entry to the feature vector was included only if the
condition constraints were met as follows:

• the classification accuracy obtained with the current
feature vector was larger than or equal to the maximum
of the previously obtained classification accuracies; that
is, the second accuracy had to be ≤ than the first entry,
or the 6th accuracy had to be ≤ than each of the five
previous classification accuracies.

• If the so far best sensitivity/specificity, or in other words,
accuracy for segments of the first condition/second
condition, respectively, was lower than 0.75, then the
obtained sensitivity had to be ≤ than this maximum.

• If the so far best specificity/sensitivity, was lower than
0.5, then the obtained specificity had to be larger, that is
> than this maximum.

h. This way, features were added and tested for their
contribution to the classification accuracy until all available
features were used, or until the feature vector reached a
maximum of 30 entries, or if more than a consecutive
number of 10% of all available features was not added
to the feature vector. If 10% was less than 100 features,
than the maximum number of features that were tested
was 100.

3. The average length N of the resulting 5 optimized feature sets
was calculated. The number of times each feature was selected
across these 5 runs was counted. A final feature vector was
formed by including only those features which were selected
at least in 2 of the 5 iterations. If this resulted in no features,
all features were included that were selected at least in 1 out
of 5 iterations. If the resulting feature vector included more
than N features, only the top-most selected 31 features were
included.

4. The resulting feature vector was used to train a support vector
machine on the outer-layer training set, and the resulting
model was used to classify the outer-layer test set, which
was then used to calculate the general classification accuracy
and the within-group accuracy for the two conditions (i.e.,
sensitivity/specificity).

The threshold of 0.75 was selected as rough estimators for above-
chance classification. However, please note that this threshold is
arbitrary, because it is not meant for interpretation of the results
but for selection of features.

Feature subset selection and classification was done for
each of the two feature types ffDTF and FFT, for each EEG

recording, for each comparison of conditions, and for each spatial
configuration, resulting in a total of 1008 classification accuracies.

2.10. Above-Chance Classification
As a result of classification, we got a classification accuracy for
each feature and each combination of conditions. We considered
whether the obtained accuracies were significantly above chance
with the maximum chance criteria as described in Marcoulides
and Hershberger (61). The maximum chance criterion HCmax

is simply the maximum of the two sample sizes, which is equal
in our case (150). We required that the accuracy should be
significantly better than the chance criterion (61). That is, an
accuracy is considered as reflecting task performance if the
improvement over chance criterion was significant as assessed by
a z-statistic:.

z =
H0 −HC

√

HC(N −HC)/N
(1)

where H0 is the number of correctly classified trials and N is the
total number of trials in both categories. The significance of z
is determined according to the critical values from a standard
normal distribution. This was done by computing the probability
density function of the normal distribution with mean 0 and
standard deviation 1 at the resulting z-values. Considering an
alpha level of 0.05 this would result in a chance level of H0 =

167 = 55.66%. However, as we need to correct for multiple
comparisons, the critical alpha level of 0.05 should be divided by
7 ∗ 2 = 14 for the 7 conditions and 2 features. This resulted in
a critical alpha level of p ≤ 0.0036 and a critical chance level of
H0 = 175 = 58.43%.

If we consider that the chance level is not only related to the
imbalance of the classes but to the number of trials in the test set,
with an imbalance of 270:30, this would result in a critical chance
level ofH0 = 175 = 94.65%, thus, the chance level increases with
the number of folds.

Since 58.43% cannot be considered an important classification
result, we chose to use an arbitrary classification accuracy as a cut-
off, i.e., 75%, which ismore common in the classification accuracy
than 58.43%.

2.11. Statistical Analysis
We considered the between-subjects factor group (controls vs.
patients), as well as the within-subjects-factors feature (ffDTF
vs. FFT), comparison pairs (seven pairs as described in section
2.8), and spatial configuration (four configurations as described
in section 2.7). These four factors were completely crossed.
Therefore, it was technically possible to perform inference for
all main effects and interactions. However, standard ANOVA,
MANOVA, or repeated measures analysis methods could not
be applied, due to the clear non-normal data distributions
(classification proportions only take a discrete set of values
between 0 and 1) and heterogeneous variances. The variance in
the patient group was 0.0224, while for the healthy control group
it was 0.0206.

Therefore, we chose a semi-parametric repeated measures
ANOVA-type statistic that only requires metric data, but allows
for non-normality and variance heterogeneity (62). This method
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TABLE 1 | Clinical details of the patients with SCI included in the study and number of EEG recordings of each patient.

Code Age Sex Etiology AIS Injury Time n. Hand Foot

1 51 m Cervical myopathy; D C4-C7 2 2 None ++motor

laminectomy + sensory

2 61 m Resection of intramedullar C C5-C6 204 4 +strength No movement, spasms

meningeoma WHO grade II +fine motor ++sensory

3 24 m Fracture C C5-C6 48 2 +motor ++motor

spasms Pain sensation

4 65 m Fracture; luxation C C3-C4 19 3 ++motor No movement

++sensory ++sensory

5 44 m Fracture D C5-C6 216 1 ++motor No movement

++sensory No sensation

6 48 m Fracture D C6-C7 312 1 +motor No movement

+sensory No sensation

7 70 m Spinal ischemia T8 D T4-T8 12 1 None +motor

arteriovenous fistula T4-8 +sensory

laminectomy L4/5

AIS, ASIA scale; time, in months; injury, location; n., number of recordings; hand/foot, disabilities; ++, strong; +, mild.

is implemented in the R-package MANOVA.RM (63). We used
the RM() function with the parametric bootstrap which showed
the most favorable performance in unbalanced designs and was
therefore, generally recommended (62).

