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SPHERES, CUBES AND SIMPLEXES
IN MEREOGEOMETRY

Abstract. In 1929 Tarski showed how to construct points in a region-based
first-order logic for space representation. The resulting system, called the
geometry of solids, is a cornerstone for region-based geometry and for the
comparison of point-based and region-based geometries. We expand this
study of the construction of points in region-based systems using different
primitives, namely hyper-cubes and regular simplexes, and show that these
primitives lead to equivalent systems in dimension n ≥ 2. The result is
achieved by adopting a single set of definitions that works for both these
classes of figures. The analysis of our logics shows that Tarski’s choice to
take sphere as the geometrical primitive might be intuitively justified but
is not optimal from a technical viewpoint.

Keywords: mereogeometry, geometry of solids, hyper-cube, regular simplex,
sphere, mereology.

1. Introduction

The term mereogeometry is constructed from mereology, the theory of
parthood, and geometry. It indicates a system which is region-based,
that is, in which variables range over extended regions of space, and is
an extension of mereology suitable to model (at least some) geometrical
properties. A mereogeometrical system is generally obtained from a
system of mereology or of mereotopology (the theory of connection) by
adding one or more geometrical primitives like the convexity operator,
the sphere predicate or the congruence relation.

Since the goal of mereogeometry is to talk about (commonsense)
space, the comparison with systems of Euclidean geometry is essential.
In this regard, Tarski laid the framework for the formal and logical
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study to first-order region-based geometries as well as first-order point-
based geometries. The mereogeometrical system he developed in 1929,
reprinted in [Tar56b], called the geometry of solids, and the axiomati-
zation of Euclidean geometry he developed in [Tar59] are paradigmatic
and have been taken as cornerstones for the study of geometry. The
correspondence between these two systems is formally well understood
[Tar56b, Ben01, GP08]. In [BM10] the term full mereogeometry was
chosen to characterize the class of mereogeometrical systems that are
expressively equivalent to Tarski’s geometry of solids, i.e., the mereolog-
ical correspondents of Euclidean geometry.

This paper is about Tarski’s geometry of solids; it gives an alternative
way of building the system by exploiting two different primitives, namely
hyper-cubes and regular simplexes. The study applies to mereogeometry
of any dimension n ≥ 2.

The paper is structured as follows. The next section gives some ref-
erences to the literature in this domain. Section 3 reports results on full
mereogeometries from [BM10]. Section 4 describes the definitions, based
on the sphere predicate, used by Tarski to characterize points as second-
order entities. This step is needed to give the formal correspondence
between the geometry of solids and Euclidean geometry. The following
section, Section 5, shows how to obtain an equivalent mereogeometry by
taking hyper-cube as the only geometrical primitive. Section 6 proves
that the system is categorical by adapting the axiomatization and tech-
nique in [Ben01]. Section 7 compares Tarski’s geometry of solids and
the mereogeometry based on hyper-cubes. Section 8 shows how to ob-
tain another equivalent mereogeometry by taking regular simplex as the
only geometrical primitive. In Section 9 the axiomatization is given and
categoricity is established for this second system. Finally, Section 10 sug-
gests how to generalize the point construction methodology by merging
the approach presented in this paper and Tarski’s set of definitions.

2. Literature

Tarski’s system of primitives (sphere and parthood) “was motivated not
only by its simplicity, but also by the fact that the notion of ball seems
to be much more intuitive than the notion of point.” [Szcz86, p. 911].
Szczerba reports an interesting observation about Tarski’s attitude: “I
remember Szmielew complaining jokingly that the more one worked with
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Tarski, the result tended to look less and less laborious. In fact Tarski
would work over a mathematical presentation until it achieved an ele-
gance and simplicity which disguised the difficulties hidden beneath the
surface” [Szcz86, p. 910]. We agree and add that, in our opinion, none
of the mereogeometries discussed so far in the literature is as intuitive
and clean as Tarski’s system.

Since Tarski’s development of mereogeometry, several elaborations on
the topic have been developed. These systems depart from that of Tarski
in different ways, e.g., by taking other standard geometrical notions as
primitives. The geometries thus developed are unsatisfactory in our view
since they make a direct use of points (as a different sort) or regard some
of the individuals as point-like entities. The last case is exemplified
by [Gli69], which uses the notion of (finite) segment and congruence,
and [GV85] based on the notions of solid (among which the so-called ε-
points), parthood (here called inclusion) and distance. Among the first
type of systems instead we cite [Pam04] that uses as primitives points
and triangles (or squares) and the relation of point-triangle (or point-
square), and [Pra83, Pam00] based on points, circles and the relation of
point-circle incidence. More in the spirit of Tarski’s mereogeometry is
the result in [Pam03] where the author uses spheres and sphere tangency
as only primitives as well as [Pra99, Coh95b] based on parthood (or
connection) and convex hull.

Generalizations of mereological approaches to other non-Euclidean
spaces have been investigated only in a limited way, for example in hy-
perbolic spaces [Pam03], affine spaces [Sul71], projective spaces [Sul72]
and Hilbert spaces [Sul73].

Regarding the choice of geometrical primitives, most systems in lit-
erature use primitives that are inspired by distance considerations like
relations “region x can connect region y and z” [DL22] and “region x is
closer to region y than to region z” [VB83]. In other cases the primitives
are chosen because already successful to develop Euclidean geometry like
congruence, or useful to model forms of connection like tangency.

Another way to look at Tarski’s work is to focus on the construction
of points in region-based theories or within classes of their structures.
In this case the goal is to find which points are forced to exist by a
mereological system or can be “defined” within it. From this perspec-
tive, much effort has been put in the isolation of points in topological
system, thus making point existence dependent on the topology of the
space and not vice versa. Literature on this topic from the viewpoint of
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mereogeometry is reviewed in [Ger95], a modal approach ca be found in
[MV95] and other investigations in [Roe97] and [For10].

3. Mereogeometrical systems

In [BM10] the authors compared the following mereogeometrical systems
discussed in literature:
T1. Tarski’s geometry of solids based on (the binary relation of) part-

hood and the unary predicate ‘x is a sphere’ [Tar56b], [Ben01],
[BCTH00];

T2. Borgo, Guarino and Masolo’s system based on parthood, the unary
predicate ‘x is a simple region’ and the binary relation of congruence
[BGM96];

T3. Nicod’s system based on parthood and the 4-ary relation ‘x, y and
z, w are conjugates’ [Nic24];

T4. De Laguna’s approach based on the ternary relation ‘x can connect
y and z’ [DL22, Don01];

T5. van Benthem’s system based on (the binary relation of) connection
and the ternary relation ‘x is closer to y than to z’ [VB83, AVB97];
and

T6. Cohn and colleagues’ theory based on connection and the binary
relation ‘x is the convex hull of y’ [Coh95a, CBGG97b, CBGG97a].

The comparison concentrates on expressiveness of the primitives and
aims to overcome a general problem: most of the mereogeometries avail-
able in literature are only weakly formalized and thus cannot be com-
pared as axiomatic systems. The outcome of the comparison shows
that the systems T1–T5, when interpreted in the most used structures,
namely those based on the regular open (or closed) sets in Rn (including
a variety of restrictions of these), are equivalent from the expressive view-
point. [Pra99, Dav06] already showed that mereogeometry T6, based on
parthood and convexity, is not full and corresponds to the Euclidean
subsystem of affine geometry.

We can restate these results as follows

Theorem 1 ([BM10]). (a) T1–T5 are expressively equivalent in all the
studied structures (regular open sets, regular closed sets and their
restriction to finite and/or connected sets);

(b) T6 is expressively a subtheory of the others.
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The theorem holds in Rn (actually, En) for any n ≥ 2.
Since theory T5, differently from the other theories, has been devel-

oped for a non-homogeneous domain, in [BM10] only theories T1–T4 are
considered equivalent as the result of logical analysis and comparison of
natural (or intended) models. This general notion of equivalence is there
called conceptual. Thus, recognizing the historical, formal and technical
relevance of Tarski’s system, we have the following characterization

Definition 1 ([BM10]). A full mereogeometry is a theory that is con-
ceptually equivalent to T1.

Corollary 1. T1–T4 are full mereogeometries.

As of today, Tarski’s geometry of solids remains the bridge system
between point-based and region-based geometries in the sense that if one
aims to compare geometries across these categories, the comparison goes
through the Tarski’s system or its revisions, e.g., [Ben01].

While recognizing the achievement of the geometry of solids and its
role in the study of geometry, in this paper we challenge the intuition
that Tarski’s choice of primitives is optimal and aim to show that a
mereogeometrical study of other standard shapes may provide interesting
novelties.

4. Tarski’s geometry of solids

Whitehead noted that an infinite set of nested regions which converge
to a point, can be used to provide a definition of that very point. Tarski
builds on Whitehead suggestion to develop his geometry of solids and to
give solid logical grounds to the development of space representation in
mereological terms.

Tarski starts from Leśniewski’s mereology [Les91], the theory of the
relation of parthood, writing P(x, y) for “x is part of y”; and exploits the
expressivity of the geometrical primitive ‘being a sphere’, writing S(x)
for “x is a sphere”. Here variables range over regular open sets in the
Euclidean space E3. (We insist that points are not in the domain of quan-
tification.) Note that these primitives and Tarski’s definitions work for
any Euclidean space En with integer n ≥ 2; for this reason we will refer to
a space of dimension n without further specifications. In terms of P and
S a few geometrical relations are defined. This set of definitions allows
to characterize a point as the set of spheres (that is, the set of n-spheres)
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which are centered at it. One thus take the maximal set of concentric
spheres to stand for their center point [Tar56b] and any single sphere
in the set as representative of this point [Ben01]. Once one has proven
that these identifications are consistent and that concentric spheres form
equivalence classes of representatives, sets of spheres can be used to intro-
duce points as defined entities in mereogeometry. It follows that the Eu-
clidean axiom system can be used to axiomatize mereogeometry as well
by constraining the previously defined points (sets of regular regions).

