1,096 research outputs found

    On the Derivative Imbalance and Ambiguity of Functions

    Full text link
    In 2007, Carlet and Ding introduced two parameters, denoted by NbFNb_F and NBFNB_F, quantifying respectively the balancedness of general functions FF between finite Abelian groups and the (global) balancedness of their derivatives DaF(x)=F(x+a)−F(x)D_a F(x)=F(x+a)-F(x), a∈G∖{0}a\in G\setminus\{0\} (providing an indicator of the nonlinearity of the functions). These authors studied the properties and cryptographic significance of these two measures. They provided for S-boxes inequalities relating the nonlinearity NL(F)\mathcal{NL}(F) to NBFNB_F, and obtained in particular an upper bound on the nonlinearity which unifies Sidelnikov-Chabaud-Vaudenay's bound and the covering radius bound. At the Workshop WCC 2009 and in its postproceedings in 2011, a further study of these parameters was made; in particular, the first parameter was applied to the functions F+LF+L where LL is affine, providing more nonlinearity parameters. In 2010, motivated by the study of Costas arrays, two parameters called ambiguity and deficiency were introduced by Panario \emph{et al.} for permutations over finite Abelian groups to measure the injectivity and surjectivity of the derivatives respectively. These authors also studied some fundamental properties and cryptographic significance of these two measures. Further studies followed without that the second pair of parameters be compared to the first one. In the present paper, we observe that ambiguity is the same parameter as NBFNB_F, up to additive and multiplicative constants (i.e. up to rescaling). We make the necessary work of comparison and unification of the results on NBFNB_F, respectively on ambiguity, which have been obtained in the five papers devoted to these parameters. We generalize some known results to any Abelian groups and we more importantly derive many new results on these parameters

    Enumerating Polytropes

    Full text link
    Polytropes are both ordinary and tropical polytopes. We show that tropical types of polytropes in TPn−1\mathbb{TP}^{n-1} are in bijection with cones of a certain Gr\"{o}bner fan GFn\mathcal{GF}_n in Rn2−n\mathbb{R}^{n^2 - n} restricted to a small cone called the polytrope region. These in turn are indexed by compatible sets of bipartite and triangle binomials. Geometrically, on the polytrope region, GFn\mathcal{GF}_n is the refinement of two fans: the fan of linearity of the polytrope map appeared in \cite{tran.combi}, and the bipartite binomial fan. This gives two algorithms for enumerating tropical types of polytropes: one via a general Gr\"obner fan software such as \textsf{gfan}, and another via checking compatibility of systems of bipartite and triangle binomials. We use these algorithms to compute types of full-dimensional polytropes for n=4n = 4, and maximal polytropes for n=5n = 5.Comment: Improved exposition, fixed error in reporting the number maximal polytropes for n=6n = 6, fixed error in definition of bipartite binomial

    Axiomatic Conformal Field Theory

    Get PDF
    A new rigorous approach to conformal field theory is presented. The basic objects are families of complex-valued amplitudes, which define a meromorphic conformal field theory (or chiral algebra) and which lead naturally to the definition of topological vector spaces, between which vertex operators act as continuous operators. In fact, in order to develop the theory, M\"obius invariance rather than full conformal invariance is required but it is shown that every M\"obius theory can be extended to a conformal theory by the construction of a Virasoro field. In this approach, a representation of a conformal field theory is naturally defined in terms of a family of amplitudes with appropriate analytic properties. It is shown that these amplitudes can also be derived from a suitable collection of states in the meromorphic theory. Zhu's algebra then appears naturally as the algebra of conditions which states defining highest weight representations must satisfy. The relationship of the representations of Zhu's algebra to the classification of highest weight representations is explained.Comment: 51 pages, plain TE

    On the Equivalence of Quadratic APN Functions

    Get PDF
    Establishing the CCZ-equivalence of a pair of APN functions is generally quite difficult. In some cases, when seeking to show that a putative new infinite family of APN functions is CCZ inequivalent to an already known family, we rely on computer calculation for small values of n. In this paper we present a method to prove the inequivalence of quadratic APN functions with the Gold functions. Our main result is that a quadratic function is CCZ-equivalent to an APN Gold function if and only if it is EA-equivalent to that Gold function. As an application of this result, we prove that a trinomial family of APN functions that exist on finite fields of order 2^n where n = 2 mod 4 are CCZ inequivalent to the Gold functions. The proof relies on some knowledge of the automorphism group of a code associated with such a function.Comment: 13 p
    • …
    corecore