The overall accuracy of a classification can be artificially high
when one class is being perfectly classified while the classification
accuracy is at chance in the other class. Therefore we assessed
also the within-class accuracy and represented the distributions
as boxplots for each group, type, and comparison.

The feature subset selection procedure could result in different
lengths of the feature vector. Therefore, we tested whether
the length of the feature vector was different between groups,
features, comparisons, and spatial configurations. The number of
features is ordinal, therefore again, we used the non-parametric
ANOVA-type statistic as for the comparison of classification
accuracies.

Since we performed analysis for each recording of each
participant we had multiple recordings for most patients, but
for none of the healthy controls. We needed to rule out that the
patients had an advantage on the subsequent recordings because
of learning effects. Therefore, we performed the ANOVA-
type statistic again by including only the first sessions of
the patients. We did not restrict the analysis to these first
recordings in general, because then the two sample sizes are
even more different, and the generalizability of the effect can be
characterized better by interpreting the results of both statistical
analysis, the one for the first recordings only, and the one
including all recordings.

3. RESULTS

3.1. Sample
Among the 22 healthy controls were 14 women, and the age
ranged from 19 to 35 years (mean = 23.14, SD= 3.4).We recruited
seven male patients with traumatic spinal cord injury at the

Department of Neurology. The patients were in an age range
between 24 and 70 years (mean = 51.86, SD = 5.49). All patients
were right-handed. Details on the level and extent of injury,
number of recordings as well as time since injury are given in
Table 1.

3.2. Classification Accuracies
Table 2 shows the average accuracies across participants,
separately for each group.

Table 3 shows the number of healthy participants and the
number of recordings/first recordings from patients with above
>0.75 accuracy, separately for each group.

The accuracies and numbers of participants with above
>0.75 classification are higher for the FFT than the ffDTF, and
higher for the comparisons that involve movement conditions,
especially the move-foot condition. Applying the strict chance
level of >0.95, no above-chance classifications are obtained
for ffDTF and no for the patients and FFT. Only the larger
configurations than low density sensomotoric region obtained
classification accuracies above this for move foot vs. rest (4
healthy controls for each of the three configurations) and for
the move foot vs. move hand comparison (three for the low
density full-montage configuration and 5 for the two HD-
configurations).

Table 4 shows the statistical results of the repeated-measures
ANOVA-type statistic. Due to repeated sessions in 4 patients,
one could assume that these 7 follow-up sessions are biased by
learning effects. Therefore, we performed the analysis again by
excluding all follow-up sessions and interpreted all results on the
Bonferroni-corrected level of significance, which is p < 0.025
because of the two test statistics.

According to Table 4, the main effects of group and space
were stronger in the analysis of the first recordings, but not for
the whole sample, although after correcting for performing the
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TABLE 2 | Average accuracies in % separately for each group, space (LD-SM, C1 and C2 channels; LD-whole, low density full montage; HD-SM, high density

sensorimotor cortex; HD-whole, high density full montage), comparison (7 pairwise comparisons of conditions), and feature (ffDTF vs. FFT).

Controls Patients

Comparison LD-SM LD-whole HD-SM HD-whole LD-SM LD-whole HD-SM HD-whole

FFT

IF-RS 55 57 57 56 61 62 60 62

IH-RS 54 56 56 56 63 63 60 63

MF-RS 64 74 75 78 68 69 70 73

MH-RS 63 66 65 68 66 70 68 70

IF-IH 49 49 51 50 51 51 50 47

MF-MH 59 71 72 74 54 61 57 62

OF-OH 50 49 51 50 51 51 48 46

ffDTF

IF-RS 54 54 52 52 58 56 54 57

IH-RS 54 52 52 51 60 57 55 59

MF-RS 61 62 64 65 62 60 60 62

MH-RS 60 57 57 56 60 60 58 59

IF-IH 51 49 51 48 52 48 50 49

MF-MH 56 59 61 63 51 55 53 56

OF-OH 49 49 50 49 50 49 50 49

LD, low density; SM, sensomotoric region; HD, high density; FFT, fast fourier transform; ffDTF, full frequency directed transfer function; IF, imagine foot movement; IH, imagine hand

movement; RS, rest; MF, move foot; MH, move hand; OF, observe foot movement; OH, observe hand movement.

TABLE 3 | Number of healthy participants and number of all recordings (14)/number of first recordings (7) from patients with above >0.75 accuracy, separately for each

group, space (LD-SM: C1 and C2 channels; LD-whole, low density full montage; HD-SM, high density sensorimotor cortex; HD-whole, high density full montage);

comparison (7 pairwise comparisons of conditions), and feature (ffDTF vs. FFT).