We report here the relations given by Tarski in his method to con-
struct points, namely: external tangency (ET), internal tangency (IT),
external diametricity (ED), internal diametricity (ID), concentricity
(CC). We do not discuss their correctness but exemplify them via a
few figures in dimension 2. Tarski’s definitions are fairly intuitive, we
hope these figures suffice to gain the reader’s trust that the system is
well constructed. For an analysis of Tarski’s mereogeometry and clari-
fications on its classes of models see also [GP08]. First, a few standard
mereological definitions are introduced:

(D1) PP(a, b) def= P(a, b) ∧ ¬P(b, a) (proper part)
(D2) O(a, b) def= ∃c [P(c, a) ∧ P(c, b)] (overlap)
(D3) DR(a, b) def= ¬O(a, b) (disjoint)
(D4) PO(a, b) def= O(a, b) ∧ ¬P(a, b) ∧ ¬P(b, a) (proper overlap)
(D5) provided O(a, b), then

PROD(a, b, c) def= ∀w [(P(w, a) ∧ P(w, b))↔P(w, c))] (product)
(D6) provided ∃a X(a), then

SUM (X,x) def= ∀a [X(a)→ P(a, x)] ∧ ¬∃b [P(b, x) ∧ ∀c[X(c)→
DR(c, b)]] (generalized sum)

In (D6), X is a second-order variable which can denote any subset of
the domain of regions [Ben01]. In this case, X(y) stands for “y belongs
to X”. Note that we use both a, b, c, . . . and x, y, z . . . (possibly
decorated) as variables on regular regions. At times we also make use of
these symbols to refer to Euclidean points; we will clarify these cases in
the text.

Tarski’s definitions are as follows.

(D7) ET (a, b) def= S(a) ∧ S(b) ∧DR(a, b) ∧
∀x, y [(S(x) ∧ S(y) ∧ P(a, x) ∧ P(a, y) ∧DR(b, x) ∧DR(b, y))→

(P(x, y) ∨ P(y, x))] (externally tangent spheres)
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a b
c d

Figure 1. ET (a, b) and ¬ET (c, d), see definition (D7).

a c

b d

Figure 2. IT (a, b) and ¬IT (c, d), see definition (D8).

(D8) IT (a, b) def= S(a) ∧ S(b) ∧ PP(a, b) ∧
∀x, y [(S(x) ∧ S(y) ∧ P(a, x) ∧ P(a, y) ∧ P(x, b) ∧ P(y, b))→

(P(x, y) ∨ P(y, x))] (internally tangent spheres)
(D9) ED(a, b, c) def= ET (a, c) ∧ ET (b, c) ∧

∀x, y [(S(x) ∧ S(y) ∧DR(x, c) ∧DR(y, c) ∧ P(a, x) ∧ P(b, y))→
DR(x, y)] (externally diametric spheres)

(D10) ID(a, b, c) def= IT (a, c) ∧ IT (b, c) ∧
∀x, y [(S(x) ∧ S(y) ∧DR(x, c) ∧DR(y, c) ∧ ET (a, x) ∧ ET (b, y))→

DR(x, y)] (internally diametric spheres)
(D11) S�(a, b) def= S(a) ∧ S(b) ∧ (a = b
∨ (PP(a, b) ∧ ∀x, y [(ED(x, y, a) ∧ IT (x, b) ∧ IT (y, b))→ ID(x, y, b)])
∨ (PP(b, a)∧∀x, y [(ED(x, y, b)∧ IT (x, a)∧ IT (y, a))→ ID(x, y, a)]))

(concentric spheres)

5. Hyper-cubes as geometrical primitives: the system MGn
HC

It is known that Euclidean geometry can be generated starting from a
variety of different primitives and we saw that a similar situation holds
in mereology in Section 3. Our aim here is to study whether building
mereogeometry from the primitive ‘being a sphere’ gives some advan-
tage with respect to other predicates. In particular we show two things:
(1) how to define points in a Tarskian fashion independently of the sphere
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Figure 3. ED(a, b, c) and ¬ED(a′, b′, c′), see definition (D9). Dotted lines
mark the tangents at the points of contact.
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Figure 4. ID(a, b, c) and ¬ID(a′, b′, c′), see definition (D10). Dotted lines
mark the tangents at the points of contact.
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Figure 5. S�(a, b) and ¬S�(a′, b′), see definition (D11). Dotted lines
mark the tangents at the points of contact.
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primitive and (2) that the sphere primitive is not the best choice (for
several reasons) for this kind of construction. It is worth noting that by
relinquishing spheres we do not have at our disposal an important geo-
metrical feature of spheres: the simple and direct definition of (ternary)
equidistance. This feature, key element in Euclidean geometry, has likely
played an important role in Tarski’s selection of ‘being a sphere’ as the
primitive of his system.

D. Scott [Sco56] showed that a ternary symmetric relation
SEuc(x, y, z), holding if the points x, y and z are the vertices of a right tri-
angle, suffices as a primitive for Euclidean geometry. Since, as mentioned
earlier, Euclidean geometry and mereogeometry can be seen as two ge-
ometrical languages which aim to model the same commonsense space
but with different ontological commitments, it makes sense to investigate
Scott’s result in mereogeometry and see if it is possible to build mereo-
geometry starting from a symmetric figure based on right angles like the
hyper-cube, perhaps even as the only primitive for mereogeometry.

Our first goal is to investigate the notion of hyper-cube as geometrical
primitive and provide a suitable way to define points in the resulting
system according to Whitehead’s intuition. We thus assume the standard
first-order logic language with P (binary) and HCb (unary) as the only
non-logical primitives with the following informal reading: P(x, y) stands
for ‘x is part of y’ and HCb(x) for ‘x is a hyper-cube.’

As noted in Section 4, the goal of the technique developed by Tarski
is to provide a definition of points as maximal sets of concentric spheres,
i.e. as second order entities. In our case, these would be maximal sets
of concentric hyper-cubes. For this, we need to characterize concentric
hyper-cubes in a unique way, i.e., we need to be able to define when two
hyper-cubes have the same center which, in Euclidean lingo, means that
the diagonals of both hyper-cubes intersect in exactly the same point.
For dimension 2 this is illustrated in Figure 6.

Our first definition will consider the case in Figure 6(a), that is, con-
centric hyper-cubes with parallel sides hereafter called concentric aligned
hyper-cubes. We begin with an auxiliary definition to characterize co-
vertex hyper-cubes as depicted by Figure 7 in the two-dimensional cases.

(D12) HCb�2 (x, y) def= HCb(x) ∧HCb(y) ∧ PP(x, y) ∧ ∃p [HCb(p) ∧
PP(p, x) ∧ ∀q [(HCb(q) ∧ P(p, q) ∧ P(q, y))→ (P(q, x) ∨ P(x, q))]]

(co-vertex hyper-cubes)



264 Stefano Borgo

(a) (b)

Figure 6. Aligned (a) and rotated (b) concentric hyper-cubes in dimen-
sion 2 (HCb�).
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Figure 7. Co-vertex (at v) hyper-cubes in dimension 2.

Definition (D12) says that hyper-cube x shares a vertex with hyper-
cube y whenever x is a proper part of y and there exists a hyper-cube p,
proper part of x, such that any hyper-cube containing p and contained in
y either contains x or is part of x. By forcing an ordering on hyper-cubes,
(D12) ensures that we can select hyper-cubes which have a common
‘corner’ region.

The following definition is much in the spirit of Tarski’s construction
and corresponds to the case in Figure 6(a). The way the definition works
is depicted in Figure 8.
(D13) HCb� (x, y) def= HCb(x) ∧HCb(y) ∧ (x = y ∨

(P(x, y)∧∀q, z [(HCb�2 (q, y)∧O(q, x)∧PROD(q, x, z))→ HCb(z)])∨
(P(y, x)∧∀q, z [(HCb�2 (q, x)∧O(q, y)∧PROD(q, y, z))→ HCb(z)]))

(aligned concentric hyper-cubes)
The definition states that two hyper-cubes are concentric when iden-

tical or one (say x) is part of the other (say y) and the region in common
between x and a hyper-cube co-vertex with y, if any, is a hyper-cube.
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Figure 8. (a) Aligned concentric hyper-cubes in dimension 2 (HCb� ).
(b) non concentric hyper-cubes in dimension 2.

xyy'
y''

Figure 9. Concentric hyper-cubes with vertices on the bound-
ary of x in dimension 2.

Briefly stated, definition (D13) forces the inside square to have center on
the hyper-cube’s diagonal relative to the vertex common to both y and
q (see Figure 8). Since the quantification is on any co-vertex hyper-cube
of y, the inner square must be centered where the diagonals meet.

Points must be uniquely identified in the filter construction, thus the
construction needs to include any hyper-cube centered at the ‘same’
Euclidean point. It remains to characterize those hyper-cubes that,
according to our terminology, are concentric to the given one but not
aligned to it. We now focus on the subclass of concentric non-aligned
hyper-cubes (Figure 6(b)) whose vertices are on the boundary of a given
hyper-cube, see Figure 9. Call these concentric rotated hyper-cubes.

