12,220 research outputs found

    Affinity Weighted Embedding

    Full text link
    Supervised (linear) embedding models like Wsabie and PSI have proven successful at ranking, recommendation and annotation tasks. However, despite being scalable to large datasets they do not take full advantage of the extra data due to their linear nature, and typically underfit. We propose a new class of models which aim to provide improved performance while retaining many of the benefits of the existing class of embedding models. Our new approach works by iteratively learning a linear embedding model where the next iteration's features and labels are reweighted as a function of the previous iteration. We describe several variants of the family, and give some initial results

    Multi-view Graph Embedding with Hub Detection for Brain Network Analysis

    Full text link
    Multi-view graph embedding has become a widely studied problem in the area of graph learning. Most of the existing works on multi-view graph embedding aim to find a shared common node embedding across all the views of the graph by combining the different views in a specific way. Hub detection, as another essential topic in graph mining has also drawn extensive attentions in recent years, especially in the context of brain network analysis. Both the graph embedding and hub detection relate to the node clustering structure of graphs. The multi-view graph embedding usually implies the node clustering structure of the graph based on the multiple views, while the hubs are the boundary-spanning nodes across different node clusters in the graph and thus may potentially influence the clustering structure of the graph. However, none of the existing works in multi-view graph embedding considered the hubs when learning the multi-view embeddings. In this paper, we propose to incorporate the hub detection task into the multi-view graph embedding framework so that the two tasks could benefit each other. Specifically, we propose an auto-weighted framework of Multi-view Graph Embedding with Hub Detection (MVGE-HD) for brain network analysis. The MVGE-HD framework learns a unified graph embedding across all the views while reducing the potential influence of the hubs on blurring the boundaries between node clusters in the graph, thus leading to a clear and discriminative node clustering structure for the graph. We apply MVGE-HD on two real multi-view brain network datasets (i.e., HIV and Bipolar). The experimental results demonstrate the superior performance of the proposed framework in brain network analysis for clinical investigation and application

    REST: A Thread Embedding Approach for Identifying and Classifying User-specified Information in Security Forums

    Get PDF
    How can we extract useful information from a security forum? We focus on identifying threads of interest to a security professional: (a) alerts of worrisome events, such as attacks, (b) offering of malicious services and products, (c) hacking information to perform malicious acts, and (d) useful security-related experiences. The analysis of security forums is in its infancy despite several promising recent works. Novel approaches are needed to address the challenges in this domain: (a) the difficulty in specifying the "topics" of interest efficiently, and (b) the unstructured and informal nature of the text. We propose, REST, a systematic methodology to: (a) identify threads of interest based on a, possibly incomplete, bag of words, and (b) classify them into one of the four classes above. The key novelty of the work is a multi-step weighted embedding approach: we project words, threads and classes in appropriate embedding spaces and establish relevance and similarity there. We evaluate our method with real data from three security forums with a total of 164k posts and 21K threads. First, REST robustness to initial keyword selection can extend the user-provided keyword set and thus, it can recover from missing keywords. Second, REST categorizes the threads into the classes of interest with superior accuracy compared to five other methods: REST exhibits an accuracy between 63.3-76.9%. We see our approach as a first step for harnessing the wealth of information of online forums in a user-friendly way, since the user can loosely specify her keywords of interest

    Learning Combinatorial Embedding Networks for Deep Graph Matching

    Full text link
    Graph matching refers to finding node correspondence between graphs, such that the corresponding node and edge's affinity can be maximized. In addition with its NP-completeness nature, another important challenge is effective modeling of the node-wise and structure-wise affinity across graphs and the resulting objective, to guide the matching procedure effectively finding the true matching against noises. To this end, this paper devises an end-to-end differentiable deep network pipeline to learn the affinity for graph matching. It involves a supervised permutation loss regarding with node correspondence to capture the combinatorial nature for graph matching. Meanwhile deep graph embedding models are adopted to parameterize both intra-graph and cross-graph affinity functions, instead of the traditional shallow and simple parametric forms e.g. a Gaussian kernel. The embedding can also effectively capture the higher-order structure beyond second-order edges. The permutation loss model is agnostic to the number of nodes, and the embedding model is shared among nodes such that the network allows for varying numbers of nodes in graphs for training and inference. Moreover, our network is class-agnostic with some generalization capability across different categories. All these features are welcomed for real-world applications. Experiments show its superiority against state-of-the-art graph matching learning methods.Comment: ICCV2019 oral. Code available at https://github.com/Thinklab-SJTU/PCA-G
    • …
    corecore