Controls Patients

LD-SM LD-whole HD-SM HD-whole LD-SM LD-whole HD-SM HD-whole

FFT

IF-RS 0 0 0 0 4/1 3/0 4/1 3/0

IH-RS 0 0 1 0 3/0 3/0 3/0 3/0

MF-RS 5 9 8 11 1/0 4/2 4/2 6/3

MH-RS 1 1 2 3 2/1 4/1 4/1 4/1

IF-IH 0 0 0 0 0/0 0/0 0/0 0/0

MF-MH 2 9 9 10 0/0 0/0 0/0 1/0

OF-OH 0 0 0 0 0/0 0/0 0/0 0/0

ffDTF

IF-RS 0 0 0 0 1/0 0/0 0/0 0/0

IH-RS 0 0 0 0 0/0 0/0 0/0 0/0

MF-RS 0 3 3 4 1/1 0/0 0/0 0/0

MH-RS 1 0 0 0 0/0 0/0 0/0 0/0

IF-IH 0 0 0 0 0/0 0/0 0/0 0/0

MF-MH 0 3 4 4 0/0 0/0 0/0 0/0

OF-OH 0 0 0 0 0/0 0/0 0/0 0/0

LD, low density; SM, sensomotoric region; HD, high density; FFT, fast fourier transform; ffDTF, full frequency directed transfer function; IF, imagine foot movement; IH, imagine hand

movement; RS, rest; MF, move foot; MH, move hand; OF, observe foot movement; OH, observe hand movement.

ANOVA twice, the effect was not significant at the Bonferroni-
corrected level of α < 0.025. The interactions between space
and comparison and between group, comparison and feature
were significant only based on the whole sample of EEGs,

and not when the sample was restricted to the first EEG-
recordings. However, when looking at the figures, we found that
these differences were merely an effect of the size of variance
of the data and not of the direction of the effect. Therefore,
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TABLE 4 | Statistical results for the non-parametric ANOVA-type statistic for repeated measures designs, examining the effects of group (controls vs. patients), space (C1

and C2 channels vs. low density full montage vs. high density sensorimotor cortex vs. high density full montage), comparison (7 pairwise classifications of conditions), and

feature (ffDTF vs. FFT).

Whole sample First recordings

Factor/interaction F df1 p-value F df p-value

Group 0.17 1 0.68 4.01 1 0.04

Space 1.73 2.96 0.16 2.79 2.94 0.04

Comparison 100.36 4.92 < 0.001 101.91 4.98 < 0.001

Feature 371.78 1.00 < 0.001 199.41 1 < 0.001

Group:space 2.21 2.956 0.09 1.75 2.94 0.16

Group:comparison 13.94 4.92 < 0.001 13 4.98 < 0.001

Space:comparison 1.88 14.33 0.02 1.68 14.19 0.05

Group:feature 0.16 1 0.69 2.46 1 0.12

Space:feature 12.50 2.97 < 0.001 6.4 2.89 < 0.001

Comparison:feature 36.81 5.74 < 0.001 14.8 5.73 < 0.001

Group:space:comparison 0.38 14.33 0.98 0.50 14.19 0.93

Group:space:feature 2.95 2.97 0.03 2.54 2.89 0.06

Group:comparison:feature 2.73 5.74 0.01 2.39 5.73 0.03

Space:comparison:feature 1.12 16.52 0.33 1.28 15.36 0.20

Group:space:comparison:feature 0.45 16.52 0.97 0.62 15.36 0.86

The analysis was performed once for the whole sample of EEG data (whole sample), and once with only one EEG file per participant (first recordings).

F, ANOVA type statistics; df, degrees of freedom.

FIGURE 4 | Effects and interactions. Means and 95% confidence intervals of single factors and interactions based on the non-parametric ANOVA-type statistic on

classification accuracies. (A) Main effect comparison; (B) main effect feature; (C) interaction space:comparison; (D) interaction space:feature; (E) interaction

feature:comparison; (F) interaction group:comparison. HD, high density; LD, low density; SM, sensomotoric cortex montage; whole, whole brain montage; FFT, Fast

Fourier Transform; ffDTF, full frequency directed transfer function; IF, imagine foot movement; IH, imagine hand movement; RS, rest; MF, move foot; MH, move hand;

OF, observe foot movement; OH, observe hand movement.

we represent figures of the whole sample, including repeated
sessions.

Figure 4 illustrates the main effects and comparisons. We
found a main effect for comparison (Figure 4A). The movement
conditions were better distinguishable from the other conditions
and from each other than any other comparison. This is followed

by the classification of imagining foot or hand movement vs.
rest. The classification of the two imagery conditions against each
other and the classification of the two observation conditions
against each other yielded classification accuracies at chance level.

According to the main effect for measure (Figure 4B),
FFT lead to substantially higher classification accuracies than
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TABLE 5 | Statistical results for the non-parametric ANOVA-type statistic for

repeated measures designs, separately for the two feature types FFT and ffDTF,

examining the effects of group (controls vs. patients), space (C1 and C2 channels

vs. low density full montage vs. high density sensorimotor cortex vs. high density

full montage), and comparison (7 pairwise comparisons of conditions).

FFT ffDTF

Factor/interaction F df p-value F df p-value

Group 0.011 1 0.917 0.25 1 0.62

Space 2.17 2.92 0.09 0.46 2.93 0.70

Comparison 125.51 3.45 < 0.001 79.90 4.36 < 0.001

Group:space 1.18 2.9 2.32 0.62 2.93 0.6

Group:comparison 15.16 3.45 < 0.001 14.13 4.36 < 0.001

Space:comparison 2.21 9.9 0.02 2.18 11.95 0.01

Group:space:comparison 0.46 9.9 0.92 0.57 11.95 0.87

F, ANOVA type statistics; df, degrees of freedom.

ffDTF. Moreover, we found an interaction between comparison
and space (Figure 4C). The differences between electrode
configurations where greater for the configurations involving
movement of the foot, and in general quite small for all other
comparisons. The interaction between spatial configuration and
measure (Figure 4D) indicated that for ffDTF the differences
between spatial configurations were negligible, while for the FFT
there was a considerable difference. The worst result was obtained
by using only the sensomotoric electrodes from the 10–20 system,
followed by the high-density montage of the sensomotoric cortex
and low-density whole brain montage. Results based on high-
density whole brain montage where slightly better, although
statistically not distinguishable from the low-density whole brain
montage and high density sensorymotoric regions.