(D14) HCb ·�(x, y) def= HCb(x) ∧HCb(y) ∧ PP(x, y) ∧
∀q [(HCb(q) ∧ PP(q, y) ∧ P(x, q))→ P(q, x)]

(rotated concentric hyper-cubes)
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This definition, (D14), says that two hyper-cubes are concentric and
rotated, in the sense described earlier, whenever there is no hyper-cube
proper part of the largest and properly containing the smallest. (This
definition takes advantage of a well-known property at the core of one
standard proof of Pythagoras’ theorem).

At this point, we have all elements to define concentric hyper-cubes.
The following relation holds for all and only the pairs of concentric
hyper-cubes; it is thus suitable to define points as filters in the spirit
of Whitehead’s suggestion.

(D15) HCb�(x, y) def= HCb� (x, y) ∨ ∃z [HCb ·�(z, x) ∧HCb� (z, y)] ∨
∃z [HCb ·�(z, y) ∧HCb� (z, x)]

(concentric hyper-cubes)

Definition (D15) says that two hyper-cubes are concentric whenever
they are aligned concentric or there is a hyper-cube rotated concentric
with respect to one of them which is at the same time aligned concentric
with the other.

In the rest of this paper, we call MGn
HC the full mereogeometry whose

language is the language of first-order logic with P (parthood) and HCb
(n-hyper-cube) as the only non logical primitives. The fixed value n
(n ≥ 2) is the dimension of the space. Our next goal is to make the
logical system precise by providing an axiomatization.

6. A direct axiomatization of MGn
HC

In this section we give the axiomatization of our version of region-based
geometry and discuss the proof of categoricity of the system. Our axiom
system and the verification of its properties follow closely the work of
Bennett [Ben01] with some changes aimed to take into account the speci-
ficity of our geometric primitive. We concentrate on the parts where the
proof departs from [Ben01] and gives only an outline of the rest. For
further discussions on Tarski’s axiomatization and related properties, in
particular on the categorization for different classes of structures, we
refer the reader to [GP08].

We use the expression ‘Euclidean geometry’ to mean the axiomatic
system called elementary Euclidean geometry in [Tar59]. The specific
layout of Tarski’s system is not important for the comprehension of
the material in this paper. It will suffice to note that, in comparison
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to the work of Hilbert [Hil71], Tarski’s Euclidean system (including a
weak version of the continuity axiom) is first order and the domain of
quantification contains only points.

The guiding idea to interlace point-based and region-based geome-
tries takes a sphere as representative of its center point. This choice,
taken in [Ben01], allows to use any standard axiomatization of Euclidean
geometry, in first order logic (with some version of the axiom of continu-
ity) as a guideline for the axiomatization of region-based geometry. Here,
of course, we take hyper-cubes to play the role of Bennett’s spheres
while following the axiomatization provided by Tarski in [Tar59]. It
should be noticed that Tarski’s axiomatization has been later improved
by simplifying the axiomatization [Gup65, TG99] and that one could fur-
ther reduce the language to use only ternary relations [Tar56a, Rob59].
Notwithstanding these observations and some criticisms (“Geometrically,
Tarski-elementary plane geometry certainly seems mysterious” [Gre10,
p. 215]) the formal system proposed in [Tar59] is fundamental on three
aspects: it is known to be consistent (Hilbert and Bernays proved con-
sistency for their geometry but without the continuity axiom [HB70]),
deductively complete and decidable [TG99, Gre10]. Indeed, it remains
the reference work in first-order Euclidean geometry and, since later
improvements are irrelevant to our work, we will follow it in its original
formulation.

We first give an auxiliary definition to characterize two hyper−cubes
each having a diagonal laying on the line through the two hyper−cubes’s
centers.
(D16) HCb33(x, y) def= ¬HCb�(x, y) ∧ ∀x′, y′, z [(HCb� (x, x′) ∧

HCb� (y, y′) ∧ PO(x′, y′) ∧ PROD(x′, y′, z))→ HCb(z)]
(hyper-cubes with diagonals on same line)

In short definition (D16) considers two non-concentric hyper-cubes
such that any pair of overlapping hyper-cubes, each aligned concentric
to one of them, has a hyper-cube as product.

We proceed by defining some relations inspired by elementary Eu-
clidean geometry like betweenness and equidistance, plus other auxiliary
notions. To keep the presentation simple, from now on we also use
some standard operators, e.g., we will write x · y for a region z such
that PROD(x, y, z) so that the previous definition would be written:
HCb33(x, y) def= ¬HCb�(x, y) ∧ ∀x′, y′ [(HCb� (x, x′) ∧ HCb� (y, y′) ∧
PO(x′, y′))→ HCb(x′ · y′)]
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(D17) BTW (x, y, z) def= HCb�(x, y) ∨HCb�(y, z) ∨
∃x′, y′, z′ [HCb�(x, x′) ∧HCb�(y, y′) ∧HCb�(z, z′) ∧DR(x′, z′) ∧

PO(x′, y′)∧PO(y′, z′)∧HCb33(x′, y′)∧HCb33(y′, z′)∧HCb33(x′, z′)]
(hyper-cube betweenness)

Whenever the squares have distinct centers in (D17), condition HCb(x′ ·
y′), enforced by HCb33(x′, y′), ensures that the line from the centers of
x′ and y′ is one of their diagonals. Then, since diagonals in hyper-cubes
are orthogonal, conditions HCb(y′ · z′) and HCb(x′ · z′) ensure that the
center of z is also on the same diagonal.

The following definition is self-explicative (adapted from [Ben01]).

(D18) COB(x, y) def= HCb(x)∧∀x′ [HCb�(x, x′)→ (O(x′, y)∧¬P(x′, y))]
(center of x on the boundary of y)

Next we define when two hyper-cubes have centers equidistant from
that of a third hyper-cube. First, we cover the linear case by defining
when the center of a hyper-cube is the middle point of the centers of two
other hyper-cubes.

(D19) MID(x, y, z) def= (HCb�(x, y) ∧HCb�(y, z)) ∨
(BTW (x, y, z) ∧ ∃y′[HCb�(y, y′) ∧ COB(x, y′) ∧ COB(z, y′)])

(center of y is aligned and equidistant from those of x, z)

(D20) EQD(x, y, z) def= HCb�(x, y) ∨MID(x, z, y) ∨
∃w, x′, y′, z′ [MID(x,w, y) ∧HCb�(x, x′) ∧HCb�(y, y′) ∧

HCb�(z, z′) ∧HCb33(x′, w) ∧HCb33(y′, w) ∧HCb33(z′, w) ∧
¬HCb33(x′, z′) ∧ ¬HCb33(y′, z′)]

(centers of x, y equidistant from that of z)

According to (D20), the centers of x and y, when distinct, are equidis-
tant from z if the latter is at their midpoint or is aligned with a diagonal
of the hyper-cube at the midpoint which has x, y aligned with another
diagonal.

Following [Ben01], we now define the quaternary equidistance and
nearer relations: EQD(w, x, y, z) states that the distance of the centers of
hyper-cubes w, x is equal to that of the centers of y, z; NEARER(w,x,y, z)
holds when the centers of the first two hyper-cubes are at a closer dis-
tance than the other two hyper-cubes.

(D21) EQD(w, x, y, z) def= ∃u, v [MID(w, u, y) ∧MID(x, u, v) ∧
EQD(v, z, y)] (centers of w, x and of y, z are equidistant)
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(D22) NEARER(w, x, y, z) def= ∃x′ [BTW (w, x, x′) ∧ ¬HCb�(x, x′) ∧
EQD(w, x′, y, z)] (centers of w, x are closer than those of y, z)

Finally, we need a relation to constrain the existence of all hyper-
cubes one can define in En. [Ben01] relies on the COI relation which
has two roles: to constrain the existence of spheres and to state which
spheres have center within a region. This definition will play a similar
role in our system.

(D23) COI (x, y) def= ∃x′[HCb�(x, x′) ∧ P(x′, y)]
(center of x in interior of y)

The next step is to adapt the axiomatization in [Tar59] along the lines
of [Ben01]. The idea is to axiomatize the system based on hyper-cubes
by taking the axiomatization of elementary Euclidean geometry as a
guideline. The main change with respect to [Tar59] and [Ben01] is in the
range of the variables: quantifiers in Tarski’s system range over maximal
sets of concentric spheres (informally, points); in Bennett’s system over
spheres (informally, representatives of their center points); in the system
below they range over hyper-cubes (informally, representatives of their
centers).

The axioms given below (AM stands for ‘Axiom of Mereogeometry’)
furnish a partial axiomatization and are listed without comments since
they do not introduce any relevant novelty compared to [Ben01]. The
axioms of the following sections will present relevant changes and will
be discussed in detail. Note that equality relations among points stated
in [Tar59] are here expressed via the concentric relation (HCb�) among
hyper-cubes.

