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Abstract
Priced timed games are optimal-cost reachability games played between two players – the con-
troller and the environment – by moving a token along the edges of infinite graphs of configura-
tions of priced timed automata. The goal of the controller is to reach a given set of target locations
as cheaply as possible, while the goal of the environment is the opposite. Priced timed games
are known to be undecidable for timed automata with 3 or more clocks, while they are known to
be decidable for automata with 1 clock. In an attempt to recover decidability for priced timed
games Bouyer, Markey, and Sankur studied robust priced timed games where the environment
has the power to slightly perturb delays proposed by the controller. Unfortunately, however, they
showed that the natural problem of deciding the existence of optimal limit-strategy – optimal
strategy of the controller where the perturbations tend to vanish in the limit – is undecidable
with 10 or more clocks. In this paper we revisit this problem and improve our understanding of
the decidability of these games. We show that the limit-strategy problem is already undecidable
for a subclass of robust priced timed games with 5 or more clocks. On a positive side, we show
the decidability of the existence of almost optimal strategies for the same subclass of one-clock
robust priced timed games by adapting a classical construction by Bouyer at al. for one-clock
priced timed games.
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1 Introduction

Two-player zero-sum games on priced timed automata provide a mathematically elegant
modeling framework for the control-program synthesis problem in real-time systems. In these
games, two players – the controller and the environment – move a token along the edges of the
infinite graph of configurations of a timed automaton to construct an infinite execution of the
automaton in order to optimize a given performance criterion. The optimal strategy of the
controller in such game then corresponds to control-program with the optimal performance.
By priced timed games (PTGs) we refer to such games on priced timed automata with
optimal reachability-cost objective. The problem of deciding the existence of the optimal
controller strategy in PTGs is undecidable [8] with 3 or more clocks, while it is known to
be decidable [5] for automata with 1 clock. Also, the ε-optimal strategies can be computed
for priced timed games under the non-Zeno assumption [1, 4]. Unfortunately, however, the
optimal controller strategies obtained as a result of solving games on timed automata may
not be physically realizable due to unrealistic assumptions made in the modeling using timed
automata, regarding the capability of the controller in enforcing precise delays. This severely
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limits the application of priced timed games in control-program synthesis for real-time
systems.

In order to overcome this limitation, Bouyer, Markey, and Sankur [7] argued the need for
considering the existence of robust optimal strategies and introduced two different robustness
semantics – excess and conservative – in priced timed games. The key assumption in their
modeling is that the controller may not be able to apply an action at the exact time delays
suggested by the optimal strategy. This phenomenon is modeled as a perturbation game where
the time delay suggested by the controller can be perturbed by a bounded quantity. Notice
that such a perturbation may result in the guard of the corresponding action being disabled.
In the conservative semantics, it is the controller’s responsibility to make sure that the guards
are satisfied after the perturbation. On the other hand, in the excess semantics, the controller
is supposed to make sure that the guard is satisfied before the perturbation: an action can
be executed even when its guard is disabled (“excess”) post perturbation and the valuations
post perturbation will be reflected in the next state. The game based characterization
for robustness in timed automata under “excess” semantics was first proposed by Bouyer,
Markey, and Sankur [6] where they study the parameterized robust (qualitative) reachability
problem and show it to be EXPTIME-complete. The “conservative” semantics were studied
for reachability and Büchi objectives in [14] and shown to be PSPACE-complete. For a
detailed survey on robustness in timed setting we refer to an excellent survey by Markey [12].

Bouyer, Markey, and Sankur [7] showed that the problem for deciding the existence of
the optimal strategy is undecidable for priced timed games with 10 or more clocks under
the excess semantics. In this paper we further improve the understanding of the decidability
of these games. However, to keep the presentation simple, we restrict our attention to
turn-based games under excess semantics. To further generalize the setting, we permit both
positive and negative price rates with the restriction that the accumulated cost in any cycle
is non-negative (akin to the standard no-negative-cycle restriction in shortest path game
problems on finite graphs). We improve the undecidability result of [7] by proving that
optimal reachability remains undecidable for robust priced timed automata with 5 clocks.
Our second key result is that, for a fixed δ, the cost optimal reachability problem for one
clock priced timed games with no-negative-cycle restriction is decidable for robust priced
timed games with given bound on perturbations. To the best of our knowledge, this is
the first decidability result known for robust timed games under the excess semantics. A
closely related result is [9], where decidability is shown for robust timed games under the
conservative semantics for a fixed δ.

2 Preliminaries

We write R for the set of reals and Z for the set of integers. Let C be a finite set of real-valued
variables called clocks. A valuation on C is a function ν : C → R. We assume an arbitrary
but fixed ordering on the clocks and write xi for the clock with order i. This allows us to
treat a valuation ν as a point (ν(x1), ν(x2), . . . , ν(xn)) ∈ R|C|. Abusing notations slightly,
we use a valuation on C and a point in R|C| interchangeably. For a subset of clocks X ⊆ C
and valuation ν ∈ R|C|, we write ν[X:=0] for the valuation where ν[X:=0](x) = 0 if x ∈ X,
and ν[X:=0](x) = ν(x) otherwise. The valuation 0 ∈ R|C| is a special valuation such that
0(x) = 0 for all x ∈ C. A clock constraint over C is a subset of R|C|. We say that a constraint
is rectangular if it is a conjunction of a finite set of constraints of the form x ./ k, where
k ∈ Z, x ∈ C, and ./∈ {<,≤,=, >,≥}. For a constraint g ∈ ϕ(C), we write [[g]] for the set of
valuations in R|C| satisfying g. We write ϕ(C) for the set of rectangular constraints over C.
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We use the terms constraints and guards interchangeably.
Following [5] we introduce priced timed games with external cost function on target

locations (see [10]). For this purpose, we define a cost function[5] as a piecewise affine
continuous function f : Rn≥0 → R ∪ {+∞,−∞}. We write F for the set of all cost functions.

I Definition 2.1 (Priced Timed Games). A turn-based two player priced timed game is a
tuple G = (L1, L2, Linit, C, X, η, T, fgoal) where Li is a finite set of locations of Player i,
Linit ⊆ L1 ∪ L2(let L1 ∪ L2 = L) is a set of initial locations, C is an (ordered) set of clocks,
X ⊆ L× ϕ(C)× 2C × (L ∪ T ) is the transition relation, η : L→ Z is the price function, T is
the set of target locations, T ∩ L = ∅; and fgoal : T → F assigns external cost functions to
target locations.