The interaction between space and feature is illustrated in
Figure 4E. In general, the accuracies are larger for FFT except
for the comparison of imagination conditions to each other and
observation conditions to each other, which are always at chance.

The interaction between group and comparison is highly
significant (Figure 4F). The average classification accuracies were
on average equal or higher in patients compared to controls in
the comparison of imagination vs. rest, and in move hand vs.
rest. In contrast, the average accuracies of the move foot vs. move
hand and move foot vs. rest comparisons were higher in controls
than in patients. For the classification of observation conditions
against each other, and the imagination conditions against each
other the confidence intervals of the two groups overlapped, and
are in general at chance.

Finally, there was a three way interaction of group,
comparison, and feature, which was significant only for the whole
group but not when restricting the sample to the first recordings.
The interaction indicated the larger differences for FFT than
ffDTF. For ffDTF, the groups did not differ in the comparisons
of imagine to move foot vs. imagine to move hand, while for
FFT patients performed slightly better. Because of the three-way
interaction we performed another analysis stratified by feature.
The results for the separate ANOVA-type statistic for FFT and
ffDTF are shown in Table 5.

The results of the two tests seem to be comparable. The
ANOVA scores for space and comparison are larger for FFT than
for ffDTF. Figure 5 indicates that the difference in the main effect
space is due to the fact that the interaction in ffDTF levels out the
differences for the main effect of space. The comparisons with
movement of the foot show the same direction of the influence of
space for both measures, while FFT shows no differences for the
imagination conditions, whereas the effect seems to change a lot
for ffDTF, however with in general very low values.

Because the patient group included only men and the control
group both sexes, we conducted a further ANOVA-type statistic
by including only controls and by considering the factor sex
instead of group. According to the ANOVA-type statistics there
was a significant interaction of sex and comparisons [F(3.8)
= 4.62; p < 0.001]. Figure 6 shows that men showed better
classification accuracies than women for the comparisons of
imagined movement vs. rest, while women showed higher
accuracies for movement of the foot vs. rest. There were no
further interactions.

3.3. Classification Characteristics
We tested for differences in feature vector length after feature
subset selection (Table 6 and Figure 7). The feature vector
length after feature subset selection is larger for controls
than for patients (Figure 7A). Moreover, the feature vector
length varies largely between spatial configuration (Figure 7B),
between comparisons (Figure 7C), and between the two features
(Figure 7D). The interaction between group and comparison
(Figure 7E) is reflected by shorter feature vectors in the
patient group for the comparison of move foot vs. move
hand. The interaction between spatial configuration and
comparison (Figure 7F) is not that clear, because the low-density
sensorimotor configuration results in very short feature vectors
compared to other configurations. The interaction between
spatial configuration and feature (Figure 7G) reflects a smaller
difference for ffDTF between all but the low-density sensorimotor
configuration, while the differences are larger for FFT. The
interaction between comparison and feature (Figure 7H) is such
that the conditions differ between each other more strongly for
FFT than for ffDTF. Finally, the interaction between group and
spatial configuration (Figure 7I) is not very strong. There seems
to be slightly shorter feature vectors for patients than controls
for all comparisons except for the low-density sensimotoric
configuration, where the direction seems to be the other way
round.

In general, the classification accuracy seems to be better with
a longer feature vector, except for the fact that the classification
based on FFT results in a lower feature vector length, but also in
higher classification accuracies compared to ffDTF.

In order to demonstrate that the classification accuracies were
not a result of overfitting the data to one of the two classes, we
plotted the within-class accuracies in Figure 8. These accuracies
can be interpreted in terms of sensitivity or specificity toward the
one or the other condition. As there is no clear trend of single
conditions to yield very low (i.e., below chance) accuracy while
the other condition yields very high accuracy, our optimization
method did not converge at the cost of single conditions.
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FIGURE 5 | Effects and interactions. Means and 95% confidence intervals of significant main effect of spatial configuration (Top row) and interaction

space:comparison (Bottom row) based on the non-parametric ANOVA-type statistic on classification accuracies, separately for FFT, Fast Fourier Transform; ffDTF,

full frequency directed transfer function; HD, high density; LD, low density; SM, sensomotoric cortex montage; whole, whole brain montage; IF, imagine foot

movement; IH, imagine hand movement; RS, rest; MF, move foot; MH, move hand; OF, observe foot movement; OH, observe hand movement.

FIGURE 6 | Sex effects. Means and 95% confidence intervals of significant

interaction sex:comparison based on the non-parametric ANOVA-type statistic

on classification accuracies; IF, imagine foot movement; IH, imagine hand

movement; RS, rest; MF, move foot; MH, move hand; OF, observe foot

movement; OH, observe hand movement.

Figure 9 indicates which features were selected for the FFT.
In the low density configuration with only two channels C1
and C2 there was a pronounced usage of higher frequencies
in the beta and especially gamma range. Also for the other
three configurations there was a pronounced use of higher
frequencies. However, the high density configurations, especially
the sensorimotor configuration, are also characterized by a
marked use of the µ rhythm around 8–12 Hz.