(AM1) ∀x, y, z [(P(x, y) ∧ P(y, z))→ P(x, z)]
(AM2) ∀X [∃x [X(x)]→ ∃!x [SUM (X,x)]]
(AM3) ∀x, y (BTW (x, y, x)→ HCb�(x, y))
(AM4) ∀x, y, z, u [(BTW (x, y, u) ∧ BTW (y, z, u))→ BTW (x, y, z)]
(AM5) ∀x, y, z, u [(BTW (x, y, z) ∧ BTW (x, y, u) ∧ ¬HCb�(x, y))→

(BTW (x, z, u) ∨ BTW (x, u, z))]
(AM6) ∀x, y [(HCb(x) ∧HCb(y))→ EQD(x, y, y, x)]
(AM7) ∀x, y [EQD(x, y, z, z)→ HCb�(x, y)]
(AM8) ∀x, y, z, u, v, w [(EQD(x, y, z, u) ∧ EQD(x, y, v, w))→

EQD(z, u, v, w)]
(AM9) ∀t, x, y, z, u∃v [(BTW (x, t, u) ∧ BTW (y, u, z))→

(BTW (x, v, y) ∧ BTW (z, t, v))]
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(AM10) ∀t, x, y, z, u∃v, w [(BTW (x, t, u)∧BTW (y, u, z)∧¬HCb�(x, y))
→ (BTW (x, z, v) ∧ BTW (x, y, w) ∧ BTW (v, t, w))]

(AM11) ∀x, x′, y, y′, z, z′, u, u′ [(BTW (x, y, x) ∧ BTW (x′, y′, z′) ∧
¬HCb�(x, y)∧EQD(x, y, x′, y′)∧EQD(y, z, y′, z′)∧EQD(x, u, x′, u′)∧

EQD(y, u, y′, u′))→ EQD(z, u, z′, u′)]
(AM12) ∀x1, x2, x3, x4∃y [

∧
i HCb(xi) ∧ BTW (x1, x2, y) ∧

EQD(x2, y, x3, x4)]
(AM13) ∀X,Y [∃z∀x, y [(HCb(x) ∧HCb(y) ∧X(x) ∧ Y (y))→

BTW (z, x, y)]→ ∃z∀x, y [(HCb(x) ∧HCb(y) ∧X(x) ∧ Y (y))→
BTW (w, z, y)]]

(AM14) ∀x, y, z [(HCb�(x, y) ∧HCb�(y, z))→ HCb�(x, z)]
(AM15) ∀x, x′, y, z, w [(EQD(x, y, z, w) ∧HCb�(x, x′))→

EQD(x′, y, z, w)]

(AM16)n ∃x0, ..., xn [
∧

0≤i6=j 6=k≤n(HCb(xi) ∧ ¬HCb�(xi, xj) ∧

EQD(xi, xj , xj , xk))] ∧ ¬∃x0, ..., xn+1 [
∧

0≤i6=j 6=k≤n+1(HCb(xi) ∧
¬HCb�(xi, xj) ∧ EQD(xi, xj , xj , xk))]

6.1. Geometrical models

Given the above partial axiomatization, we begin to discuss the models
of the system. Here our job is fairly easy since, after proving that our
approach leads to a definition of point equivalent to that given by Tarski
and after adding some changes already in [Ben01], we can safely mimic
these works to interpret our system. The specificity of our geometrical
primitive will jump in when dealing with hyper-cube models, the models
that in this work have a role similar to sphere models in [Ben01].

Let MGn
HC(↓) be the mereogeometrical system consisting of the ax-

ioms (AM3)-(AM15) plus the axiom (AM16)n adopted to fix the dimen-
sion n (≥ 2) of the space.

Definition 2. Let HC!n = 〈C,HCb�,BTW ,EQD〉 be a structure sat-
isfying the set of axioms MGn

HC(↓) plus the following:

(A1) ∀x [HCb(x)]
(A2) ∀x, y [HCb�(x, y)↔x = y]

Following [Ben01], we call HC!n a (hyper-cube) geometrical model.

Thus, every element in the domain C of HC!n is a hyper-cube and
there are no concentric hyper-cubes. Informally, one can build such a
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model by taking as domain a restriction of the set of hyper-cubes in
Rn. This intuition is formalized in our first Lemma (the Lemmas in
this section are restated from [Ben01] and the proofs require only trivial
adaptations).
Lemma 1. Every structure HC!n is isomorphic to the structure 〈Rn,
HCb�,BTW ,EQD〉, where each element is identified with a (coordi-
nate) tuple in Rn, HCb� is the identity relation, BTW is the between-
ness relation and EQD the equidistance relation with their usual alge-
braic definitions in terms of the coordinate tuples.
Definition 3. Let HCnr = 〈D,HCb�,BTW ,EQD〉 be a structure sat-
isfying the set of axioms MGn

HC(↓), (A1) and:
(A3) ∀x, y, z [(HCb�(x, y) ∧HCb�(y, z))→ HCb�(x, z)]
Following [Ben01], we call HCnr a (hyper-cube) relaxed geometrical model.

From definition (D15), relation HCb� is reflexive and symmetric.
Then, HCb� in HCnr is an equivalence relation.
Lemma 2. Given a structure HCnr , let (d1, . . . , di, . . . , dj) ∈ Dj and
HCb�(di, d′i). For any first-order formula φ(x1, . . . , xj) in the signature
of HCnr without equality:

HCnr |= φ(d1, . . . , di, . . . , dj) if and only if HCnr |= φ(d1, . . . , d
′
i, . . . , dj).

Given a relaxed geometrical model HCnr = 〈D,HCb�,BTW ,EQD〉,
let HCn≡ be the structure 〈D≡,HCb�,BTW ,EQD〉 obtained from HCnr
by restricting the structure to the quotient of D over relation HCb�,
i.e., D≡ contains only one element (a representative) for each HCb�-
equivalence class in D.
Definition 4. Given a structure HCnr with domain D and a structure
HCn≡ with domain D≡, a surjective function µ : D → D≡ such that
µ(x) ∈ {y ∈ D | HCb�(x, y)} and µ(x) = µ(y) whenever HCb�(x, y),
is called minimisation function and HCn≡ a minimal (geometrical) sub-
structure of HCnr [Ben01].

Note that HCnr and HCn≡ have the same signature.
Lemma 3. Given a structureHCnr and a minimal substructureHCn≡ with
minimisation function µ, then for any first-order formula φ(x1, . . . , xj)
in the signature of HCnr without equality:

HCnr |= φ(d1, . . . , dj) if and only if HCn≡ |= φ(µ(d1), . . . , µ(dj)).
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Now we can make formal the reason to select these models. Geo-
metrical, relaxed and minimal models differ only in the set of concentric
hyper-cubes they include per point and there is a surjective map to any
structure for Tarski’s Euclidean geometry in Rn.

Lemma 4. Any minimal substructure HCn≡ of a structure HCnr is iso-
morphic to HC!n.

Let En = 〈Rn, B,Eqd〉, be a structure for the Tarskian theory of Eu-
clidean geometry with B the betweenness relation and Eqd equidistance.

Definition 5. Given a structure En and a structure HCnr with domain
D, a surjective function π : D → Rn such that

• if HCnr |= HCb�(x1, x2) then En |= π(x1) = π(x2)
• if HCnr |= BTW (x1, x2, x3) then En |= B(π(x1), π(x2), π(x3))
• if HCnr |=EQD(x1, x2, x3, x4) then En |=Eqd(π(x1), π(x2), π(x3), π(x4))

is called Cartesian centre-point interpretation or CCPI-function for short
[Ben01].

Lemma 5. Fix a geometrical model HCnr with domain D, there is a
CCPI-function π : D → Rn.

Given a CCPI-function π, we will write xπ for the point π(x) ∈ En.

6.2. Hyper-Cube models

This section is more detailed since we depart at times from the work
in [Ben01]. The changes are due to the characterization of the class
of models for hyper-cubes based on our definition of point, and to the
point-based geometrical description of hyper-cubes. The axioms we will
include at this stage are more complicated than those in [Ben01] since
the geometrical properties of hyper-cubes are harder to capture via the
Euclidean relations B and Eqd available in structure En.

More specifically, below we introduce two new axioms, (AM17) and
(AM18), corresponding to (A17) and (A18) in [Ben01], with the aim
to constrain the existence and construction of hyper-cubes. Differently
from spheres, hyper-cubes cannot be directly constrained via the rela-
tive distance relation NEARER alone, thus we exploit a larger set of
constraints. This effort leads to the notion of hyper-cube as captured by
relation HCVertsB,Eqd in definition (D24). Axioms (AM17) and (AM18)
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build on this relation and relay on (a) the convexity property of hyper-
cubes and (b) the properties of the projection of (internal) points to the
hyper-cube’s surface.

In this section we write σ for a permutation of set {1, . . . , 2n} and
σ(1→i) for a permutation of the set such that σ(1) = i. Also, sometimes
we write σj for σ(j), i.e., the image of index j under a given permuta-
tion σ.

The following definition characterizes the vertices of a hyper-cube
in dimension n via the use of relations BTW and EQD only. (The
restriction to language {BTW ,EQD} is important to refer to models
En. Also, recall definition (D22) showing that NEARER is syntactically
defined in this language.) The correctness of this definition is the goal
of Lemma 7, see below.

