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Abstract Establishing the CCZ-equivalence of a pair of APN functions is generally

quite difficult. In some cases, when seeking to show that a putative new infinite family of

APN functions is CCZ inequivalent to an already known family, we rely on computer

calculation for small values of n. In this paper we present a method to prove the

inequivalence of quadratic APN functions with the Gold functions. Our main result is

that a quadratic function is CCZ-equivalent to the APN Gold function x2
r+1 if and

only if it is EA-equivalent to that Gold function. As an application of this result, we

prove that a trinomial family of APN functions that exist on finite fields of order 2n

where n ≡ 2 mod 4 are CCZ inequivalent to the Gold functions. The proof relies on

some knowledge of the automorphism group of a code associated with such a function.
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1 Introduction

Let L be a finite field. A function f : L −→ L is said to be almost perfect nonlinear

(APN) if the number of solutions in L of the equation

f(x+ a)− f(x) = b (1)

is at most 2, for all a, b ∈ L, a 6= 0. If the number of solutions of (1) in L is at most δ, we

say f is differentially δ-uniform. Thus APN is the same as differentially 2-uniform. A

differentially 1-uniform function is also called a perfect nonlinear function, or a planar

function; however, these do not exist in characteristic 2 because in that case if x is a

solution of (1), so is x+ a. In this paper we only consider finite fields of characteristic

2.

The classical example of an APN function is f(x) = x3, which is APN (over any

field) because (1) is quadratic. These were generalized to the Gold functions f(x) =

x2
r+1, which are APN over F2n if (n, r) = 1.

APN functions were introduced in [7] by Nyberg, who defined them as the mappings

with highest resistance to differential cryptanalysis. Since then many papers have been

written on APN functions, although not many different families of such functions are

known. For some time the list of known (extended affine) inequivalent APN functions

comprised only monomial functions and was conjectured to be complete. Since 2006

several new families of non-monomial APN functions have been discovered. Two bino-

mial families are presented in Budaghyan-Carlet-Leander [3]. Two infinite families, one

of which generalizes the binomial family, were discovered in [2]. One of these families

consists of the trinomials in Equation (2) below, which we will study in Sections 5 and

6.

An important aspect of this problem, after establishing the APN property is to

check that the functions are really new, i.e. that they are inequivalent to the known APN

families. The notions of equivalence most pervasive in the current literature are extended

affine (EA) and Carlet-Charpin-Zinoviev (CCZ) equivalence [4]. EA-equivalence is finer

than CCZ-equivalence and is usually somewhat easier to establish.

Two functions f, g : L −→ L are called EA-equivalent if there exist affine permu-

tations A1, A2 and an affine map A such that g = A1 ◦ f ◦ A2 + A. The differential

uniformity of a function is an invariant of EA-equivalence. However, a bijective func-

tion is not necessarily EA-equivalent to its inverse, even though they have the same

differential uniformity.

Two functions are called CCZ-equivalent if the graph of one can be obtained from

the graph of the other by an affine permutation of the product space. Differential unifor-

mity and resistance to linear and differential attacks are invariants of CCZ-equivalence,

and unlike EA-equivalence, any permutation is always CCZ-equivalent to its inverse.

In the instance that a function f : L −→ L is quadratic, the map f(x+ y)+ f(x)+

f(y) is bilinear. Therefore, the problem of testing the APN property of f is reduced to

obtaining an estimate on the size of the kernel of the linear map f(x+a)+f(x)+f(a).

For this reason, most of the known non-monomial APN functions are in fact quadratic.

It turns out that in the case of quadratic functions the problem of establishing

CCZ equivalence can sometimes be reduced to checking EA-equivalence. Yves Edel

has asked recently in some conference presentations whether any two quadratic APN

functions are CCZ-equivalent if and only if they are EA-equivalent. The main result

of this paper is a partial answer: we prove that a quadratic APN function is CCZ-

equivalent to a Gold function if and only if it is EA-equivalent to that Gold function.
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Up to now, proofs that CCZ-equivalence implies EA-equivalence have been by lengthy

brute force computations for specific functions; see the proof of Theorem 4 in [3], for

example. Our result is more general, holding for any quadratic function, and the proof

is by different methods. Our methods will involve a study of the automorphism group

of a code determined by a quadratic function. For the Gold functions, this group is

known and has been determined by Berger [1]. We combine our main result with a

study of the automorphism group to show that a new family of APN functions found

by Bracken-Byrne-Markin-McGuire are CCZ inequivalent to any Gold function. This

family is a subclass of that given in [2] and has the following description. Let k and

s be odd coprime integers, let b, c ∈ F22k with c /∈ F2k , and b a primitive element of