We refer to Player 1 as the controller and Player 2 as the environment. A priced timed game
begins with a token placed on some initial location ` with valuation 0 and cost accumulated
being so far being 0. At each round, the player who controls the current location ` chooses a
delay t (to be elapsed in l) and an outgoing transition e = (`, g, r, `′) ∈ X to be taken after t
delay at `. The clock valuation is then updated according to the delay t, the reset r, the cost
is incremented by η(`) · t and the token is moved to the location `′. The two players continue
moving the token in this fashion, and give rise to a sequence of locations and transitions
called a play of the game. A configuration or state of a PTG is a tuple (`, ν, c) where ` ∈ L
is a location, ν ∈ R|C| is a valuation, and c is the cost accumulated from the start of the play.
We assume, w.l.o.g [2], that the clock valuations are bounded.

I Definition 2.2 (PTG semantics). The semantics of a PTG G is a labelled state-transition
game arena [[G]] = (S = S1 ] S2, Sinit, A,E, π, κ) where

Sj = Lj × R|C| are the Player j states with S = S1 ] S2,
Sinit ⊆ S are initial states s.t. (`, ν) ∈ Sinit if ` ∈ Linit, ν = 0,
A = R≥0 ×X is the set of timed moves,
E : (S × A) → S is the transition function s.t. for s = (`, ν), s′ = (`′, ν′)∈S and
τ = (t, e) ∈ A the function E(s, τ) is defined if e = (`, g, r, `′) is a transition of the
PTG and ν ∈ [[g]]; moreover E(s, τ) = s′ if ν′ = (ν + t)[r:=0] (we write s τ−→ s′ when
E(s, τ) = s′);
π : S ×A→ R is the price function such that π((`, ν), (t, e)) = η(`) · t; and
κ : S → R is an external cost function such that κ(`, ν) is defined when ` ∈ T such that
κ(`, ν) = fgoal(`)(ν).

A play ρ = 〈s0, τ1, s1, τ2, . . . , sn〉 is a finite sequence of states and actions s.t. s0 ∈ Sinit
and si

τi+1−−−→ si+1 for all 0 ≤ i < n. The infinite plays are defined in an analogous manner.
For a finite play ρ we write its last state as last(ρ) = sn. For a (infinite or finite) play ρ
we write stop(ρ) for the index of first target state and if it doesn’t visit a target state then
stop(ρ) =∞. We denote the set of plays as PlaysG . For a play ρ = 〈s0, (t1, a1), s1, (t2, a2), . . .〉
if stop(ρ) = n <∞ then CostG(ρ) = κ(sn) +

∑n
j=1 π(si−1, (ti, ai)) else CostG(ρ) = +∞.

A strategy of player j in G is a function σ : PlaysG → A such that for a play ρ the function
σ(ρ) is defined if last(ρ) ∈ Sj . We say that a strategy σ is memoryless if σ(ρ) = σ(ρ′) when
last(ρ) = last(ρ′), otherwise we call it memoryful. We write Strat1 and Strat2 for the set of
strategies of player 1 and 2, respectively.

A play ρ is said to be compatible to a strategy σ of player j ∈ {1, 2} if for every state si in
ρ that belongs to Player j, si+1 = σ(si). Given a pair of strategies (σ1, σ2) ∈ Strat1 × Strat2,
and a state s, the outcome of (σ1, σ2) from s denoted Outcome(s, σ1, σ2) is the unique play
that starts at s and is compatible with both strategies. Given a player 1 strategy σ1 ∈ Strat1
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we define its cost CostG(s, σ1) as supσ2∈Strat2(Cost(Outcome(s, σ1, σ2))). We now define the
optimal reachability-cost for Player 1 from a state s as

OptCostG(s) = inf
σ1∈Strat1

sup
σ2∈Strat2

(Cost(Outcome(s, σ1, σ2))).

A strategy σ1 ∈ Strat1 is said to be optimal from s if CostG(s, σ1) = OptCostG(s). Since
the optimal strategies may not always exist [5] we define ε optimal strategies. For ε > 0
a strategy σε ∈ Strat1 is called ε-optimal if OptCostG(s) ≤ CostG(s, σε) < OptCostG(s) + ε.
Given a PTG G and a bound K ∈ Z, the cost-optimal reachability problem for PTGs is to
decide whether there exists a strategy for player 1 such that OptCostG(s) ≤ K from some
starting state s.

I Theorem 2.3 ([3]). Cost-optimal reachability problem is undecidable for PTGs with 3
clocks.

I Theorem 2.4 ([5, 11, 13]). The ε-optimal strategy is computable for 1 clock PTGs.

3 Robust Semantics

Under the robust semantics of priced timed games the environment player – also called as
the perturbator – is more privileged as it has the power to perturb any delay chosen by the
controller by an amount in [−δ, δ], where δ > 0 is a pre-defined bounded quantity. However,
in order to ensure time-divergence there is a restriction that the time delay at all locations
of the RPTG must be ≥ δ. There are the following two perturbation semantics as defined
in [7].

Excess semantics. At any controller location, the time delay t chosen by the controller
is altered to some t′ ∈ [t− δ, t+ δ] by the perturbator. However, the constraints on the
outgoing transitions of the controller locations are evaluated with respect to the time
elapse t chosen by the controller. If the constraint is satisfied with respect to t, then the
values of all variables which are not reset on the transition are updated with respect to t′;
the variables which are reset obtain value 0.
Conservative semantics. In this, the constraints on the outgoing transitions are evaluated
with respect to t′.

In both semantics, the delays chosen by perturbator at his locations are not altered, and the
constraints on outgoing transitions are evaluated in the usual way, as in PTG.

A Robust-Priced Timed Automata (RPTA) is an RPTG which has only controller
locations. At all these locations, for any time delay t chosen by controller, perturbator
can implicitely perturb t by a quantity in [−δ, δ]. The excess as well as the conservative
perturbation semantics for RPTA are defined in the same way as in the RPTG. Note that
our RPTA coincides with that of [7] when the cost functions at all target locations are of
the form cf : Rn≥0 → {0}. Our RPTG are turn-based, and have cost funtions at the targets,
while RPTGs studied in [7] are concurrent.

I Definition 3.1 (Excess Perturbation Semantics). Let R = (L1, L2, Linit, C, X, η, T, fgoal) be
a RPTG. Given a δ > 0, the excess perturbation semantics of RPTG R is a LTS [[R]] =
(S, A,E) where S = S1 ∪ S2 ∪ (T ×R≥0), A = A1 ∪A2 and E = E1 ∪E2. We define the set
of states, actions and transitions for each player below.