(D24) HCVertsB,Eqd(y1, . . . , y2n)def=
∧

1≤i≤2n−2 EQD(yi, yi+1, yi+1, yi+2)
∧EQD(y1, y2, y1, y2n) ∧

∧
i6=j ¬NEARER(yi, yj , y1, y2) ∧

∃w[
∧

2≤i≤2n EQD(w, y1, w, yi) ∧
∧
i

∨
j 6=i BTW (yi, w, yj)] ∧∧

i ∃σ(1→i) [
∧

2≤i6=j 6=k≤n+1 EQD(yσi , yσj , yσi , yσk
) ∧∧

n+2≤l≤2nNEARER(yσ1 , yσ2 , yσ1 , yσk
)∧

∧
2≤j≤n+1EQD(yσ1 , yσ2 , yσ1 , yσj )∧∧

2≤j 6=k≤n+1∃u[BTW (yσj , u, yσk
) ∧ EQD(u, yσ1 , u, yσj ) ∧

EQD(u, yσ1 , u, yσk
)]]
(y1, . . . , y2n are ordered vertices of a hyper-cube)

Definition (D24) needs an explanation. Let us assume informally that
dist is a distance function with dist(a, b) the distance between points a, b,
then the definition says that points y1, . . . , y2n (in this order) are suitable
vertices of a hyper − cube in dimension n provided: (a) none is closer
than dist(y1, y2) and there is a path covering all of them with edges of
length exactly dist(y1, y2); (b) there exists a point w equidistant to all
the points yi and for each yi there is yj such that w is between them (thus
w is midpoint for all these pairs yi, yj and so, informally, w is the center
of the hyper-cube); (c) for each i, there is a permutation that reorder
the points so that yi is the first and the n following points (positions
from 2 to n + 1) are all (and only) the points at distance dist(y1, y2)
from yi (informally speaking, this says that any vertex has exactly n
adjacent vertices); finally (d) the midpoint of any two of these closest
vertices yj , yk is the center of a disk through yi, yj , yk, which forces the
corresponding triangle yi, yj , yk to have a right angle at yi.
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Definition 6. We call hyper-cube model any structure of type GnHC =
〈C, HCb�,BTW ,EQD,COI 〉 which satisfies the conditions for HCnr and
the following:
(AM17) ∀y1, y2, ..., y2n [HCVertsB,Eqd(y1, . . . , y2n)→ ∃w∀u [HCb(u)→

[COI (u,w)↔∀σ∃m1, ...,m2n−1 [¬HCb�(u,m1) ∧
BTW (yσ(1), u,m1) ∧∧

2≤i≤2n−1 BTW (yσ(i),mi−1,mi) ∧
∨
j HCb�(yσ(j),m2n−1)]]]]

(AM18) ∀x∃y1, . . . , y2n [HCb(x)→ (HCVertsB,Eqd(y1, . . . , y2n) ∧
∀u[HCb(u)→ [COI (u, x)↔∀σ∃m1, ...,m2n−1 [¬HCb�(u,m1) ∧

BTW (yσ1 , u,m1) ∧
∧

2≤i≤2n−1 BTW (yσi
,mi−1,mi) ∧∨

j HCb�(yσj
,m2n−1)]]])]

(A4) ∀x, y [∀z [COI (z, x)↔COI (z, y)]→ x = y]

Lemma 6. In any hyper-cube model with a CCPI-function π, the defined
relation NEARER(w, x, y, z) holds for tupla 〈a, b, c, d〉 just in case, for δ
a distance relation in Rn, we have δ(aπ, bπ) < δ(cπ, dπ).

Proof. By definition, a hyper-cube model is a relaxed geometrical
model as well. By Lemma 5 there exists a CCPI-function π : C → Rn
such that any j-relation R in the language {HCb�,BTW ,EQD} holds
for 〈x1, . . . , xj〉 in (GnHC)j only if 〈xπ1 , . . . , xπj 〉 in (Rn)j satisfies the stan-
dard interpretation of R in Rn. By (D22), relation NEARER(w, x, y, z)
holds if and only if ∃x′ [BTW (w, x, x′)∧¬HCb�(x, x′)∧EQD(w, x′, y, z)],
that is, if and only if there exists x′ such that B(wπ, xπ, x′π) ∧ xπ 6=
x′π ∧ Eqd(wπ, x′π, yπ, zπ) which, in the Euclidean system En, implies
the claim.

By definition, a hyper-cube model GnHC is a HCnr model expanded
with a new relation. Thus, GnHC has a CCPI-function.

Lemma 7. Relation HCVertsB,Eqd holds in a hyper-cube model GnHC
with CCPI-function π for tupla 〈b1, . . . , b2n〉 just in case bπ1 , . . . , bπ2n are
the vertices of a hyper-cube.

Proof. As before, a CCPI-function π : C → Rn exists since GnHC is a
relaxed geometrical model. From Definition 5, π constraints the inter-
pretation of HCb�, BTW and EQD, and from Lemma 6, this tells us
that relation NEARER has the intended interpretation. Thus, whether
a tuple 〈b1, . . . , b2n〉 satisfies HCVertsB,Eqd is also completely determined
by the corresponding points bπ1 , . . . , bπ2n .
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Let now show that relation HCVertsB,Eqd holds for 〈b1, . . . , b2n〉 only
if the points bπ1 , . . . , bπ2n are vertices of a hyper-cube. We divide the
constraints in (D24) in five conditions, from (a) to (e):
(a) The initial conditions

∧
1≤i≤2n−2EQD(bi, bi+1, bi+1, bi+2), EQD(b1, b2,

b1, b2n) and
∧
i6=j ¬NEARER(bi, bj , b1, b2) state that there is a close

(simple) path through all points bπi such that each pair of connected
bπi are at the same distance and this is the minimal distance between
any two points bπi .

(b) Next, the existence of a satisfying
∧

2≤i≤2nEQD(a, b1, a, bi) is ensured.
This simply states that there is a point aπ such that all points bπi
are on the (n− 1)-sphere centered at aπ.

(c) Subformula
∧
i

∨
j 6=i BTW (bi, a, bj), where a is given by the previous

condition, says that for each point bπi there is a point bπj such that
aπ is midpoint of segment bπi bπj . In other words, bπi bπj is a diameter
of the (n− 1)-sphere centered at aπ.

(d) The following constraints are a key point. Here permutation σ(1→i)
forces the following condition to hold for each point bπi . Fix a point bπi
and let σ(1→i) be the sought permutation of {1, . . . , 2n} with σ1 = i

(recall that we write σj for σ(j)). Conditions
∧

2≤i6=j 6=k≤n+1EQD(bσi ,

bσj , bσi , bσk
),

∧
n+2≤k≤2nNEARER(bσ1 , bσ2 , bσ1 , bσk

),
∧

2≤j≤n+1EQD(bσ1 ,
bσ2 , bσ1 , bσj ) state (in order): there are exactly n points bπj at same
distance from bπi ; all other points bπk are farther from bπi ; these n
points bπj are at the same distance to each other. From these con-
straints we obtain that the points closer to bπi must form a regular
(n− 1)-simplex on the (n− 1)-sphere centered at aπ, see Figure 10
for a 2-simplex in dimension 3. Since each side of these simplexes
is obtained starting from different vertices, this condition forces all
simplexes to have sides of same length, i.e., all simplexes associated
to some point bπi must be congruent. (Such a simplex is generally
called vertex figure of its reference point, here bπi .)

(e) The last set of conditions
∧

2≤j 6=k≤n+1∃u[BTW (bσj , u, bσk
) ∧ EQD(u,

bσ1 , u, bσj )∧ EQD(u, bσ1 , u, bσk
)] says that the middle point of any

segment bπj bπk , which is an edge of bπi ’s vertex figure, is equidistant
from bπi , b

π
j as well as bπk , i.e. these three points lay on the circumfer-

ence with center u and with bπj bπk as diameter. This forces the angle
at bπi to be a right angle.
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v1

v2

v4

v3

Figure 10. Points v2, v3, v4 are the vertices of the regular 2-simplex
associated with vertex v1 (vertex figure of v1) in the depictied hyper-

cube in dimension 3.
We have seen that 2n points satisfying formula HCVertsB,Eqd must

lay on a (n−1)-sphere, they can be paired so that the center of the sphere
is midpoint for each pair, each point has exactly n adjacent points all
at the same distance (while all other points are farther away) and forms
right angles with all of these. It follows that these points are the vertices
of a hyper-cube in dimension n.

Given Lemma 7, axiom (AM17) states that for any 2n hyper-cubes
satisfying HCVertsB,Eqd (in particular, centered at the vertices of a
hyper-cube) there exists a hyper-cube w such that a hyper-cube z has
center in the interior of w (the condition forced by COI ) if and only if
any iterative projections of the center of z from the vertices of w lead to
a vertex of w. To ensure that z itself is not on the surface of the hyper-
cube, it is required that the first projection always gives a hyper-cube
not concentric with z. See Figure 11 for an example in dimension 3.

Axiom (AM18) states that for any hyper-cube x one can find 2n
hyper-cubes, each with center at one of x’s vertices, such that z has
center in the interior of w if and only if the center of z satisfies the
conditions on the projection from vertices as in (AM17).

Finally, axiom (A4) says that distinct regions can be distinguished
just by looking at their interior points.

Definition 7. Let π be a CCPI-function for GnHC . A Cartesian open
hyper-cube interpretation or COCI-function for GnHC is a function Π :
C → ℘(Rn) defined by:

Π(q) def= {π(qi) | 〈qi, q〉 satisfies COI (qi, q) in GnHC}.
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w

v1 v2

m1

m2(=m3)

v3

v4

m4

Figure 11. Some iterated projections (from vertices v1, . . . , v4 in this
order) of a point w internal to a hyper-cube to the faces, edges and

vertices of the hyper-cube itself, see (AM17) and (AM18).

Lemma 8. Let GnHC be a hyper-cube model and π a CCPI-function for
it. Let relation φ(z, y1, . . . , y2n) be defined by formula:

∀u [HCb(u)→ [COI (u,w)↔∀σ∃m1, ...,m2n−1 [¬HCb�(u,m1) ∧
BTW (yσ(1), u,m1) ∧

∧
2≤i≤2n−1

BTW (yσ(i),mi−1,mi) ∧∨
j

HCb�(yσ(j),m2n−1)]]].

Then, any tupla 〈a, v1, ..., v2n〉 ∈ C2n+1, such that HCVertsB,Eqd holds
for v1, . . . v2n , satisfies φ(z, y1, . . . , y2n) just in case Π(a) is the open
hyper-cube with the vπi as vertices.