F22k . The polynomials of the form

fs(x) = bx2
s+1 + (bx2

s+1)2
k

+ cx2
k+1 (2)

are APN on F22k . Previously, these polynomials were demonstrated in [2] to be in-

equivalent in general to x2
r+1 by using a computer to show the result for k = 3 and

k = 5.

This paper is organized as follows. In Section 2 we discuss some general background,

including the important connections between an APN function and a certain associated

code. Section 3 discusses the particular case of quadratic APN functions, and introduces

the property we use in this paper. In Section 4 we present our main result, which

proves that any quadratic APN function that is CCZ-equivalent to a Gold function

must be EA-equivalent to that Gold function. Section 5 proves some results about

automorphisms of family of APN functions in Equation (2), and Section 6 applies the

results of the paper to that family.

2 Equivalence of APN functions and codes.

Throughout the paper we fix a finite field K := F2n of characteristic 2. Let Tr denote

the absolute trace map from K to F2. We write F2n

2 = F
K
2 , implicitly fixing an ordering

of K. To a function f : K → K we associate a linear code Cf ≤ F
2n

2 = F
K
2 as

Cf := {cfα,β,ǫ | α, β ∈ K, ǫ ∈ F2}

where

cfα,β,ǫ : K → F2, x 7→ Tr(αx) + Tr(βf(x)) + ǫ.

It was first observed in [4] that the dual code of Cf has minimum distance 6 if and

only if f is APN. Also [2, Thm. 6] (first stated by John Dillon in a talk given at Banff

in 2006 and later in [5]) shows that two functions f, g are CCZ-equivalent if and only

if the associated linear binary codes Cf and Cg are equivalent. Recall that two codes

C,D ≤ F
N
2 are equivalent, if there is some permutation π ∈ SN of the coordinate places

with π(C) = D. Explicitly,

π(C) = {cfα,β,ǫπ | α, β ∈ K, ǫ ∈ F2}

where

cfα,β,ǫπ = x 7→ Tr(αxπ) + Tr(βf(xπ)) + ǫ.

The automorphism group of a code C is defined as

Aut(C) := {π ∈ SN | π(C) = C}.



4

Remark 1 Identifying the places of the codes with the elements of K, we obtain certain

canonical permutation groups:

(a) E := (K,+), the additive group of K, isomorphic to Z
n
2 , acting regularly on K by

a : K → K,x 7→ a+ x.

(b) M := K∗, the multiplicative group of K, isomorphic to Z2n−1 acting on K by

a : K → K,x 7→ ax. Note that K∗ fixes 0 and acts regularly on K \ {0}.

(c) Γ := Gal(K/F2) = 〈σ〉 ∼= Zn, the Galois group of K acting on K as the Frobenius

automorphism σ : K → K,x 7→ x2.

This paper mainly treats the important class of quadratic APN functions f : K →

K. Recall that the polynomial f ∈ K[x] is quadratic if for any non-zero k ∈ K, the

function f(x + k) + f(x) + f(k) is a linearized polyomial in x, or equivalently, if it is

F2-linear. The family of trinomials (2) is quadratic, as is x2
r+1.

The following proposition is well known – it states that the additive group of the

field is contained in the automorphism group of a quadratic function.

Proposition 1 Let f : K −→ K be quadratic. Then (K,+) ≤ Aut(Cf ).