S1 = L1 × R|C| are the controller states,
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S2 = (L2×R|C|)∪ (S1×R≥0×X) are the perturbator states. The first kind of states are
encountered at perturbator locations. The second kind of states are encountered when
controller chooses a delay t ∈ R≥0 and a transition e ∈ X at a controller location.
A1 = R≥0 ×X are controller actions
A2 = (R≥0×X)∪ [−δ, δ] are perturbator actions. The first kind of actions (R≥0×X) are
chosen at states of the form L2 × R|C| ∈ S2, while the second kind of actions are chosen
at states of the form S1 × R≥0 ×X ∈ S2,
E1 = (S1 × A1 × S2) is the set of controller transitions such that for a controller state
(l, ν) and a controller action (t, e), E1((l, ν), (t, e)) is defined iff there is a transition
e = (l, g, a, r, l′) in R such that ν + t ∈ [[g]].
E2 = S2 ×A2 × (S1 ∪ S2 ∪ (T × R≥0)) is the set of perturbator transitions such that

For a perturbator state of the type (l, ν) and a perturbator action (t, e), we have
(l′, ν′) = E2((l, ν), (t, e)) iff there is a transition e = (l, g, a, r, l′) in R such that
ν + t ∈ [[g]], ν′ = (ν + t)[r := 0],
For a perturbator state of type ((l, ν), t, e) and a perturbator action ε ∈ [−δ, δ], we
have (l′, ν′) = E2(((l, ν), t, e), ε) iff e = (l, g, a, r, l′), and ν′ = (ν + t+ ε)[r := 0].

We now define the cost of the transitions, denoted as Cost(t, e) as follows :

For controller transitions : (l, ν) (t,e)−−−→ ((l, ν), t, e) : the cost accumulated is Cost(t, e) = 0.
For perturbator transitions :

From perturbator states of type (l, ν) : (l, ν) t,e−−→ (l′, ν′), the cost accumulated is
Cost(t, e) = t ∗ η(l).
From perturbator states of type ((l, ν), t, e) : ((l, ν), t, e) ε−→ (l′, ν′), the cost accumulated
is (t+ ε) ∗ η(l). Note that although this transition has no edge choice involved and the
perturbation delay chosen is ε ∈ [−δ, δ], the controller action (t, e) chosen in the state
(l, ν) comes into effect in this transition. Hence for the sake of uniformity, we denote
the cost accumulated in this transition to be Cost(t+ ε, e) = (t+ ε) ∗ η(l).

Note that we check satisfiability of the constraint g before the perturbation; however, the
reset occurs after the perturbation. The notions of a path and a winning play are the same
as in PTG. We shall now adapt the definitions of cost of a play, and a strategy for the
excess perturbation semantics. Let ρ = 〈s1, (t1, e1), s2, (t2, e2), · · · (tn−1, en−1), sn〉 be a path
in the LTS [[R]]. Given a δ > 0, for a finite play ρ ending in target location, we define
CostδR(ρ) =

∑n
i=1 Cost(ti, ei) + fgoal(ln)(νn) as the sum of the costs of all transitions as

defined above along with the value from the cost function of the target location ln. Also,
we re-define the cost of a strategy σ1 from a state s for a given δ > 0 as CostδR(s, σ1) =
supσ2∈Strat2(R) CostδR(Outcome(s, σ1, σ2)). Similarly, OptCostδR is the optimal cost under
excess perturbation semantics for a given δ > 0 defined as

OptCostδR(s) = inf
σ1∈Strat1(R)

sup
σ2∈Strat2(R)

(CostδR(Outcome(s, σ1, σ2))).

Since optimal strategies may not always exist, we define ε−optimal strategies such that for
every ε > 0, OptCostδR(s) ≤ CostδR(s, σ1) < OptCostδR(s) + ε. Given a δ and a RPTG R
with a single clock x, a strategy σ1 is called (ε,N)−acceptable [5] for ε > 0, N ∈ N when
(1)it is memoryless, (2)it is ε−optimal and (3)there exist N consecutive intervals (Ii)1≤i≤N
partitioning [0, 1] such that for every location l, for every 1≤i≤N and every integer α < M

(where M is the maximum bound on the clock value), the function that maps the clock values
ν(x) to the cost of the strategy σ1 at every state (l, ν(x)), (ν(x) 7→ CostδR((l, ν(x)), σ1)) is
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266 Revisiting Robustness in Priced Timed Games

affine for every interval α+ Ii. Also, the strategy σ1 is constant over the values α+ Ii at all
locations, that is, when ν(x) ∈ α+ Ii, the strategy σ1(l, ν(x)) is constant. The number N is
an important attribute of the strategy as it establishes that the strategy does not fluctuate
infinitely often and is implementable.

Now, we shall define limit variations of costs, strategies and values as δ → 0. The
limit-cost of a controller strategy σ1 from state s is defined over all plays ρ starting from s

that are compatible with σ1 as:

LimCostR(s, σ1) = lim
δ→0

sup
σ2∈Strat2(R)

CostδR(Outcome(s, σ1, σ2)).

The limit strategy upper-bound problem [7] for excess perturbation semantics asks, given
a RPTG R, state s = (l,0) with cost 0 and a rational number K, whether there exists a
strategy σ1 such that LimCostR(s, σ1) ≤ K. The following are the main results of [7].

(Non-)Negative Cycles

-1

x < 1

1 -1

x < 1

1 0

x < 1
x := 0

x < 1

x = 1
y := 0 x < 1

y = 0x = 1, y = 0
x := 0

I Theorem 3.2 (Known results [7]).
1. The limit-strategy upper-bound problem is undecidable for RPTA and RPTG under excess

perturbation semantics, for ≥ 10 clocks.
2. For a fixed δ ∈ [0, 1

3 ], and a given RPTA A, a target location l and a rational K, it is
undecidable whether infσ1 supσ2 costσ1,σ2(ρ) < K such that ρ ends in l. costσ1,σ2(ρ) is the
cost of the unique run ρ obtained from the pair of strategies (σ1, σ2).

We consider a semantic subclass of RPTGs in which the accumulated cost of any cycle is
non-negative: that is, any iteration of a cycle will always have a non-negative cost. Consider
the two cycles depicted. The one on top has a non-negative cost, while the one below always
has a negative cost. In the cycle below, the perturbator will not perturb, since that will
lead to a target state. In the rest of the paper, we consider this semantic class of RPTGs
(RPTAs), and prove decidability and undecidability results; however, we will refer to them
as RPTGs(RPTAs). Our key contributions are the following theorems.