4. DISCUSSION

We hypothesized that low-density EEG with coverage of the
central regions, that is, the motor cortex, is sufficient to achieve
good BCI performance in healthy participants and that the other
regions do not contribute additionally to the performance while
in patients with SCI the use of whole-head recordings as well
as dense sampling might be more informative. In contrast to
our hypothesis, we found that patients showed classification
accuracies which were at least as good as those of healthy controls
for the imagination conditions. Only for the conditions which
involved movement of the foot, the classification accuracies
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TABLE 6 | Statistical results for the non-parametric ANOVA-type statistic for

repeated measures designs, examining the sizes of feature vectors after feature

subset selection with effects of group (controls vs. patients), space (C1 and C2

channels vs. low density full montage vs. high density sensorimotor cortex vs.

high density full montage), comparison (7 pairwise comparisons of conditions),

and feature (ffDTF vs. FFT).

Factor/interaction F df p-value

Group 8.39 1 0.004

Space 7504.38 2.972 < 0.001

Comparison 39.53 5.97 < 0.001

Feature 7770.35 1 < 0.001

Group:space 5.47 2.97 001

Group:comparison 5.607 5.97 < 0.001

Space:comparison 3.873 17.56 < 0.001

Group:feature 37.23 1 < 0.001

Space:feature 186.35 2.98 < 0.001

Comparison:feature 39.1 5.99 < 0.001

Group:space:comparison 3.22 17.56 0.001

Group:space:feature 0.76 2.98 0.52

Group:comparison:feature 11.59 5.99 < 0.001

Space:comparison:feature 4.51 17.74 < 0.001

Group:space:comparison:feature 2.03 17.74 0.006

F, ANOVA type statistics; df, degrees of freedom.

obtained by the patients’ signals were lower than the control
group, which is most likely the case because often, they were
actually not able to move the foot. Moreover, most configurations
of electrodes lead to similar results, except for a poor classification
accuracy for low-density sensorymotor coverage. Specifically,
groups did not benefit differentially from the variation of
montages. Finally, classification accuracies were higher with FFT
than with ffDTF.

This result is somewhat surprising, since previous studies
reported low accuracies when classifying motor imagery in
patients (29). We think that some technical details may allow to
explain this higher classification accuracies in the patient group
of our study.

4.1. Frequency Is More Informative Than
Synchrony
We found that by use of the FFT feature vector, higher
classification accuracies could be obtained than with ffDTF.
Indeed, examination of power modulations of specific frequency
bands in the EEG have a long tradition in movement research,
but also in SCI research.

Following a traumatic event with SCI, the spinal cord and
the cortex become atrophic (64, 65) and cortical reorganization
takes place (66). This is well known to be detectable also in
the EEG as an immediate slowing of cortical activity after
SCI (67) and a shift of motor potentials to a more posterior
location, which is strongly related to recovery (68, 69).Boord et
al. (70) and Tran et al. (71) described similar EEG findings in
humans with SCI, as they compared patients with paraplegia,
with or without neuropathic pain, and able-bodied controls. The
reported slowing of cortical activity after SCI could be a correlate

of the process which establishes cortical reorganization after SCI
(72). We could possibly observe a similar effect in our data.
In Figure 9 controls show selections of features from the 8–12
Hz bandwidths for the classification of hand movement vs. rest
based on HD-EEG configurations, while these selections are less
prominent and possibly shifted to a lower frequency range of
6–10 Hz in patients.

We suggest that in parallel to the cortical slowing related
to SCI, also the activation related to motor imagery and
movement observation changes. It seems that the frequency
information, even if drifted to a lower frequency range, is still
more informative to distinguish movement-related conditions
than interactions between signals on the scalp. The most
classical approach of motor-related biomarkers in the EEG are
modulations of power in specific frequency bands. In most
subjects, over the sensorimotor cortex activity in a frequency
range between 8 and 30 Hz responds to real movement and to
motor imagery (73–76), which is also reflected by our results.
This range includes the mu (µ, 8–13 Hz) and beta (β , 14–30
Hz) oscillations. Activity in the µ-range is the most common
starting point for detection of motor-related thoughts. Pineda
(74) suggest that the µ-rhythm reflects the translation of visual
or auditory cues into actions.

Unfortunately, there is considerable variance in motor
imagery related activation. As summarized, typically, we would
expect a desynchronization of the µ- and/or β-rhythm during
movement or motor imagery. However, in some subjects
and under certain circumstances, the µ- and/or β-rhythm
synchronizes during imagination of movements, for example in
single subjects during hand imagery (77), or during imagination
of foot- and tongue-movement (75). It was suggested that
patients with SCI show altered patterns of adjustment to mental
fatigue in the µ-range (78). In contrast, power changes in
the µ-range could already be found before an action is taken,
and pre-action activation was also successfully used for control
of a BCI (79). The inclusion of movement planning related
activity from broader activation areas was shown to be extremely
useful in patients with SCI (80). Indeed, in contrast to the
focal event related power modulations in the β-frequency range
of healthy subjects, patients with paraplegia exhibit diffuse
power modulations during attempted foot movements (81).
In this sense, the inclusion of EEG signals from the whole
scalp seems to address this diffuse activation adequately. Spatial
effects of neuroplasticity may affect the EEG as such that
the fine-grained spatial coverage of HD-EEG delivers further
information. However, the advantage of HD-EEG over LD-EEG
in the full montage configurations was negligible. It is possible
that the advantage of a better spatial coverage of the HD-EEG
was leveled out by the complexity of the feature vector, which
increased the demands on proper feature-subset selection.