Proof Since f is quadratic, for each k ∈ K we may write L(x+k) := f(x+k)+ f(x)+

f(k) =
∑

i kix
2i for some ki ∈ K. Using this and that fact that Tr(a) = Tr(a2) for

each a ∈ K we obtain:

πk(c
f
α,β,ǫ(x)) = cfα,β,ǫ(x+ k)

= Tr(α(x+ k)) + Tr(βf(x+ k)) + ǫ

= Tr(αx) + Tr(β(L(x+ k) + f(x) + f(k))) + Tr(αk) + ǫ

= Tr(αx) + Tr(βL(x+ k)) + Tr(βf(x)) + Tr(βf(k)) + Tr(αk) + ǫ

= Tr(αx) + Tr(
∑

i

(βki)
2−i

x) + Tr(βf(x)) + Tr(βf(k)) + Tr(αk) + ǫ

= cfα′,β,ǫ′(x)

where α′ = α+
∑

i(βki)
2−i

and ǫ′ = ǫ+ Tr(βf(k)) + Tr(αk). It follows that the map

πk : Cf −→ Cf : cfα,β,ǫ(x) 7→ cfα,β,ǫ(x+ k)

is an automorphism of Cf .

⊓⊔

We recall some basic definitions from group theory. Further background reading

may be read in [8]

Definition 1 Let G be a group and let H,N be subgroups of G, with N normal.

1. The normalizer of H in G, denoted NG(H), is the subgroup of G comprising all

g ∈ G such that gHg−1 = H .

2. The centralizer of H in G, for which we write CG(H) is the subgroup of G com-

prising all g ∈ G such that ghg−1 = h for all h ∈ H .

3. If N ∩H is the identity then the group NH is called the semi-direct product of N

and H and we write N : H .
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For the remainder, we will write A := NS2n
(K,+) to denote the normalizer of

(K,+) in the symmetric group on 2n elements.

This normalizer A plays the key role in establishing EA-equivalence via Theorem

1 below.

Proposition 2 The normalizer A of (K,+) in the symmetric group is the full affine

group. That is,

A = (K,+) : GLn(F2) ∼= (Zn
2 ) : GLn(F2).

Proof Since conjugation is a group automorphism, we obtain a group homomorphism

from the normalizer into the automorphism group

κ : A → Aut(K,+) ∼= GLn(F2), π 7→ (e 7→ πeπ−1).

Clearly, the kernel of κ is the centralizer CS2n
(K,+) of (K,+) in S2n and soA/CS2n

(K,+) ∼=
GLn(F2). Now (K,+) acts regularly on itself via πk : x 7→ x + k. We claim that

CS2n
(K,+) = (K,+). It is clear that (K,+) ⊆ CS2n

(K,+), since (K,+) is abelian.

To see the converse inclusion let θ ∈ CS2n
(K,+). Composing θ with the inverse of the

permutation πθ(0) ∈ (K,+) we may assume that π(0) = 0. By assumption, θ = πkθπ−k

for all k ∈ K and hence θ(x) = θ(x − k) + k for all x, k ∈ K. In particular this gives

θ(k) = k for all k, so that θ is the identity. We deduce that CS2n
(K,+) = (K,+).

The elements in GLn(F2) stabilize 0 ∈ K, hence (K,+) meets GLn(F2) at the iden-

tity and we conclude that the normalizer A is the semidirect product as given in the

proposition.

⊓⊔

Remark 2 The group A is also the automorphism group, A = Aut(C0), of the first-

order Reed-Muller code (see [6, Ch. 13, Sec. 9])

C0 = {cα,0,ǫ | α ∈ K, ǫ ∈ F2}.

The next ‘folklore’ result is an important reformulation of EA-equivalence in terms

of codes. To our knowledge a proof has not appeared in literature. We include a proof

here for completeness.

Theorem 1 A acts on {Cf | f : K → K}. Functions f and g are EA-equivalent

functions if and only if the codes Cf and Cg are in the same A-orbit.

In the proof it will be convenient to work with generator matrices. Let N := 2n

denote the length of the code Cf . By a generator matrix G for Cf we mean a matrix

G with row-space Cf . Choosing an F2-basis (b1, . . . , bn) of K we obtain a generator

matrix of the form G =





1

G′
0

Gf



 where 1 ∈ {1}1×N denotes the row consisting of 1

only and G′
0, Gf ∈ F

n×N
2 are defined by indexing the columns with the elements of K

as

(G′
0)i,x := Tr(bix), (Gf )i,x := Tr(bif(x)). (⋆)

Note that G0 :=

(

1

G′
0

)

∈ F
(n+1)×N
2 is a generator matrix for the first-order Reed-

Muller code C0.