I Theorem 3.3. The limit-strategy upper-bound problem is undecidable for RPTA with 5
clocks, location prices in {0, 1}, and cost functions cf : Rn≥0 → {0} at all target locations.

I Theorem 3.4. Given a 1-clock RPTG R and a δ > 0, we can compute OptCostδR(s) for
every state s = (l, ν). For every ε > 0, there exists an N ∈ N such that the controller has an
(ε,N)-acceptable strategy.

The rest of the paper is devoted to the proof sketches of these two theorems, while we give
detailed proofs in [10].

4 Undecidability with 5 clocks

In this section, we improve the result of [7] by showing that the limit strategy upper bound
problem is undecidable for robust priced timed automata with 5 or more clocks. The
undecidability result is obtained using a reduction to the halting problem of two-counter
machines.
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A two-counter machine has counters C1 and C2, and a list of instructions I1, I2, . . . , In,
where In is the halt instruction. For each 1 ≤ i ≤ n−1, Ii is one of the following instructions:
increment cb: cb := cb + 1; goto Ij , for b = 1 or 2, decrement cb with zero test:
if (cb = 0) goto Ij else cb := cb − 1; goto Ij , where c1, c2 represent the counter values. The
initial values of both counters are 0. Given the initial configuration (I1, 0, 0) the halting
problem for two counter machines is to find if the configuration (In, c1, c2) is reachable, with
c1, c2 ≥ 0. This problem is known to be undecidable.

We simulate the two counter machine using a RPTA with 5 clocks x1, z, x2, y1 and y2
under the excess perturbation semantics. The counters are encoded in clocks x1 and z as
x1 = 1

2i + ε1 and z = 1
2j + ε2 where i, j are respectively the values of counters C1, C2, and ε1

and ε2 denote accumulated values due to possible perturbations. Clocks x2, y1 and y2 help
with the rough work. The simulation is achieved as follows: for each instruction, we have
a module simulating it. Upon entering the module, the clocks are in their normal form i.e.
x1 = 1

2i + ε1, z = 1
2j + ε2 and x2 = 0 and y1 = y2 = 0.

4.1 Increment module
The module in Figure 1 simulates the increment of counter C1. The value of counter C2
remains unchanged since the value of clock z remains unchanged at the exit from the module.
Upon entering A the clock values are x1 = 1

2i + ε1, z = 1
2j + ε2, x2 = y1 = y2 = 0. Here

ε1 and ε2 respectively denote the perturbations accumulated so far. We denote by α, the
value of clock x1, i.e. 1

2i + ε1. Thus at A, the delay is 1− α. Note that the dashed edges
are unperturbed (this is a short hand notation. A small gadget that implements this is
described in [10], so x1 = 1 on entering B. No time elapse happens at B, and at C, controller
chooses a delay t. This t must be α

2 to simulate the increment correctly. t can be perturbed
by an amount δ by the perurbator, where δ can be both positive or negative, obtaining
x2 = t+ δ, x1 = 0, y1 = 1− α+ t+ δ on entering D. At D, the delay is α− t− δ. Thus the
total delay from the entry point A in this module to the mChoice module is 1 time unit.
At the entry of the mChoice (mChoice and Restore modules are in [10]) module, the clock
values are x1 = α− t− δ, z = 1 + 1

2j + ε2, x2 = α, y1 = 1, y2 = 0. To correctly simulate the
increment of C1, t should be exactly α

2 .
At the mChoice module, perturbator can either continue the simulation by going through

the Restore module or verify the correctness of controller’s delay (check t = α
2 ). The mChoice

module adds 3 units to the values of x1, x2 and z, and resets y1, y2. Due to the mChoice
module, the clock values are x1 = 3 +α− t− δ, z = 4 + 1

2j + ε2, x2 = 3 +α, y1 = 1, y2 = 0. If
perturbator chooses to continue the simulation, then Restore module brings all the clocks
back to normal form. Hence upon entering F , the clock values are x1 = α − t − δ, z =
1
2j + ε2, x2 = y1 = 1, y2 = 0. This value of x1 is α

2 + ε1, since t = α
2 and ε1 = −δ, the

perturbation effect.
Let us now see how perturbator verifies t = α

2 by entering the Choice module. The
Choice module also adds 3 units to the values of x1, x2 and z, and resets y1, y2. The module
Test IncC1

> is invoked to check if t > α
2 , and the module Test IncC1

< is invoked to check if
t < α

2 . Note that using the mChoice module and the Choice module one after the other,
the clock values upon entering Test IncC1

> or Test IncC1
< are x1 = 6 + α − t − δ, z =

7 + 1
2j + ε2, x2 = 6 + α, y1 = 0, y2 = 0.

Test IncC1
> : The delay at A′ is 1 − α + t + δ, obtaining x2 = 7 + t + δ, and the cost

accumulated is 1−α+ t+ δ. At B′, 1− t− δ time is spent, obtaining x1 = 1− t− δ. Finally,
at C ′, a time t+ δ is spent, and at D′, one time unit, making the total cost accumulated
2− α+ 2t+ 2δ at the target location. The cost function at the target assigns the cost 0 for
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0
A

0
B

0
C

0
D

mChoice 0
E

RestoreC1C2
Inc

RestoreC2C1
Inc

0
F

x2=0
{y2}

x1=1
{x2}

x2=0
{x1}

x1≤1

{x1}

y1=1

{y2}

y1=0

{x2, y2}

y1=0

y1=0

y1=0

y1=0

Choice Test IncC1
<

y1=0

y1=0

Test IncC1
>

1
A′

0
B′

1
C ′

1
D′

0
y1=0x1=7

{x1}

x2=8x1=1
{x1}

x1=1

Figure 1 Increment C1 module : The module keeps the fractional part of the clock z unchanged.
The dashed edges represent unperturbed edges (detailed in [10]).

all valuations, hence the total cost to reach the target is 2 + 2t − α + 2δ which is greater
than 2 + 2δ iff 2t− α > 0, i.e. iff t > α

2 .

I Lemma 4.1. Assume that an increment Cb (b ∈ {0, 1}) module is entered with the clock
valuations in their normal forms. Then controller has a strategy to reach either location lj
corresponding to instruction Ij of the two-counter machine or a target location is reached
with cost at most 2 + |2δ|, where δ is the perturbation added by perturbator.