Proof. Assume the formula holds for 〈a, v1, . . . , v2n〉, we need to show
that Π(a) is an open hyper-cube with vertices vπi . From Lemma 7 and
HCVertsB,Eqd(v1, . . . , v2n), the centers of vi, . . . , v2n are the vertices of
a hyper-cube, i.e., the convex hull of points vπ1 , . . . , vπ2n is a hyper-cube
(and of course convex). We now prove that, if for all hyper-cube u
and all permutations σ there exist regions mi that satisfy subformulas

¬HCb�(u,m1), BTW (vσ(1), u,m1),
∧

2≤i≤2n−1 BTW (vσ(i),mi−1,mi) and∨
j HCb�(yσ(j),m2n−1), then uπ is in the interior of Π(a). More specif-

ically, given an arbitrary permutation σ, we show that it is possible to
find the requested m1, . . . ,m2n−1 if and only if uπ is in the interior of
the convex hull of vπ1 , . . . , vπ2n .

Case 1): assume uπ is in the interior of the complement of the convex
hull of vπ1 , . . . , vπ2n . If m1 is such that B(vπσ(1), u

π,mπ
1 ), then mπ

1 is also in
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the interior of the complement of the convex hull of vπ1 , . . . , vπ2n . Given
this, if m2 is such that B(vπσ(2),m

π
1 ,m

π
2 ), then mπ

2 is also in the interior
of the complement of the convex hull of vπ1 , . . . , vπ2n since m1 is. By finite
iteration of this argument, allmπ

i are in the interior of the complement of
the convex hull of vπ1 , . . . , vπ2n . In particular, this holds for mπ

2n−1. Since
any vπi is obviously in the boundary of the convex hull of vπ1 , . . . , vπ2n ,
condition

∨
j HCb�(yσ(j),m2n−1) cannot hold.

Case 2): If uπ is in the interior of the convex hull of vπ1 , . . . , vπ2n , then
we can take m1 with center on the boundary of that convex hull so that
B(vπσ(1), u

π,mπ
1 ) holds. Let Bd≤n−1 be the smallest face of the convex

hull of vπ1 , . . . , vπ2n where mπ
1 lives. Clearly Bd≤n−1 is convex, is part

of the boundary of the convex hull of vπ1 , . . . , vπ2n , and has dimension at
most n− 1. Now we can take m2 with center on the (manifold) bound-
ary of Bd≤n−1 such that B(vπσ(2),m

π
1 ,m

π
2 ) holds. Again, the smallest

component of Bd≤n−1 where mπ
2 lives, call it Bd≤n−2, is convex, part

of the (manifold) boundary of Bd≤n−1, and of dimension at most n− 2.
By iteration, we construct a series of hyper-cubes m1, . . . ,m2n−1 (pos-
sibly concentric and possibly concentric with some vi) satisfying the
condition BTW (vπσ(i),m

π
i−1,m

π
i ). Finally, since mπ

2n−1 is on a boundary
region Bd≤0 which, by construction, is a vertex of the convex hull of
vπ1 , . . . , v

π
2n , then for some j we have HCb�(yσ(j),m2n−1).

Case 3): If uπ is on the boundary of the convex hull of vπ1 , . . . , vπ2n ,
then let σ be such that σ(1) is not on the face where uπ lays. Any m1
not concentric with u and satisfying BTW (yσ(1), u,m1) must be in the
interior of the complement of the convex hull of vπ1 , . . . , vπ2n and Case 1)
applies.

We have thus shown that, with the given conditions on tupla 〈a, v1,
. . . , v2n〉, relation COI (u, z) holds if and only if uπ is in the interior of
the convex hull of vπ1 , . . . , vπ2n . By Definition 7, this implies that Π(a) is
the open hyper-cube with vertices vπi .

Lemma 9. Given a hyper-cube model GnHC with CCPI-function π and
corresponding COCI-function Π, for all x ∈ C, Π(x) is an open hyper-
cube of Rn.

Proof. From the previous lemma and axiom (AM18).

Lemma 10. Every COCI-function Π on a hyper-cube model GnHC is a
bijection onto the set of hyper-cubes in Rn.
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Proof. From the previous lemma, the range of Π is a subset of hyper-
cubes in Rn. Since π is surjective, for any 2n points p1, . . . , p2n , we can
find hyper-cubes x1, . . . , x2n ∈ C such that xπi = pi and, if the pi are
vertices of a hyper-cube, then from (AM17) there exists a hyper-cube
w ∈ C which is the interior of their convex hull. Then, Π(w) is the
hyper-cube in Rn with vertices p1, . . . , p2n . Since any hyper-cube in Rn
is characterized in this way by 2n points (its vertices), Π is surjective.
From (AM4), we conclude that Π is injective and thus a bijection.

Lemma 11. Let CubeRn be the set of hyper-cubes in Rn, all hyper-
cube models GnHC are isomorphic to 〈CubeRn ,HCb�,BTW ,EQD,COI 〉
where the predicates have the usual intended interpretations.

Proof. This is ensured by the properties of the CCPI-function π and
the fact that the COCI-function Π is a bijection (lemmas 9 and 10).

6.3. Region-based geometry models

The rest of the proof that the n-dimensional mereogeometry MGn
HC is

categorical proceeds again along the lines of Bennett’s work. This part
does not dependent on the specific primitives we have used to build
points and the specialized axioms we introduced, we can thus repeat
Bennett’s results without much details, the reader can find all these
proofs in [Ben01].

Definition 8. An n-dimensional MGn
HC-model is a structure 〈R,P,

HCb〉, where P and HCb are respectively binary and unary relations
satisfying axioms (AM1)–(AM18) and the following:

(AM19) ∀x, y [P(x, y)↔∀z [COI (z, x→ COI (z, y)]]
(AM20) ∀x∃y [HCb(y) ∧ P(y, x)]

Lemma 12. LetMn = 〈R,P,HCb,HCb�,BTW ,EQD,COI 〉 be a struc-
ture that satisfies the axioms (AM1)–(AM20). If C = {r ∈ R | HCb(r)},
then the substructure 〈C,HCb�,BTW ,EQD,COI 〉 is a hyper-cube
model.

Proof. Mn satisfies axioms (AM3)-(AM18) and since these are all re-
stricted to hyper-cubes, they must hold in the substructure with domain
C as well. Regarding (A4), it is a consequence of (AM2) and (AM19),
and it holds in the substructure because it is an universal formula.
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The above proof is taken from [Ben01] with the only adaptation of the
axioms’ references. Analogously, the proofs of the following propositions
are obtained by following the proofs of the corresponding propositions
in [Ben01]. For this reason, we do not report the proofs directly.

Definition 9. A Cartesian regular open set interpretation function,
CROSI-function, for a MGn

HC-model Mn is defined by Π(r) = {π(ri) |
〈ri, r〉 satisfies COI (x, y) inMn} with π a CCPI-function for the hyper-
cube substructure ofMn.

Lemma 13. The following hold:

• Each r ∈ R satisfies HCb(r) if and only if Π(r) is a hyper-cube.
• A pair 〈r1, r2〉 ∈ R2 satisfies P(x, y) in Mn just in case Π(r1) ⊆

Π(r2).
• For any r1, r2 ∈ R such that HCb(r1) and HCb(r2) hold inMn, the

pair r1, r2 satisfies COI (x, y) inMn just in case the center point of
the open hyper-cube Π(r1) lies within the open hyper-cube Π(r2).

Lemma 14. For any r1, r2 ∈ R, if Π(r1) ∩ Π(r2) = ∅ then 〈r1, r2〉 ∈ R2

satisfies DR(x, y) inMn.

Lemma 15. For every regular open set O ⊆ Rn, there is an element
r ∈ R such that Π(r) = O.

Lemma 16. For every r ∈ R, Π(r) is a non-empty regular open subset
of Rn.

Lemma 17. Π is a bijection from R onto the non-empty regular open
subsets of Rn.

Theorem 2. Axioms (AM1)–(AM20) form a categorical axiom system
for MGn

HC . Any MGn
HC-model is isomorphic to the structure 〈RRn ,P,

HCb〉 where RRn is the set of non-empty open regular subsets of Rn.

It follows that

Corollary 2. The system MGn
HC is categorical.

7. Sphere vs Hyper-Cube

We have seen that Whitehead’s intuition to construct points as sets of
concentric geometric figures can be implemented in different ways as
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exemplified by Tarski’s technique applied to spheres and our technique
to hyper-cubes. In Section 8 we will see that our technique is even more
general since it applies to another class of figures which is geometrically
most fundamental: (regular) simplexes.

Here we cast a few observations on the result so far.
First. By taking hyper-cubes as primitive entities we build mereoge-

ometry on a set of definitions which is syntactically comparable to that
proposed by Tarski for the geometry of solids. This result is surprising
since the approach in [Tar56b] and the given definitions rely on the rich
symmetry system that characterizes spheres. Our exploitation of the
properties of hyper-cubes to provide a relative ordering for those fig-
ures shows that one can reach the same result by combining symmetry
with other geometrical features, namely, the presence of right angles.
Perhaps it is even more surprising that we obtain an improvement over
[Tar56b]. The number of ‘distinct concepts’, those relevant both formally
and cognitively (and cast by the definitions), is smaller in the exploita-
tion of hyper-cubes. Tarski’s uses four notions: external and internal
tangency and external and internal diametricity. Our system uses three:
co-verticity, aligned concentricity and rotated concentricity.