The following Lemma is of independent interest.
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Lemma 1 Let f, g : K → K. Then Cf = Cg if and only if g = A1 ◦ f + A for some

affine permutation A1 and some affine map A.

Proof Let G =





1

G′
0

Gf



 and G′ =





1

G′
0

Gg



 be generator matrices of Cf resp. Cg as

above. Then Cf = Cg if and only if G and G′ have the same rowspace, if and only if

there are B1 ∈ GLn(F2), B ∈ F
n×n
2 , t ∈ F

n×1
2 such that

Gg = B1Gf +BG′
0 + t1.

By (⋆) above, this means that for all x ∈ K and all 1 ≤ i ≤ n

Tr(big(x)) = Tr(B1bif(x)) + Tr(Bbix) + ti

and hence g = A1 ◦ f +A with A1 = (Bad
1 , 0) and A = (Bad, t) where aad denotes the

adjoint linear map of a with respect to the trace bilinear form. A similar calculation

shows the converse.

⊓⊔

Proof of Theorem 1: (1) We first show that

{Cf | f : K → K} = {C ≤ F
K
2 | C0 ⊆ C,dim(C) ≤ 2n+ 1},

and in particular that A = Aut(C0) acts on this set.

The inclusion ⊆ is clear. So let C ≤ F
K
2 be a code of dimension ≤ 2n+1 that contains

C0 and let

G =

(

G0

G1

)

∈ F
(2n+1)×N
2

be a generator matrix of C. Let T ∈ F
n×n
2 denote the Gram matrix of the basis

(b1, . . . , bn) of K with respect to the trace bilinear form,

Ti,j = Tr(bibj).

Then T ∈ GLn(F2) by the non degeneracy of the trace. For x ∈ K let fx denote the

column of index x of T−1G1 and define f : K → K by f(x) :=
∑d

i=1(fx)ibi ∈ K the

corresponding element in K. Then G1 = Gf and hence C = Cf .

(2) Now let f, g : K → K be EA-equivalent, so there are affine permutations A1, A2

and an affine mapping A such that g = (A1 ◦ f ◦ A2) + A. We have to show that Cg

and Cf are in the same orbit under A. By Lemma 1 we may assume that A1 = 1 and

A = 0 and hence that g = f ◦ A2 for some A2 ∈ (K,+) : GLF2
(K) ∼= A. This means

that g(x) = f(A2(x)) and A2 induces a permutation of the places x ∈ K that are in

A.

(3) Finally we prove the converse implication. Assume that there is some π ∈ A such

that Cf = π(Cg). Let G =





1

G′
0

Gg



 be the generator matrix of Cg as above. Then

π(Cg) = Cf has a generator matrix

Gπ =





1

G′
0π

Ggπ
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obtained by multiplying G with the permutation matrix π from the right. Since π fixes

the code C0, there is A ∈ GLn(F2) and t ∈ F
n×1
2 such that

G′
0π = AG′

0 + t1.

Therefore there are matrices t1 ∈ F
n×1
2 , B1 ∈ F

n×n
2 , A1 ∈ GLn(F2) s.t.





1 0 0

t A 0

t1 B1 A1









1

G′
0π

Ggπ



 =





1

G′
0

Gf





reading as

Gf = A1Ggπ +B1G
′
0 + t11 = GA1◦g◦π+(B1,t1).

Since π is an affine permutation, and (B1, t1) is an affine mapping this yields that

f = A1 ◦ g ◦ π + (B1, t1) is EA-equivalent to g. ⊓⊔

3 Quadratic APN functions

We now consider quadratic APN functions h satisfying the property that all regular ele-

mentary abelian subgroups of Aut(Ch) are conjugate to (K,+). We will show that such

functions satisfy Edel’s conjecture, i.e., that CCZ-equivalence for this family implies

EA-equivalence. In fact the APN property is not required in what follows. However,

our interest in CCZ-equivalence is usually restricted to the class of APN functions.

Theorem 2 Let h be a quadratic function such that E := (K,+) ≤ Aut(Ch) =: H ≤

S2n . Assume that for all π ∈ S2n

πEπ−1 ≤ H ⇒ there is some hπ ∈ H such that πEπ−1 = hπEh−1
π .