4.2 Complete Reduction
The entire reduction consists of constructing a module corresponding to each instruction
Ii, 1 ≤ i ≤ n, of the two-counter machine. The first location of the module corresponding
to instruction I1 is the initial location. We simulate the halting instruction In by a target
location with cost function cf : R5

≥0 → {0}. We denote the robust timed automaton
simulating the two counter machine by A, s is the initial state (l,0,0).

I Lemma 4.2. The two counter machine halts if and only if there is a strategy σ of controller
such that limcostA(σ, s) ≤ 2.

The details of the decrement and zero test modules are in [10]. They are similar to the
increment module; if player 2 desires to verify the correctness of player 1’s simulation, a cost
> 2 + |2δ| is accumulated on reaching a target location iff player 1 cheats. In the limit, as
δ → 0, the limcost will be > 2 iff controller cheats. The other possibility to obtain a limcost
> 2 is when the two counter machine does not halt.

5 Decidability of One-clock RPTG

A Dwell-time PTG

-1
[1, 2]

A

1
[0, 3]

Bx < 2
x := 0
x < 1

In order to show the decidability of the optimal reachability
game for 1 clock RPTG R and a fixed δ > 0, we perform a series
of reachability and optimal cost preserving transformations.
The idea is to reduce the RPTG into a simpler priced timed
game, while preserving the optimal costs. The advantages of
this conversion is that the semantics of PTGs are easier to
understand, and one could adapt known algorithms to solve PTGs. On the other hand, the
PTGs that we obtain are 1-clock PTGs with dwell-time requirement (having restrictions on
minimum as well as maximum amount of time spent at certain locations), see for example, a
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dwell-time PTG with two locations A,B. A minimum of 1 and a maximum of two units of
time should be spent at A, while a maximum of 3 time units can be spent at B. If we wish to
model this using standard PTGs, we need one extra clock and we can not use the decidability
results of 1 clock PTG to show the decidability of our model. We show in Section 5.4 how to
solve 1-clock PTGs with dwell-time requirements.

Our transformations are as follows: (i) for a given δ, our first transformation reduces the
RPTG R into a dwell-time PTG G (Section 5.1); (ii) our second transformation restricts
to dwell-time PTGs where the clock is bounded by 1 + δ. To achieve this, we use a notion
of fractional resets, and denote these PTGs as GF (Section 5.2); (iii) our third and last
transformation restricts GF without resets (Section 5.3). The reset-free dwell-time PTG
is denoted GF′. For each transformation, we prove that the optimal cost in each state of
the original game is the same as the optimal cost at some corresponding state of the new
game. We also show that an (ε,N)-strategy of the original game can be computed from
some (ε′, N ′)-strategy in the new game. The details of each transformation and correctness
is established in subequent sections. We then solve GF′ employing a technique inspired by
[5] while ensuring that the robust semantics are satisfied.

5.1 Transformation 1: RPTG R to dwell-time PTG G

R and G

k

A

t

k′
B

e
g, r

k

A

t− δ
0

(A, e)

0
k

(A, e)+

[δ, 2δ]

k

(A, e)−

[0, δ]
k′
B

g′

r

r

Given a one clock RPTG R = (L1, L2, {x} , X, η, T, fgoal)
and a δ > 0, we construct a dwell-time PTG G = (L1, L2 ∪
L′, {x} , X ′, η′, T, fgoal). All the controller, perturbator
locations of R (L1 and L2) are carried over respectively as
player 1, player 2 locations in G. In addition, we have some
new player 2 locations L′ in G. The dwell-time PTG G
constructed has dwell-time restrictions for the new player
2 locations L′. The locations of L′ are either urgent, or
have a a dwell-time of [δ, 2δ] or [0, δ]. All the perturbator
transitions of R are retained as it is in G. Every transition
in R from a controller location A to some location B is
replaced in G by a game graph as shown. Let e = (A, g, r, B) be the transition from a
controller location A to a location B with guard g, and reset r. Depending on the guard g, in
the transformed game graph, we have the new guard g′. If g is x = H, then g′ is x = H − δ,
while if g is H < x < H + 1, then g′ is H − δ < x < H + 1 − δ, for H > 0. When g is
0 < x < K, then g′ is 0 ≤ x < K − δ and x = 0 stays unchanged. It can be seen that doing
this transformation to all the controller edges of a RPTG R gives rise to a dwell-time PTG
G.

Lets consider the transition from A to B in R. Assume that the transition from A to B
(called edge e) had a constraint x = 1, and assume that x = ν on entering A. Then, in R,
controller elapses a time 1− ν, and reaches B; however on reaching B, the value of x is in
the range [1− δ, 1 + δ] depending on the perturbation. Also, the cost accumulated at A is
k ∗ (1− ν + γ), where γ ∈ [−δ, δ]. To take into consideration these semantic restrictions of R,
we transform the RPTG R into a dwell-time PTG G. First of all, we change the constraint
x = 1 into x = 1− δ from A (a player 1 location) and enter a new player 2 location (A, e).
This player 2 location is an urgent location. The correct strategy for player 1 is to spend
a time 1 − ν − δ at A (corresponding to the time 1 − ν he spent at A in R). At (A, e),
player 2 can either proceed to one of the player 2 locations (A, e)− or (A, e)+. The player
2 location (A, e) models perturbator’s choices of positive or negative perturbation in R. If
player 2 goes to (A, e)−, then on reaching B, the value of x is in the interval [1− δ, 1] (this
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corresponds to perturbator’s choice of [−δ, 0] in R) and if he goes to (A, e)+, then the value
of x at B is in the interval [1, 1 + δ] (this corresponds to perturbator’s choice of [0, δ] in R).
The reset happening in the transition from A to B in R is now done on the transition from
(A, e)− to B and from (A, e)+ to B. Thus, note that the possible ranges of x as well as the
accumulated cost in R while reaching B are preserved in the transformed dwell-time PTG.

I Lemma 5.1. Let R be a RPTG and G be the corresponding dwell-time PTG obtained
using the transformation above. Then for every state s in R, OptCostR(s) = OptCostG(s).
An (ε,N)−strategy in R can be computed from a (ε,N)−strategy in G and vice versa.

Proof in [10].