Still, this does not fully explain why our patient data resulted
in classification accuracies that were at least as good as those
obtained from healthy controls. The effect was present more
strongly as an interaction, while the main effect of group did
not reach significance when using all recordings after correction
for multiple comparisons. Since the group effect was stronger
when restricting the analysis to the first recordings of the patient
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FIGURE 7 | Effects and interactions for feature vector sizes. Means and 95% confidence intervals of significant single factors and interactions based on the

non-parametric ANOVA-type statistic on feature vector sizes after feature subset selection. (A) Main effect group; (B) main effect space; (C) main effect comparison;

(D) main effect feature; (E) interaction group:comparison; (F) interaction space:comparison; (G) interaction space:feature; (H) interaction comparison:feature; (I)

interaction group:space. HD, high density; LD, low density; SM, sensomotoric cortex montage; whole, whole brain montage; FFT, Fast Fourier Transform; ffDTF, full

frequency directed transfer function; IF, imagine foot movement; IH, imagine hand movement; RS, rest; MF, move foot; MH, move hand; OF, observe foot movement;

OH, observe hand movement.

group, we can assume that the advantage of the patients is not due
to learning effects over multiple sessions. In addition, we could
speculate that the change of activity in other frequencies is easier
to be detected than when restricting the analysis to the µ- and β-
range. For example, the amplitude changes in lower frequencies
are always at a larger scale than the higher-frequency changes.
Therefore, we recommend to include a wider range of frequencies
to the design of BCIs.

4.2. Control Signals
In patients with SCI the ability to perform motor imagery,
the mental activity which is mostly used to control BCIs, is
impaired (82). Therefore, modulations of the µ- or any other
rhythm cannot be taken for granted in this patient population.
As an alternative, non-motor imagery could be used (83), or
observation of movements and visual instead of kinesthetic
imagination techniques could be implemented (84). It was found
that patients have less difficulties in visual imagination than

kinesthetic imagination (85). As we did not prescribe the strategy
in this study, it is possible that patients implemented this type
of imagination as a coping strategy. This could have been
triggered by the observation conditions. It is possible that the
participants tried to mentally re-play the observed movement
during the imagination conditions. However, at least with respect
to the selected features, the resemblance between the pairwise
classification of the observation and imagination conditions is
not overwhelming.

Most interestingly, the information contained in the EEG of
patients led to slightly better classification accuracies than in
controls for the imagery conditions, which clearly contradicts
earlier findings, where the performance was better in healthy
controls than in patients with SCI (29). However, the samples
of our study and of Müller-Putz are not comparable, since their
patients suffered from complete injury, while the patients in our
study were diagnosed with AIS scores of C or D. A quite plausible
explanation could be that there was an interaction between

Frontiers in Neurology | www.frontiersin.org 14 November 2018 | Volume 9 | Article 955

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Höller et al. HD-EEG for Motor Imagery in SCI

FIGURE 8 | Within-condition accuracies. Boxplots indicating that pairwise classifications were not due to overfitting to one of the two conditions. First block represents

condition 1, second block condition 2: For each pair-wise comparison of conditions, classification accuracies for the first condition is give in the top 7 plots, and for the

second condition in the bottom 7 plots. Plots are given separately for groups of controls (first and third column) and patients (second and fourth column), for FFT (first

and second column) and ffDTF (third and fourth column). The boxplots represent the range between the first and the third quartile as a box alongside with the median

(red line in the middle of the box), and the whiskers are drawn to ±2.7σ , that is 99.3% coverage and extended to the adjacent value, which is the most extreme data

value that is not an outlier. Outliers are represented as red crosses and defined as values that are greater than q3 + 1.5 · (q3 − q1) where qi is the ith quartile. HD, high

density; LD, low density; SM, sensomotoric cortex montage; whole, whole brain montage; FFT, Fast Fourier Transform; ffDTF, full frequency directed transfer function;

IF, imagine foot movement; IH, imagine hand movement; RS, rest; MF, move foot; MH, move hand; OF, observe foot movement; OH, observe hand movement.
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FIGURE 9 | Frequency-electrode heatmaps. Heatmaps for the selected features from the FFT feature vector the four configurations in space, separately for controls

and patients and pair-wise classification of conditions. Colors indicate percent from zero (dark blue) to 100 (yellow), indicating the proportion of participants of the

respective sample for which the respective feature was selected. HD, high density; LD, low density; SM, sensomotoric cortex montage; whole, whole brain montage;

FFT, Fast Fourier Transform; ffDTF, full frequency directed transfer function; IF, imagine foot movement; IH, imagine hand movement; RS, rest; MF, move foot; MH,

move hand; OF, observe foot movement; OH, observe hand movement.

sex and condition in the control group. Men showed higher
classification accuracies than women in the imagery conditions,
while women showed higher accuracies for the classification of
foot movement vs. rest. This difference might not fully explain
all interactions found in the study, since only the interaction of
sex with comparison was significant, but no other interaction
with sex. However, we could assume that a better classification of
imagery-related brain signals in men could at least partly explain
the group effect.

In contrast to the presented classical BCI application with
motor imagery and surface EEG, microelectrode arrays were
used to catch intuitive command signals. It was shown that
via microelectrode arrays implanted to the motor cortex,
patients with tetraplegia can accurately control robotic aids
up to 5 years after implantation (7). By combining invasive
microelectrode arrays with neuroprosthetic limbs, natural and
intuitive command signals for hand movement can be recovered,
as shown in animal models (86) and also in humans (10, 87).
These examples show that much more precise measurement
such as obtained with microelectrode arrays opens the door
to targeting brain signals that are much more reliable than
voluntary brain activation, because the intuitive movement-
related brain signals can be produced without any effort by the
patients.