If a quadratic function f is CCZ-equivalent to h then it is also EA-equivalent to h.

Proof Since f and h are CCZ-equivalent, there is π ∈ S2n such that π(Cf ) = Ch. The

subgroup E ≤ Aut(Cf ) is hence conjugated to πEπ−1 ≤ Aut(Ch). By assumption this

implies that h−1
π π normalizes E, and hence h−1

π π ∈ NS2n
(E) = A and h−1

π π(Cf ) =

h−1
π (Ch) = Ch. By Theorem 1 this means that the two functions are EA-equivalent.

⊓⊔

Since all regular elementary abelian subgroups are conjugate in S2n , the following

corollary is a reformulation of the theorem above and suggests one strategy to prove

Edel’s conjecture for arbitrary quadratic APN functions.

Corollary 1 Let h be a quadratic function such that all regular elementary abelian

subgroups of Aut(Ch) are conjugate to (K,+). Then all quadratic functions f that are

CCZ-equivalent to h are indeed EA-equivalent to h.

Thus Edel’s conjecture for APN functions is proved under the stated hypothesis

of Corollary 1. We do not know any quadratic APN functions h for which the above

property does not hold, i.e., for which Aut(Ch) contains more than one conjugacy

class of regular elementary abelian subgroups. We checked that it holds for all known

APN functions of degree up to 7. Note that this is not true for arbitrary functions,

for example, linear functions f have Aut(Cf ) equal to the affine linear group, which

usually has several different conjugacy classes of elementary abelian subgroups of order

2n.
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4 Quadratic functions equivalent to the Gold function

Well understood examples of quadratic APN functions are the Gold functions

g : K → K, x 7→ x2
r+1

for a fixed positive integer r satisfying (r, n) = 1. The automorphism group G of Cg

contains some obvious automorphisms: the additive group of the field, the multiplicative

group of the field, and the Galois automorphisms. Results of Berger [1] show that this

is the full automorphism group, i.e.,

G := Aut(Cg) ∼= (K,+) : K∗ : Gal(K/F2) = EMΓ

(in the notation of Remark 1) of order |G| = |E| · |M | · |Γ | = 2n(2n − 1)n. The proof

uses the classification of finite simple groups.

We recall some basic definitions.

Definition 2 Let G be a finite group and let H be a subgroup of G. We say that H

is a p-subgroup of G if H has order pr for some positive integer r. H is called a Sylow

p-subgroup of G if r is the greatest positive integer such that pr divides |G|.

The well-known second Sylow theorem states that all Sylow p-subgroups of a group

G are conjugate in G. Since any subgroup that is normal in G forms its own conjugacy

class, as a direct consequence of this Sylow theorem we have that if H is a normal

Sylow p-subgroup of G then it is the unique subgroup of G of that order.

Lemma 2 (K,+) is the unique subgroup of G that is isomorphic to Z
n
2 .

Proof This is clear, if n is odd, since then 2n is the largest 2-power in |G| and (K,+)

is a Sylow 2-subgroup of G, which must be unique since (K,+) is normal in G and all

such Sylow 2-subgroups are conjugate.

Assume now that n = 2k is even and let T ∼= Z
n
2 be an elementary abelian subgroup

of G. Then any x ∈ T satisfies x2 = 1 so in particular x2 ∈ (K,+). Therefore T is

a subgroup of S := (K,+) : 〈τ 〉 = {x ∈ G | x2 ∈ (K,+)}, where τ = σk : z 7→

z2
k

∈ Gal(K/F2) is the Galois automorphism of order 2. It is easy to check that the

centralizer of τ in S is isomorphic to (F2k ,+)×〈τ 〉, which has order 2k+1. Now consider

the natural epimorphism S → S/(K,+) ∼= 〈τ 〉 and assume that the elementary abelian

subgroup T ≤ S is not contained in the kernel of this map (i.e. assume that T is not

equal to K). Then there exists some s ∈ (K,+) such that sτ ∈ T . Now T is abelian

and is generated by sτ and T ∩K. Therefore T ∩K has index 2 in T and so has order

|T |/2 = 22k−1. Let θ ∈ T ∩K. Then sτθ = θsτ = sθτ , and hence θ commutes with τ .