5.2 Transformation 2: Dwell-time PTG G to Dwell-time FRPTG GF

GF

kAb

t− δ

0 (A, e)b

0
k

(A, e)+
b

[δ, 2δ]

k(A, e)0
b+1

0

k

(A, e)−b

[0, δ]
k′

Bb

k′

Bb+1

x=1−δ

r

r

r

x≥1, [x]:=0

x=1
{x}

Recall that the locations of the dwell-time PTG G is L1 ∪
L2 ∪ L′ where L1 ∪ L2 are the set of locations of R, and
L′ are new player 2 locations introduced in G. In this
section, we transform the dwell-time PTG G into a dwell-
time PTG GF having the restriction that the value of x
is in [0,1] at all locations corresponding to L1 ∪ L2, and
is in [0, 1 + δ] at all locations corresponding to L′. While
this transformation is the same as that used in [5], the
main difference is that we introduce special resets called
fractional resets which reset only the integral part of clock
x while its fractional part is retained. For instance, if the
value of x was 1.3, then the operation [x] := 0 makes the
value of x to be 0.3. Given a one clock, dwell-time PTG
G = (L1, L2 ∪L′, {x} , X, η, T, fgoals) with M being the maximum value that can be assumed
by clock x, we define a dwell-time PTG with fractional resets (FRPTG) GF . In GF , we have
M + 1 copies of the locations in L1 ∪ L2 as well as the locations in L′ with dwell time [0, δ],
[0, 0]. These M + 1 copies of L′ have the same dwell-time restrictions in GF . The copies are
indexed by i, 0 ≤ i ≤ M , capturing the integral part of clock x in G. Finally, we have in
G, the locations of L′ with dwell-time restriction [δ, 2δ]. For each such location (A, e)+, we
have in GF , the locations (A, e)+

i and (A, e)0
i+1 for 0 ≤ i ≤M . The dwell-time restriction for

(A, e)+
i is same as (A, e)+, while locations (A, e)0

i+1 are urgent. The prices of locations are
carried over as they are in the various copies.

The transitions in GF consists of the following: (1) li
(g−i)∩0≤x<1−−−−−−−−−→ mi

1 if l g−→ m ∈ X;
(2) li

(g−i)∩0≤x<1;{x}−−−−−−−−−−−−→ m0 if l g;{x}−−−→ m ∈ X; (3) li
x=1,{x}−−−−−→ li+1, for l ∈ L1 ∪ L2, and

(A, e)+
i

x≥1,[x]:=0−−−−−−−→ (A, e)0
i+1 for i < M . Consider for example, the constraint g′ between

A and (A, e) as x = (b + 1) − δ in G. Then the value of x is b + (1 − δ) for b < M when
(A, e)+ is entered in G. The location (A, e)+ with ν(x) = b + (1 − δ) is represented in
GF as (A, e)+

b with ν(x) = 1 − δ. If player 2 spends [δ, 2δ] time at (A, e)+ in G, then
ν(x) ∈ [b+ 1, b+ 1 + δ]. If there are no resets to goto B, then ν(x) ∈ [b+ 1, (b+ 1) + δ] at B.
Correspondingly in GF , ν(x) ∈ [1, 1 + δ] at (A, e)+

b . By construction, Bb is not reachable,
since we check 0 ≤ x < 1 on the transition to Bb. The fractional reset is employed to
obtain x = δ while moving to (A, e)0

b+1. This ensures that x = δ on reaching Bb+1, thereby

1 g − i represents the constraint obtained by shifting the constraint by −i
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preserving the perturbation, and keeping x < 1. A normal reset would have destroyed the
value obtained by perturbation. The mapping f between states of G and GF is as follows:
f(l, x) = (lb, x − b), b < M , and x ∈ [b, b + 1], l ∈ L1 ∪ L2, f((A, e), x) = ((A, e)b, x − b),
b < M , and x ∈ [b, b+ 1], f((A, e)−, x) = ((A, e)−b , x− b), b < M , and x ∈ [b, b+ 1]. Finally,
f((A, e)+

, x) = ((A, e)+
b , x − b), b < M , and x ∈ [b, b+ 1] ∪ [b + 1, b+ 2]. Note that in the

last case, the value of x− b can exceed 1 but is less than or equal to 1 + δ.

I Lemma 5.2. For every state (l, ν) in G, OptCostG(l, ν) in G is the same as
OptCostGF

(f(l, ν)) in GF . For every ε > 0, N ∈ N, an (ε,N)-acceptable strategy in G
can be computed from an (ε,N)-acceptable strategy in GF and vice versa.

5.3 Transformation 3: Dwell-time FRPTG GF to resetfree FRPTG GF
′

We now apply the final transformation to the FRPTG GF and construct a reset-free version
of the FRPTG denoted GF′. Assume that there are a total of n resets (including fractional
resets) in the FRPTG. GF ′ consists of n + 1 copies of the FRPTG : GF 0,GF 1, . . . ,GFn.
Given the locations L of the FRPTG, the locations of GF i are Li, 0 ≤ i ≤ n. GF 0 starts with
l0, where l is the initial location of the FRPTG and continues until a resetting transition
happens. At the first resetting transition, GF 0 makes a transition to GF 1. The nth copy is
directed to a sink target location S with cost function cf : R≥0 → {+∞} on the (n+ 1)th
reset. Note that each GF i is reset-free. One crucial property of each GF i is that on entering
with some value of x in [0, δ], the value of x only increases as the transitions go along in GF i;
moreover, x ≤ 1 + δ in each GF i by construction. The formal details and proof of Lemma
5.3 can be found in [10]. Using the cost function of S and those of the targets, we compute
the optimal cost functions for all the locations of the deepest component GFn. The cost
functions of the locations of GF i are used to compute that of GF i−1, and so on until the cost
function of l0, the starting location of GF 0 is computed. An example can be seen in [10].

I Lemma 5.3. For every state (l, ν) in GF , OptCostGF
(l, ν) = OptCostGF ′(l0, ν), where GF′

is the resetfree FRPTG. For every ε > 0, N ∈ N, given an (ε,N)-acceptable strategy σ′ in
GF′, we can compute a (2ε,N)-acceptable strategy σ in GF and vice versa.

5.4 Solving the Resetfree FRPTG
Before we sketch the details, let us introduce some key notations. Observe that after our
simplifying transformations, the cost functions cf are piecewise-affine continuous functions
that assign a value to every valuation x ∈ [0, 1 + δ] (construction of FRPTG ensures x≤1+δ
always). The interior of two cost functions f1 and f2 is a cost function f3 : [0, 1 + δ]→ R
defined by f3(x) = min(f1(x), f2(x)). Similarly, the exterior of f1 and f2 is a cost function
f4 : [0, 1 + δ]→ R defined as f4(x) = max(f1(x), f2(x)). Clearly, f3 and f4 are also piecewise-
affine continuous. The interior and exterior can be easily computed by superimposing f1 and
f2 as shown graphically in the example by computing lower envelope and upper envelope
respectively.