4.3. High-Dimensional Space
Classifications
Network measures represent a challenge for machine learning.
The feature vectors are very long and the search for the optimal
feature vector is necessary in order to avoid overfitting. The
simplest solution to find the optimal feature vector is to minimize

the true error using all possible combinations of features and
all reasonable lengths of feature vectors and to validate each
combination using samples which were not in the training data
set (88). Considering the exponential complexity requiring 2|F|

iterations, with |F| being the dimension of the feature space, this
approach is computationally not feasible, and huge amounts of
data would be necessary. Therefore, in practice, an iteration over
the feature entries depends very much on the ordering of the
features, the number of available features, redundancy within this
set of available features, and a stopping criterion when iteration
over the whole vector takes too much time and could lead to
undesirable overfitting.

We speculate that for the ffDTF already the low-density
whole-head montage leads to poor performance of the
implemented feature vector optimization. In addition, we
might speculate that brain networks related to movement do
not add any additional information to what is already contained
in the power spectrum. It is possible that the redundancy of
information prevents the feature vector from converging to an
optimum comparable to the result obtained with classical power
spectral data.

We need to consider that the feature subset selection

technique we have employed was not powerful enough to tap
the full potential of HD-EEG. In the literature, there were more
sophisticated approaches to selecting a small subset of channels

for BCIs, such as a sparse common spatial pattern algorithm
which yielded an improvement of 10% in accuracy compared

to the use of the low-density sensomotoric-montage (C3, C4,
Cz) (46). Another approach to solve the small sample size

problem arising from the misbalance between available training
and test data in comparison to the high number of features
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was introduced by Meng et al. (89). The proposed method

iteratively adds testing data as part of the training data with
labels that were predicted in a previous iteration. This allows

to increase the classification accuracy even in situations with
small training sets of no more than 30 trials. Also in line
with the high-dimensional classification problem we might have
encountered, Meng et al. reported recently (90) that a BCI
configured based on common spatial patterns and 40 channels
showed no improvement over the configuration with 9 channels;
moreover, a small configuration with 9 channels and laplacian
filtering outperformed the other two configurations on the long
run when subjects improved their skills of using the BCI over
sessions.

4.4. Limitations
Amajor shortcoming in this study with respect to the comparison
of patients with controls is the difference in age, which is
considerable. Moreover, there might be differences in motor
response and imagery abilities because of time since injury, type
of injury, and impairment. Due to the small sample size, we can
not address these issues, and suggest that future studies should
be designed in order to determine the possibilities to use motor
and imagery signals for control of a BCI in various subgroups of
patients with SCI.

As stated in the methods, all conditions were accompanied
by the pace-making sound, so that a differentiation by means
of the acoustic response should not be possible. However, the
result could be different without such a pace-maker, so that future
investigations should consider comparing the experimental setup
with and without pace-maker sound.We did not implement such
a contrast because the experiment already took very long.

The fact that the higher frequency bands were prominently
selected might either mean that there was indeed meaningful
information in this bandwidth, or that the classification was
disturbed by poor quality. In the latter case, the poor classification
results might partly be explained by non-informative data
in the highest frequency band, which were affected by
noise.

The original number of trials, i.e., 25, is too low for performing
any kind of machine learning. Therefore, we performed a simple
type of data augmentation, by splitting the segments into 6 sub-
segments. This results in sub-segments that are not completely
independent from each other, so that we ensured that each 6 sub-
segments of one trial fall into the same fold of cross validation.
Other publications that work with deep learning use even less
independent scenarios of data augmentation with EEG data (91).
In such a scenario one would create 999 segments out of the 6 s
by using a sliding window that shifts over the segment and creates
1 s segments starting from each sample point. Our approach is—
to our opinion—a reasonable compromise between this complete
loss of independency and perfect independency, in alignment
with the need for a large sample size that can be used for training
a classifier.

Moreover, the trials were all collected in a single session, so
there is a considerable chance that the trials are similar to each
other just as the subsegments of the trials are. A grouping by
session with sessions conducted on different days would be highly
recommendable (92) in future work.

The choice of the reference might be an advantage or
disadvantage, since Cz as a reference enhances the motor-signal
over all electrodes, whereas the activity over Cz is obtained in a
bipolar manner, only. In clinical settings the bipolar reference
is a standard for review, because it enhances the contrast.
Since the purpose of this study was to examine different spatial
configurations, we did not examine different reference settings.
Future work should address this issue, because it might impact
the results.

With respect to the statistical method we need to consider that
we had an unbalanced sample size of 14 vs. 22 or 7 vs. 22 when
analysing only the first recordings of the patient sample. Such
a situation may affect the p-value, especially when the variances
strongly differ between groups. Nevertheless, this applies mostly
to the p-values which have marginally reached significance before
correcting for multiple comparisons, such as 0.04, while the
effects identified in this study with p-values < 0.001 seem
plausible.

We examined the right hand and right foot, only, because
examination of both, the left and the right side, would have
doubled the duration of the task. The overall duration of the
experiment was already quite long. With EGI’s HD-EEG system
the duration of an experiment is also limited by the nets, where
sponges tend to dry out when an examination lasts longer
than approximately 1.5 h, depending on the air moisture and
temperature. Moreover, the task of performing motor imagery
etc. is quite monotone and puts high demands on the attention
of participants. These demands increase with the duration of the
experiment. However, because of the given design, we cannot
generalize our results to left sidemovements, where the activation
patterns might be different.