An interesting result from the syntactic viewpoint is that Tarskian
definition of concentric spheres (S�) is a formula of type ∀∃∀ in terms
of Tarskian primitives. Instead, our work on hyper-cubes leads to a
definition (HCb�) which is a ∃∀∃-formula in terms of our primitives.
Furthermore, if the dimension n of the space is fixed, the formula on
hyper-cubes reduces to a ∃∀-formula by substituting the following defi-
nition for the definition of aligned concentric hyper-cubes (D5.13)

(D5.13’) HCb� (x, y) def= HCb(x) ∧HCb(y) ∧ (x = y ∨
(P(x, y) ∧ ∃z1, z

′
1, . . . , z2n−1 , z′2n−1 [

∧
i6=j(PO(zi, zj) ∧ PO(zi, z′j)) ∧∧

i PO(zi, z′i)∧
∧
i(HCb�2 (zi, y)∧HCb�2 (z′i, y)∧PROD(zi, z′i, x))])∨

(P(y, x) ∧ ∃z1, z
′
1, . . . , z2n−1 , z′2n−1 [

∧
i6=j(PO(zi, zj) ∧ PO(zi, z′j)) ∧∧

i PO(zi, z′i)∧
∧
i(HCb�2 (zi, x)∧HCb�2 (z′i, x)∧PROD(zi, z′i, y))]))

(aligned concentric hyper-cubes)
Definition (D5.13’) states that, given that the space has dimension

n and that x and y are two hyper-cubes with x properly contained in y,
these are aligned and concentric when there are 2n properly overlapping
hyper-cubes in y and co-vertex with y (thus, one per vertex since properly
overlapping) such that x is the product region of each pair. Tarski’s
definitions are not suitable for this type of simplifications.
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Second. Tarski defines some geometrically complex relations, namely,
ED and ID to formalize the notions of externally and internally dia-
metrical spheres. These relations are necessarily ternary. Our system
for hyper-cubes, and similarly the system for regular simplexes in the
next section, uses only geometrical binary relations. Indeed, the only
use of ternary relations in our approach is restricted to the definition
of the product of two regions, which is a mereological notion. That
is, we proved that it is possible to build a system of mereogeometry
without referring to any ternary purely geometrical relation. This result
makes even more remarkable the difference with Euclidean geometry: in
standard point-based geometry it is impossible to build the Euclidean
system without explicitly adding as primitive at least one ternary rela-
tion [Rob59]. That is, it does not suffice to introduce a derived ternary
relation as in Tarski’s mereogeometry. (Note, however, that this obser-
vation is limited to the use of primitives and does not count as a full
syntactic comparison for the use of a special operator, i.e. SUM used in
(AM2), in the axiomatization.)

Third. While Tarski’s original definitions necessarily quantify over
spheres of any size, our set of definitions characterize concentric hyper-
cubes by quantifying only on hyper-cubes bounded by the given regions:
fix a pair of hyper-cubes x, y, only hyper-cubes contained in these needs
to be taken into account to establish whether they are concentric.

Fourth. While the direct axiomatization of the system for spheres and
that for hyper-cubes are very similar, our axioms (AM17) and (AM18)
are much more complicated, both conceptually and formally, than their
corresponding axioms for spheres in [Ben01]. The reason is that these
axioms depend on the features of the geometrical figures we are using and
the properties of hyper-cubes are harder to model in the language of the
euclidean relations BTW and EQD only. On this aspect, we anticipate
that the axiomatization of the system resulting from regular simplexes is
less complicated, although even this system is not really comparable to
Bennett’s axiom system. Indeed, regular simplexes are easier to model
than hyper-cubes in Euclidean geometry but the reconstruction of points
from them is slightly more complicated with respect to hyper-cubes as
we will see in next section. It seems plausible to claim that by relying
on a direct axiomatization of Scott’s primitive in Euclidean geometry
instead of the Tarskian set of axioms, this difference between Bennett’s
axiom system and ours may be reversed. This, however, remains to be
verified.
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Fifth. Both Tarski’s and our constructions are dimension indepen-
dent in the sense that each system characterizes concentric figures in any
space of finite dimension n ≥ 2. The axiomatizations of both systems
include an axiom, in our case (AM16), to constrain the dimension of the
space. It suffices to modify this axiom to obtain an axiomatization in
another dimension.

8. Regular simplex as geometrical primitive: the system MGn
SX

The approach developed in section 5 is not specific to the primitive
‘being a hyper-cube’ and works for regular simplexes as well. Recall
that a geometrical n-simplex is the convex hull (the smallest convex set)
of n+ 1 independent points. In particular a 2-simplex is a triangle and
a 3-simplex a tetrahedron. A regular n-simplex is a n-simplex with all
edges of same length.

Let us write SX(x) to mean ‘x is a regular simplex’ in the dimension
of the space (as usual, n ≥ 2).

We proceed along the lines of section 5. The first definition is about
co-vertex regular simplexes and follows the very same idea implemented
for hyper-cubes.

(D25) SX44 (x, y) def= SX(x) ∧ SX(y) ∧ PP(x, y) ∧
∃p [SX(p) ∧ PP(p, x) ∧ ∀q [(SX(q) ∧ P(p, q) ∧ P(q, y))→

(P(q, x) ∨ P(x, q))]]
(co-vertex regular simplexes)

The next constraint, adapted from (D13), turns out to be too weak
when applied to regular simplexes; it holds for two regular simplexes
which are aligned in the sense that they have parallel sides but does not
force them to be concentric.

(D26) SX//(x, y) def= SX(x) ∧ SX(y) ∧ (x = y ∨
(P(x, y)∧ ∀q, z [(SX44 (q, y)∧O(q, x)∧PROD(q, x, z))→ SX(z)])∨
(P(y, x) ∧ ∀q, z [(SX44 (q, x) ∧O(q, y) ∧ PROD(q, y, z))→ SX(z)]))

(aligned regular simplexes)

Next, we define (aligned) concentric regular simplexes by a new con-
dition specific for regular simplexes. The general idea is the following:
two aligned concentric regular simplexes x and y, with x proper part of
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x'''

x''

x

y

x'

Figure 12. Definition (D26) ensures alignment of the simplexes’ sides
but not their concentricity. All depicted simplexes (x, x′, x′′, x′′′ as well

as their intersections) satisfy SX// when paired with y.

y, are concentric if the regular simplexes containing x and co-vertex with
it leave out at each vertex of y a region which is the sum of two regular
simplexes, see Figure 13 for an example in dimension 2.

(D27) SX4M (x, y) def= SX//(x, y) ∧ (x = y ∨
(∃r, w [SX44 (r, y) ∧ PO(r, x)] ∧ ∀r, w[(SX44 (r, y) ∧ PO(r, x) ∧

∀v[(SX44 (x, v) ∧ P(v, y))→ P(v, w)])→ ∃z, z′[SX44 (z, r) ∧
SX44 (z, y)∧SX(z′)∧P(z′, y)∧¬O(z, z′)∧¬O(w, z+z′)∧P(r, z+z′+
w)]])∨ (∃r, w [SX44 (r, x)∧PO(r, y)]∧∀r, w [(SX44 (r, x)∧PO(r, y)∧
∀v[(SX44 (y, v)∧P(v, x))→ P(v, w)])→ ∃z, z′[SX44 (z, r)∧SX44 (z, x)
∧ SX(z′) ∧ P(z′, x) ∧ ¬O(z, z′) ∧ ¬O(w, z + z′) ∧ P(r, z + z′ +w)]]))

(aligned concentric regular simplexes)

Note that definition (D27) can be used, mutatis mutandis, for hyper-
cubes as well. Yet, we used definition (D13) since it is simpler. Note also,
recalling the discussion in Section 7, that even (D27) can be simplified if
we fix the dimension n of the space. In this case it suffices to claim that
there exist 2n + 2 regular simplexes (one pair of regions z, z′ for each
vertex) and n+ 1 regular simplexes (these are those that form the gray
region w) which cover all y.

Our next goal is to include the case of concentric regular simplexes
that are not aligned, i.e., that are rotated with respect to the common
center, called concentric rotated regular simplexes. As for hyper-cubes,
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x

r

zz'

y

x'

r

z

y'

Figure 13. In the shown cases of dimension 2, (D27) holds only for the
concentric aligned simplexes x and y on the left where suitable regions
z, z′ are also shown for one vertex. On the right, x′ and y′ are aligned
but not concentric and any z bigger than the one shown would overlap
the light gray region (region w in (D27)). Clearly no regular simplex z′

in y′ can cover the dark gray part of r. (D27) fails for x′, y′.

it suffices to consider the case in which the vertices of the smaller regular
simplex are on the sides of the larger regular simplex, thus we simply
adapt the definition used for hyper-cubes.

(D28) SX ·�(x, y) def= SX(x) ∧ SX(y) ∧ PP(x, y) ∧
∀q [(SX(q) ∧ PP(q, y) ∧ P(x, q))→ P(q, x)]

(rotated concentric regular simplexes)

We can finally give the relation (also taken from that on hyper-cubes)
suitable to define points as maximal sets of concentric regular simplexes.

(D29) SX4· (x, y) def= SX4M (x, y) ∨ ∃z [SX ·�(z, x) ∧ SX4M (z, y)] ∨
∃z [SX ·�(z, y) ∧ SX4M (z, x)]

(concentric regular simplexes)

9. Axiomatization of MGn
SX

The material presented in section 6 does not depend in any relevant
aspect on the use of the primitive hyper-cube as opposed to regular
simplex. However, it turns out that the axiomatization of the system
built out of regular simplexes is much easier. For this reason, instead of
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repeating the overall proof, here we briefly report the steps where the
axioms and proofs vary.

Let us start from the axiomatization given earlier for hyper-cubes,
(AM1)–(AM20), where each occurrence of HCb is substituted by SX ,
of HCb� by SX4· and so on. We use (AM1’)–(AM20’) for the result-
ing axioms. Thus, given axiom (AM3), i.e., ∀x, y(BTW (x, y, x) →
HCb�(x, y)), we now call (AM3’) the axiom ∀x, y(BTW (x, y, x) →
SX4· (x, y)).