We now work on the reset-free components GF i, and give an algorithm to compute
OptCostGF i

(l, ν) for every state (l, ν) of GF i, ν(x) ∈ [0, 1 + δ]. We also show the existence
of an N such that for any ε > 0, and every l ∈ Li, ν(x) ∈ [0, 1 + δ], an (ε,N)-acceptable
strategy can be computed. Consider the location of GF i that has the smallest price and call
it lmin. If this is a player 1 location, then intuitively, player 1 would want to spend as much
time as possible here, and if this is a player 2 location, then player 2 would want to spend as
less time as possible here. By our assumption, all the cycles in GF i are non-negative, and
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Example Illustrating SuperImposition, Interior and Exterior

y

x
Superimposition

f2

f1 y

x
Interior

y

x
Exterior

hence if lmin is part of a cycle, revisiting it will only increase the total cost if at all. Player 1
thus would like to spend all the time he wants to during the first visit itself. We now prove
that this is indeed the case. We consider two cases separately.

5.4.1 lmin is a Player 1 location
We split GF i such that lmin is visited only once. We transform GF i into GF′′ which has
two copies of all locations except lmin such that corresponding to every location l 6= lmin,
we have the copies (l, 0) and (l, 1). A special target location S is added with cost function
assigning +∞ to all clock valuations.

Duplicate L− lmin

A

B

l

lmin

C

D

unroll to

A, 0

B, 0

C, 0

D, 0

l

lmin

A, 1

B, 1

C, 1

D, 1

∞

Given the transitions X of GF i, the FRPTG GF′′ has the following transitions.

if l g−→ l′ ∈ X and l, l′ 6= lmin then (l, 0) g−→ (l′, 0) and (l, 1) g−→ (l′, 1)
if l g−→ l′ ∈ X and l′ = lmin then (l, 0) g−→ lmin and (l, 1) g−→ S,
if lmin

g−→ l, then lmin
g−→ (l, 1)

I Lemma 5.4. For every state (l, ν) if ν∈[0, 1 + δ] and l 6=lmin, we have that
OptCostGF i

(l, ν) = OptCostGF ′′((l, 0), ν) and OptCostGF i
(lmin, ν) = OptCostGF ′′(lmin, ν).

We give an intuition for Lemma 5.4. Locations (l, 0) have all the transitions available to
location l in GF i. Also, any play in GF′′ which is compatible with a winning strategy of
player 1 in GF i contains only one of the locations (l, 0), (l, 1) by construction of GF′′. The
outcomes from (l, 0) are more favourable than (l, 1) for l as a player 1 location. Based
on these intuitions, we conclude that OptCostGF i

(l, ν) is same as that for ((l, 0), ν). This
observation also leads to the ε−optimal strategy being the same as that for (l, 0). Given a
strategy σ′ in GF ′′, we construct σ in GF i as σ(l, ν) = σ′((l, 0), ν). Further, any strategy
that revisits lmin in GF i cannot be winning for player 1, since all cycles are non-negative; we
end up at S with cost ∞ in GF′′. However, all strategies that do not revisit lmin in GF i are
preserved in GF′′, and hence OptCostGF i

(lmin, ν) = OptCostGF ′′(lmin, ν).
We iteratively solve the part of GF′′ with locations indexed 1 (i.e; (l, 1)) in the same

fashion (picking minimal price locations) each time obtaining a smaller PTG. Computing
the cost function of the minimal price location of the last such PTG, and propagating this
backward, we compute the cost function of lmin. We then use the cost function of lmin to
solve the part of GF ′′ with locations indexed 0 (i.e; (l, 0)).
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Algorithm 1: Optimal Cost Algorithm when lmin is a Player 1 location.
Let l1, . . . , ln be the successors of lmin with optcost functions f1, f2 · · · fn.;
STEP 1 : Superimpose : Superimpose all the optcost functions f1, f2 · · · fn.;
STEP 2 : Interior : Take the interior of the superimposition; call it f .;
Let f be composed of line segments g1, g2 · · · gm such that gi ∈ {f1, . . . , fn}, for all i.
∀ k, let the domain of gk be [uk, vk]. Set i = m.;

STEP 3 : Selective Replacement : while i ≥ 1 do
if slope of gi ≤ −η(lmin) then

replace gi with line hi with slope −η(lmin) and passing through (vi, gi(vi));
Let hi intersect gj (largest j < i) at some point x = v′′j , v′′j ∈ [uj , vj ];
Update domain of gj from [uj , vj ] to [uj , v′′j ];
if j < i− 1 then

Remove functions gj+1 to gi−1 from f

Set i = j;
else

i = i− 1;

STEP 4 : Refresh Interior : Take the interior after STEP 3 and call it f ′.;
if l′′ −→ lmin then

update the optcost function of l′′

Computing the Optcost function of lmin: Algorithm 1 computes the optcost function for
a player 1 location lmin, assuming all the constraints on outgoing transitions from lmin are
the same, namely x ∈ [0, 1]. We discuss adapting the algorithm to work for transitions with
different constraints in [10]. A few words on the notation used: if a location l has price η(l),
then slope associated with l is −η(l) (see STEP 3 in Algorithm 1).

Let l1, . . . , ln be the successors of lmin, with cost functions f1, . . . , fn. Each of these cost
functions are piecewise affine continuous over the domain [0, 1]. The first thing to do is
to superimpose f1, . . . , fn, and obtain the cost function f corresponding to the interior of
f1, . . . , fn (lmin is a player 1 location and would like to obtain the minimal cost, hence the
interior). The line segments comprising f come from the various fi. Let dom(f) = [0, 1] be
composed of 0 = ui1 ≤ vi1 = ui2 ≤ . . . uim ≤ vim = 1 : that is, f(x) = fij (x), dom(fij ) =
[uij , vij ], for ij ∈ {1, 2, . . . , n} and 1 ≤ j ≤ m. Let us denote fij by gj , for 1 ≤ j ≤ m. Then,
f is composed of g1, g2, . . . , gm, and dom(f) is composed of dom(g1), . . . , dom(gm) from left
to right. Let dom(gi) = [ui, vi]. Step 2 of the algorithm achieves this.

