3 research outputs found

    On Leśniewski’s Characteristica Universalis

    Get PDF
    Leśniewski's systems deviate greatly from standard logic in some basic features. The deviant aspects are rather well known, and often cited among the reasons why Leśniewski's work enjoys little recognition. This paper is an attempt to explain why those aspects should be there at all. Leśniewski built his systems inspired by a dream close to Leibniz's characteristica universalis: a perfect system of deductive theories encoding our knowledge of the world, based on a perfect language. My main claim is that Leśniewski built his characteristica universalis following the conditions of de Jong and Betti's Classical Model of Science (2008) to an astounding degree. While showing this I give an overview of the architecture of Leśniewski's systems and of their fundamental characteristics. I suggest among others that the aesthetic constraints Leśniewski put on axioms and primitive terms have epistemological relevance. © The Author(s) 2008

    Spheres, cubes and simple

    Get PDF
    In 1929 Tarski showed how to construct points in a region-based first-order logic for space representation. The resulting system, called the geometry of solids, is a cornerstone for region-based geometry and for the comparison of point-based and region-based geometries. We expand this study of the construction of points in region-based systems using different primitives, namely hyper-cubes and regular simplexes, and show that these primitives lead to equivalent systems in dimension n ≥ 2. The result is achieved by adopting a single set of definitions that works for both these classes of figures. The analysis of our logics shows that Tarski’s choice to take sphere as the geometrical primitive might be intuitively justified but is not optimal from a technical viewpoint

    Affine geometry having a solid as primitive.

    No full text
    corecore