Also, we take for granted that earlier definitions are modified accord-
ingly unless otherwise specified. For instance, from (D16) the definition
of co-oriented simplexes is given by

(D30) SX ..(x, y) def= ¬SX4· (x, y) ∧
∀x′, y′ [(SX4M (x, x′) ∧ SX4M (y, y′) ∧ PO(x′, y′))→ SX(x′ · y′)]

(co-oriented regular simplex)

Note that this definition corresponds syntactically to that of HCb33
in (D16) but the constraint is quite different. While the definition on
hyper-cubes ensures that each hyper-cube has one diagonal on the very
same line, the definition on regular simplexes forces the simplexes to have
parallel sides. It is thus a generalization of (D26). As a consequence of
the different ‘meaning’ of this definition, in the system based on regular
simplexes definition BTW (D17) must be modified.

We now introduce a new relation COV holding when the center of a
regular simplex is the vertex of another regular simplex. We can define
BTW from COV without using relation MID (D19) which, in turn, is
defined from BTW and ternary EQD. First, we need to restate rela-
tion COB; this is the relation stated for hyper-cubes (D18) with SX
substituted for HCb.

(D31) COB(x, y) def= SX(x) ∧ ∀x′ [SX4· (x, x′)→ (O(x′, y) ∧ ¬P(x′, y))]
(center of x on the boundary of y)

(D32) COV (x, y) def= SX(y)∧COB(x, y)∧∀z [SX ·�(z, y)→ ¬COB(x, z)]
(center of x is on vertex of y)

Definition (D32) holds when regular simplex x has center on the
boundary of regular simplex y but the center of x is never on the bound-
ary of any regular simplex concentric and properly contained in y. (Re-
call that SX ·�(z, y) implies z 6= y.)
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(D33) BTW (x, y, z) def= SX(x) ∧ SX(y) ∧ SX(z) ∧
(SX4· (x, y)∨SX4· (y, z)∨∀u [(COV (x, u)∧COV (z, u))→ COB(y, u)])

(regular simplex betweenness)

(D34) EQD(x, y, z) def= SX4· (x, y) ∨ ∃u, v [COV (x, u) ∧ COV (y, u) ∧
COV (x, v)∧COV (y, v)∧¬O(u, v)∧ (BTW (z, u, v)∨BTW (u, z, v)∨
BTW (u, v, z))] (centers of x, y equidistant from that of z)

(D35) MID(x, y, z) def= EQD(x, z, y) ∧ BTW (x, y, z)
(z centered at the midpoint of x, y)

From this, the quaternary EQD is similar to (D21)

(D36) EQD(w, x, y, z) def= ∃u, v[MID(w,u,y)∧MID(x, u,v)∧EQD(v, z,y)]
(centers of w, x and of y, z are equidistant)

while the NEARER relation is adapted from (D22) as usual, i.e.,

(D37) NEARER(w, x, y, z) def= ∃x′ [BTW (w, x, x′) ∧ ¬SX4· (x, x′) ∧
EQD(w, x′, y, z)]

(centers of w, x are closer than those of y, z)

Finally, definition (D23) becomes

(D38) COI (x, y) def= ∃x′ [SX4· (x, x′) ∧ P(x′, y)]
(center of x in interior of y)

Moving to study the structures, the following definition of relaxed
geometrical model for regular simplexes corresponds to Definition 3 for
hyper-cubes.

Definition 10. Let SXnr = 〈D,SX4· ,BTW ,EQD〉 be a structure sat-
isfying the set of axioms MGn

SX(↓) given by (AM3’)–(AM15’) plus the
axiom (AM16’)n fixing the dimension of the space and:

(A1′) ∀x [SX(x)]
(A3′) ∀x, y, z [(SX4· (x, y) ∧ SX4· (y, z))→ SX4· (x, z)]

We call SXnr a (regular simplex) relaxed geometrical model.

Definition 11. Given a structure En and a structure SXnr with domain
D, a surjective function π : D → Rn such that
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• if SXnr |= SX4· (x1, x2) then En |= π(x1) = π(x2)
• if SXnr |= BTW (x1, x2, x3) then En |= B(π(x1), π(x2), π(x3))
• if SXnr |= EQD(x1, x2, x3, x4) then En |= Eqd(π(x1), π(x2), π(x3),
π(x4))

is called Cartesian centre-point interpretation or CCPI-function for
short.

Then, one follows the previous steps to reach the following result.

Lemma 18. Fix a geometrical model SXnr with domain D, there is a
CCPI-function π : D → Rn.

As anticipated, the characterization of regular simplexes in terms
of BTW and EQD is easier than that of hyper-cubes as one can see
comparing the following definition for regular simplexes with (D24). The
main reason is that simplexes are characterized by n + 1 non-collinear
points (for n the dimension of the space).

(D39) SxVertsB,Eqd(y1, . . . , yn+1) def=
∧
i SX(yi) ∧∧

i6=j 6=k ¬BTW (yi, yj , yk) ∧
∧
i6=j 6=k EQD(yi, yj , yi, yk)

(y1, . . . , yn+1 are centered at the vertices of a regular n-simplex)

In this setting, the role of Definition 6 of Section 6.2 is taken by the
following

Definition 12. We call regular simplex model any structure of type
GnSX = 〈C,SX4· ,BTW ,EQD,COI 〉 which satisfies the conditions for
SXnr and the following:

(AM17′) ∀y1, y2, ..., yn+1[SxVertsB,Eqd(y1, . . . , yn+1)→ ∃w∀u [SX(u)→
[COI (u,w)↔∀σ∃m1, ...,mn [¬SX4· (u,m1) ∧ BTW (yσ(1), u,m1) ∧∧

2≤i≤n BTW (yσ(i),mi−1,mi) ∧
∨
j SX4· (yσ(j),mn)]]]])

(AM18′) ∀x∃y1, . . . , yn+1 [SX(x)→ (SxVertsB,Eqd(y1, . . . , yn+1) ∧
∀u [SX(u)→ [COI (u, x)↔∀σ∃m1, ...,mn [¬SX4· (u,m1) ∧

BTW (yσ(1), u,m1) ∧
∧

2≤i≤n BTW (yσ(i),mi−1,mi) ∧∨
j SX4· (yσ(j),mn)]]])]

(A4′) ∀x, y[∀z[COI (z, x)↔COI (z, y)]→ x = y]

We now get

Lemma 19. Let RegSXRn be the set of regular simplexes in Rn, all regu-
lar simplex models GnSX are isomorphic to 〈RegSXRn ,SX4· ,BTW ,EQD,
COI 〉 where the predicates have the intended interpretations.
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Consider the structure

Definition 13. An n-dimensional MGn
SX -model is a structure 〈R,P,

SX〉, where P and SX are respectively binary and unary relations satis-
fying axioms (AM1′)–(AM18′) and the following:

(AM19′) ∀x, y [P(x, y)↔∀z [COI (z, x→ COI (z, y)]]
(AM20′) ∀x∃y [SX(y) ∧ P(y, x)]

and repeat the steps as before to conclude

Theorem 3. Axioms (AM1′)–(AM20′) form a categorical axiom system
for MGn

SX . Any MGn
SX -model is isomorphic to the structure 〈RRn ,P,

SX〉, where RRn is the set of non-empty open regular subsets of Rn.

Finally, it follows that

Corollary 3. The system MGn
SX is categorical.

10. Conclusions

In this paper we have contributed to a line of research that started with
the first rigorous formalizations of Euclidean geometry and of mereo-
geometry by Tarski, almost a century ago. The focus is the study
of primitives and their relationships especially in terms of expressiv-
ity, see [Pam01, SST83] for reviews in Euclidean geometry and [Ger95,
Dav06, CR07, BM10] (including references in these) for studies in mereo-
geometry.

We have shown that one can construct points in region-based struc-
tures from simple regular polygons, namely squares and equilateral tri-
angles, and their generalizations to any dimension. From our results, it
follows that these primitives not only are as expressive as spheres but
can even be of interest for the properties of the theories they generate.
In this way we have made evident that the expressive power of classical
geometrical figures is independent of the point-region dichotomy or their
‘resemblance’ of points. This observation can be related to some results
known in two-sorted Euclidean geometry, that is, in axiomatization of
standard geometry with domain including both points and some class of
geometrical figures (circle, equilateral triangles, squares or right triangles
[Pam04, Pra83, Sco56]) interacting via the incidence relation.
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We conclude with a final observation on the material in this paper.
The method we have applied to regular simplexes and hyper-cubes ap-
plies to any dimension but, as given, is limited to these figures. The
reason is that it focuses on one angle at a time (we called it ‘co-vertex’)
to provide a local ordering on pairs of figures. As a result, this approach
requires that, given a figure A, the intersection of a co-vertex figure of A
with a co-centered figure of A is also a figure of the same type. This con-
dition holds only when all features of the figure opposite to the co-vertex
angle vary proportionally to the size of the intersecting regions. Since
this happens only for regular simplexes and hyper-cubes, the method is
not directly applicable to other (hyper-) polygons. The method of Tarski
applies also to any dimension but covers spheres only and is definitely
not applicable to (hyper-)polygons. Nonetheless, a combination of the
two methods can lead to more freedom and makes possible to build
mereogeometries from other classes of polygons. For instance, one can
provide a local ordering of regular hexagons by the co-vertex approach
(this is used to give a limited version of Tarskian IT relation); then
use inclusion in a larger hexagon to define a kind of ED relation, and
adapt Tarski’s ID relation to finally define concentric aligned hexagons
in the way Tarski defined concentric spheres. At this point, the way we
defined concentric rotated hyper-cubes gives the method to generalize
the definition to any concentric hexagon. How far we can go with this
combined method has not been explored yet. We also ignore how to deal
with other important classes of figures, like that of ellipses.

Aknowledgments. The author thanks Alessandro Artale and Giangia-
como Gerla for their encouragement while writing the paper.
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