For a given valuation ν(x), if lmin is an urgent location, then player 1 would go to a
location lk if the interior f is such that f(ν(x)) = gk(ν(x))(the least cost is given by gk,
obtained from the outside cost function of lk). If lmin is not an urgent location, then player
1 would prefer delaying t units at lmin so that ν(x) + t ∈ [ui, vi] rather than goto some
location li if gi(ν(x)) > η(lmin)(vi − ν(x)). Again, gi is a part of the ouside cost function of
li, and player 1 prefers delaying time at lmin rather than goto li since that minimizes the
cost. In this case, the cost function f is refined by replacing the line segment gi over [ui, vi]
by another line segment hi passing through (vi, gi(vi)), and having a slope −η(lmin). Step 3
of the algorithm does this.

Recall that by our transformation 2, the value of clock x in any player 1 location is
≤ 1− δ. The value of x is in [1− δ, 1 + δ] only at a player 2 location ((A, e)b+ in the FRPTG,
section 5.2). Hence, the domain of cost functions for player 1 locations is actually [0, 1− δ],
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and not [0, 1 + δ]. Let the domain of gm be [um, 1]. Then we can split gm into two functions
g1
m, g

2
m with domains [um, 1− δ] and [1− δ, 1]. Now, we ensure that no time is spent in the

player 1 location lmin over dom(g2
m), by not applying step 3 of the algorithm for g2

m. This
way, selective replacement of the cost functions gi occur only in the domain [0, 1− δ], and we
remain faithful to transformation 2, and the semantics of RPTGs.

Computing Almost Optimal Strategies: The strategy corresponding to this computed
optcost is derived as follows. f ′ is the optcost of location lmin computed in Step 4 of the
algorithm. f ′ is composed of two kinds of functions (a) the functions gi computed in step 2 as
a result of the interior of superimposition and (b) functions hi which replaced some functions
gj from f , corresponding to delay at lmin. For functions hj of f ′ with domain [uj , vj ], we
prescribe the strategy to delay at lmin till x = vj when entered with clock x ∈ [uj , vj ]. For
functions gi, that come from f at Step 2, where gi is part of some optcost function fk, (fk
is the optcost function of one of the successors lk of lmin), the strategy dictates moving
immediately to lk when entered with clock x ∈ [ui, vi].

Termination: Finally, we prove the existence of a number N , the number of affine segments
that appear in the cost functions of all locations. Start with the resetfree FRPTG with
m locations having p segments in the outside cost functions. Let α(m, p) denote the total
number of affine segments appearing in cost functions across all locations. The transformation
of resetfree components GF into GF′′ gives rise to two smaller resetfree FRPTGs with m− 1
locations each, after separating out lmin. The resetfree FRPTG (GF , 1) with m− 1 locations
indexed with 1 of the form (l, 1) are solved first, these cost functions are added as outside
cost functions to solve lmin, and finally, the cost function of lmin is added as an outside
cost function to solve the resetfree FRPTG (GF , 0) with m− 1 locations indexed with 0 of
the form (l, 0). Taking into account the new sink target location added, we have ≤ p + 1
segments in outside cost functions in (GF , 1). This gives atmost β = α(m− 1, p+ 1) segments
in solving (GF , 1), and α(1, p+ β) = γ segments to solve lmin, and finally α(m − 1, p+ γ)
segments to solve (GF , 0). Solving this, one can easily check that α(m, p) is atmost triply
exponential in the number of locations m of the resetfree component GF . Obtaining a bound
of the number of affine segments, it is easy to see that Algorithm 1 terminates; the time
taken to compute almost optimal strategies and optcost functions is triply exponential.

We illustrate the computation of Optcost of a Player 1 location in Figure 2. The proof of
Lemma 5.5 is given in [10], while Lemma 5.6 follows from Lemma 5.5 and Step 4 of Algorithm
1.

I Lemma 5.5. In Algorithm 1, if a function gi (in f of Step 2) has domain [ui, vi] and slope
≤ −η(l) then OptCost(l, ν) = (vi − ν) ∗ η(l) + g(vi).

I Lemma 5.6. The function f ′ in Algorithm 1 computes the optcost at any location l. That
is, ∀x ∈ [0, 1], OptCostG(l, x) = f ′(x).

Note that the strategy under construction is a player 1 strategy, and player 1 has no control
over the interval [1, 1 + δ]. x ∈ [1, 1 + δ] after a positive perturbation, and is under player 2’s
control. Thus, at a player 1 location, proving for x ∈ [0, 1] suffices.

5.4.2 lmin is a Player 2 location
If lmin is a player 2 location in the reset-free component GF i, then intuitively, player 2
would want to spend as little time as possible there. Keeping this in mind, we first run
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σ1(l,x)=



delay at l, 0≤x<0.5
go to B, 0.5≤x<0.54
delay at l, 0.54≤x≤0.9
go to A, x=0.9
go to A, 0.9<x≤1.1

Figure 2 Optcost Computation for a Player 1 location (δ = 0.1): we can keep the guards as
0 ≤ x ≤ 1 and not apply Step 3 for x ∈ [1− δ, 1].

steps 1, 2 of Algorithm 1 by taking the exterior of f1, . . . , fn instead of the interior(player
2 would maximise the cost). There is no time elapse at lmin on running steps 1,2 of the
algorithm. Let f be the computed exterior using steps 1,2. If f comprises of functions gi
having a greater slope than −η(l), then Finally, while doing Step 4, we take the exterior of
the replaced functions hi and old functions gi. Recall that our transformations resulted in 3
kinds of player 2 locations : urgent, those with dwell-time restriction [0, δ] and finally those
with [δ, 2δ]. The 3 cases are discussed in detail in [10].

6 Conclusion and Future Work

In this paper we studied excess robust semantics and provided the first decidability result for
excess semantics and improved the known undecidability result with 10 clocks to 5 clocks. To
the best of our knowledge, the other known decidability result for robust timed games is under
the conservative semantics for a fixed δ, [9]. As a consequence of our decidability result, the
reachability problem for 1 clock PTG with arbitrary prices is shown to be decidable too under
the assumption that the PTG does not have any negative cost cycle. The decidability we show
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is for a fixed perturbation bound δ > 0. We use δ in the constraints of the dwell-time PTG
after the first transformation for ease of understanding the robust semantics. Implementing
this in step 3 of Algorithm 1 and ensuring no time elapse in the interval [1− δ, 1] takes no
extra effort while lmin is a player 1 location. In that sense, we could have avoided explicit use
of δ in the constraints in our simplifying transformations, and taken the appropriate steps
in the algorithm itself. The existence of limit-strategy with δ → 0 seems rather hard. Our
construction would not directly extend to limit-strategy problem as it is heavily dependant
on the fixed δ.
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