The calculation of the ffDTF requires choosing a model order.
Reliability of measures of interaction depends on the model
order (57). With a given model order, a decreasing length of
the signal negatively affects reliability. But on the other hand,
with a given length of the signal, an increasing model order
positively influences reliability. However, this is only true when
the ratio between to be estimated coefficients and model order
N/(M · p) is within a reasonable range. Thus, the model order
cannot be increased without considering the length of the signal.
The suggestion that this ratio should be at least one is the
minimum requirement. Thus, the optimum for a reliable result
depends most likely on the ratio between model order and
length, but a practical demonstration of the sweet spot in this
relation would require immense computing facilities. Therefore,
we restricted ourselves to the maximum possible model order
for each configuration. When restricting the analysis to the low-
density montage we calculated the multivariate autoregressive
model solely based on the respective channels, and thus, with a
higher model order, as the number of channels beneficially adds
to the ratio between samples and numbers of coefficients to be
estimated for the multivariate autoregressive model. However,
in doing so, we have a bias of model order, thus an advantage
of the low-density configurations which is not related to spatial
coverage but to the way the signal was processed. In view of
the present results we could suggest the use of a larger number
of trials. This would allow to increase the model order also for
the high-density configuration, and possibly lead to even better
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results. However, since the acquisition procedure was already
quite challenging for the patients, such a study can probably
only be done in young healthy controls, and we have to leave
this speculation open to further, technical investigations of the
optimal model order for brain network parameters for BCIs.

The HD-EEG hardware used in this study is not comparable
to low-density EEG hardware as used in other studies relying
on low-density EEG, so that our results for the low-density
configuration do not necessarily correspond to what other
researchers have reported for low-density recordings. The
sponges with electrolyte water represent a different recording
technique than the classical Ag-AgCl electrodes alongside with
abrasive electrolyte paste. The impedances recommended by the
supplier of the HD-EEG system are well above the impedances
typically achieved with classical EEG-systems, whereas the high
signal to noise ratio should allow to still get high-quality data
(93). These technical differences limit the translation of the
results from our low-density configuration to classical 10–20
EEG systems. However, the HD-EEG system used in this study
represents a technology that can be applied in a short amount
of time, so that this is a major advantage when using it with
patients. One possible solution would have been to perform two
separate sessions with HD-EEG and classical 10–20 system EEG.
Nevertheless, this poses additional challenges to the study design,
such as expect learning effects, effects of the time of the day for
the two separate recordings, or the day-to-day variance when
performing the examinations on separate days.

In addition to the problematic day-to-day variance which is
an inherent property of the EEG, the fact that our study was
performed in a single session and in an off-line manner does
not allow to assess the potential effect of learning that has been
recently reported (94). In order to transfer any knowledge gained
in off-line experiments, we would need to replicate the sessions,
in order to demonstrate the stability of the extracted features and
classification accuracies.

Finally, we did not exclude artifacts because of the low trial
numbers in this study. After excluding artifacts the classification
would have been unfeasible. Moreover, without rejection of
artifacts the present analysis is closer to a real-time processing
BCI scenario. Nevertheless, the advantage of ffDTF to be still
reliable in artifact-contaminated data did not yield a higher
accuracy than the FFT, which is more likely to be affected by
artifacts. At the very least, the movement conditions could be
thought to be affected by the artifacts, which is likely to be the
case in the condition of foot movement in the control group
where classification accuracies were quite high. The movement
of the foot is more likely than the movement of the hand
to cause small movements of the whole body, which could
artificially lead to increased classification accuracies in all binary
classification scenarios involving foot movement. In addition, it
is possible that certain conditions evoked a higher rate of eye
movement artifacts, which might have affected the result. The
number of trials in this study was too low in order to exclude
artifacts rigorously. Future studies with a lower number of
conditions could increase the number of trials and remove ocular
artifacts.

4.5. Conclusions and Future Directions
We claim that full-montage configurations may be
recommendable for BCIs, regardless of whether a classical
10–20 system or HD-EEG is used. With HD-EEG, coverage of
the sensorimotor region is as good as the whole scalp montage,
and as good as a full-montage 10–20 system. The implication is,
thus, that we do not need HD-EEG but full-montage EEG. This
recommendation is not restricted to clinical populations, e.g., in
order to improve the BCI performance in patients with SCI. Also
healthy participants yielded higher classification accuracies with
the full-montage configurations. The use of synchrony measures,
concretely the ffDTF is not recommendable according to our
data, because the long feature vectors prevented the feature
subset selection algorithm from finding the relevant information
in the feature vector. However, the comparison of HD-EEG to
a downscaling to the 10–20 system in our work is not directly
comparable to other studies using 10–20 systems, since there
are also major hardware differences, so that further studies
with recordings with different hardware are needed in order to
directly compare HD-EEG with classical low-density montages.
In addition, the study is limited to laboratory settings with a
specific paradigm that involves only motor system activation in
a synchronized design. The presented methods may fail in an
asynchronous BCI, and since the system is optimized toward
the motor system it may not work efficiently when multiple
cortical systems are involved simultaneously. Thus, the question
which montage is better suited might depend on the specific
application.

Our results extended previous findings by using a larger
frequency range, including also delta, theta, and gamma
frequencies. We speculate that the slowing of motor-related
activity to lower frequencies in patients with SCI could
moderate BCI performance in this population. Analysis of lower
frequencies could be a simple modification in order to handle this
problem.
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