1,472 research outputs found

    Affine strategies in arena games

    Get PDF
    We show how to extract an SMCC of arenas and affine strategies from the CCC of arenas and innocent strategies, a process that essentially reverses the more usual construction of a CCC from an SMCC and the ! of linear logic

    Resource modalities in game semantics

    Get PDF
    The description of resources in game semantics has never achieved the simplicity and precision of linear logic, because of a misleading conception: the belief that linear logic is more primitive than game semantics. We advocate instead the contrary: that game semantics is conceptually more primitive than linear logic. Starting from this revised point of view, we design a categorical model of resources in game semantics, and construct an arena game model where the usual notion of bracketing is extended to multi- bracketing in order to capture various resource policies: linear, affine and exponential

    Game semantics for first-order logic

    Full text link
    We refine HO/N game semantics with an additional notion of pointer (mu-pointers) and extend it to first-order classical logic with completeness results. We use a Church style extension of Parigot's lambda-mu-calculus to represent proofs of first-order classical logic. We present some relations with Krivine's classical realizability and applications to type isomorphisms

    Thin Games with Symmetry and Concurrent Hyland-Ong Games

    Get PDF
    We build a cartesian closed category, called Cho, based on event structures. It allows an interpretation of higher-order stateful concurrent programs that is refined and precise: on the one hand it is conservative with respect to standard Hyland-Ong games when interpreting purely functional programs as innocent strategies, while on the other hand it is much more expressive. The interpretation of programs constructs compositionally a representation of their execution that exhibits causal dependencies and remembers the points of non-deterministic branching.The construction is in two stages. First, we build a compact closed category Tcg. It is a variant of Rideau and Winskel's category CG, with the difference that games and strategies in Tcg are equipped with symmetry to express that certain events are essentially the same. This is analogous to the underlying category of AJM games enriching simple games with an equivalence relations on plays. Building on this category, we construct the cartesian closed category Cho as having as objects the standard arenas of Hyland-Ong games, with strategies, represented by certain events structures, playing on games with symmetry obtained as expanded forms of these arenas.To illustrate and give an operational light on these constructions, we interpret (a close variant of) Idealized Parallel Algol in Cho

    Observably Deterministic Concurrent Strategies and Intensional Full Abstraction for Parallel-or

    Get PDF
    International audienceAlthough Plotkin's parallel-or is inherently deterministic, it has a non-deterministic interpretation in games based on (prime) event structures-in which an event has a unique causal history-because they do not directly support disjunctive causality. General event structures can express disjunctive causality and have a more permissive notion of determinism, but do not support hiding. We show that (structures equivalent to) deterministic general event structures do support hiding, and construct a new category of games based on them with a deterministic interpretation of aPCFpor, an affine variant of PCF extended with parallel-or. We then exploit this deterministic interpretation to give a relaxed notion of determinism (observable determinism) on the plain event structures model. Putting this together with our previously introduced concurrent notions of well-bracketing and innocence, we obtain an intensionally fully abstract model of aPCFpor

    Asynchronous games 4 : A fully complete model of propositional linear logic

    Get PDF
    International audienceWe construct a denotational model of propositional linear logic based on asynchronous games and winning uniform innocent strategies. Every formula A is interpreted as an asynchronous game [A] and every proof pi of A is interpreted as a winning uniform innocent strategy pi of the game A. We show that the resulting model is fully complete: every winning uniform innocent strategy sigma of the asynchronous game A is the denotation pi of a proof pi of the formula A

    Mean-Payoff Games on Timed Automata

    Get PDF
    Mean-payoff games on timed automata are played on the infinite weighted graph of configurations of priced timed automata between two players - Player Min and Player Max - by moving a token along the states of the graph to form an infinite run. The goal of Player Min is to minimize the limit average weight of the run, while the goal of the Player Max is the opposite. Brenguier, Cassez, and Raskin recently studied a variation of these games and showed that mean-payoff games are undecidable for timed automata with five or more clocks. We refine this result by proving the undecidability of mean-payoff games with three clocks. On a positive side, we show the decidability of mean-payoff games on one-clock timed automata with binary price-rates. A key contribution of this paper is the application of dynamic programming based proof techniques applied in the context of average reward optimization on an uncountable state and action space

    Revisiting Robustness in Priced Timed Games

    Get PDF
    Priced timed games are optimal-cost reachability games played between two players---the controller and the environment---by moving a token along the edges of infinite graphs of configurations of priced timed automata. The goal of the controller is to reach a given set of target locations as cheaply as possible, while the goal of the environment is the opposite. Priced timed games are known to be undecidable for timed automata with 33 or more clocks, while they are known to be decidable for automata with 11 clock. In an attempt to recover decidability for priced timed games Bouyer, Markey, and Sankur studied robust priced timed games where the environment has the power to slightly perturb delays proposed by the controller. Unfortunately, however, they showed that the natural problem of deciding the existence of optimal limit-strategy---optimal strategy of the controller where the perturbations tend to vanish in the limit---is undecidable with 1010 or more clocks. In this paper we revisit this problem and improve our understanding of the decidability of these games. We show that the limit-strategy problem is already undecidable for a subclass of robust priced timed games with 55 or more clocks. On a positive side, we show the decidability of the existence of almost optimal strategies for the same subclass of one-clock robust priced timed games by adapting a classical construction by Bouyer at al. for one-clock priced timed games
    • …
    corecore