This shows that T ∩K ⊂ CS(τ ). But then 22k−1 = |T ∩K| ≤ |CS(τ )| = 2k+1 < 22k−1,

giving a contradiction. We deduce that T = (K,+), and hence (K,+) is the unique

elementary abelian subgroup of order 22k of G.

⊓⊔

The main result of this paper, stated below, follows now from Lemma 2 and Corol-

lary 1.

Theorem 3 Let f be a quadratic APN function and g be a Gold function. If f and g

are CCZ-equivalent, then they are EA-equivalent.
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Corollary 2 Let h be a quadratic APN function such that Aut(Ch) is isomorphic to

a subgroup of G. Then all quadratic APN functions f that are CCZ-equivalent to h are

indeed EA-equivalent to h.

Regarding a proof of Edel’s conjecture, we may indeed hope that the automorphism

group of any quadratic APN function is contained in G. If this were true, proving it

would complete a proof of Edel’s conjecture, thanks to Corollary 2. However, this is

not true:

Example 1 Consider the quadratic functions given in [5] .

h1 := x3 + x5 + u62x9 + u3x10 + x18 + u3x20 + u3x34 + x40,

h2 := x3 + u11x5 + u13x9 + x17 + u11x33 + x48,

and

h3 := x3 + x17 + u16(x18 + x33) + u15x48.

Then h1 and h2 are APN on GF (26) and |Aut(Ch1
)| = |Aut(Ch2

)| = 26.5, which is

not a divisor of 26(26 − 1)6. The polynomial h3 is APN on GF (28) and Aut(Ch3
) has

order 210.32.5, which does not divide 28(28 − 1)8.

5 Automorphisms of Family (2)

We could now use Theorem 3 directly to establish CCZ-inequivalence of a member

of Family (2) (or indeed any other quadratic) to the Gold functions by establishing

EA-inequivalence, which can be achieved by a brute-force comparison of coefficients in

the equation g = A1 ◦ f ◦ A2 + A.

Instead we find that further knowledge of the automorphism group associated with

Family (2) allows us to show that for this family, CCZ-equivalence with the Gold

functions holds not merely if and only if the corresponding codes are equivalent (EA-

equivalence), but if and only if they are equal. Thus in this instance we can avoid

applying brute-force.

Let k, s be odd coprime integers, K = F22k and L := F2k the subfield of K of

index 2. We denote by T2 : K → L the relative trace of K to L.

We compute a subgroup U of the automorphism group of the APN functions in

Family (2), which is big enough to allow us to prove that if a function f in Family (2)

is EA-equivalent to a Gold function g, then Cf = Cg . We remark that the particular

form of f = T2(bx
2s+1)+ cx2

k+1 is helpful in determining some of the automorphisms

of Cf . Most other (known) APN functions do not have such a form, and determining

their automorphisms seems to be difficult.

It will be helpful to us to parametrize f by s and c ∈ K\L; we write

f = fc,s := bx2
s+1 + (bx2

s+1)2
k

+ cx2
k+1,

for any b primitive in K.

Since fc,s is an APN function, dim(Cfc,s) = 4k + 1 (c.f. [4, Cor. 1]) and

Cfc,s = 〈1〉 ⊕ C0 ⊕ Cc = 〈c0,0,1〉 ⊕ {cα,0,0 | α ∈ K} ⊕ {cf0,β,0 | β ∈ K}.

We claim the following.
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Lemma 3 Any two c, d ∈ K \ L define the same codes, i.e., Cc = Cd.

Proof For c ∈ K \ L we have

fc,s(x) = (bx2
s+1) + (bx2

s+1)2
k

+ cx2
k+1 = T2(bx

2s+1) + cx2
k+1.

Note that for any x ∈ K the element x2
k+1 lies in L. We have to show that the set

{cf0,β,0 | β ∈ K} is independent of the choice of c. By the transitivity of the trace we

obtain cf0,β,0(x) = TrL/F2
(T2(βfc,s(x))) and

T2(βfc,s(x)) = T2(β)T2(bx
2s+1) + T2(βc)x

2k+1.

Since the trace T2 is nondegenerate and (1, c) as well as (1, d) form a basis of K over

L, there is for any given pair (T2(β), T2(βc)) a unique β′ ∈ K such that

T2(β
′) = T2(β) and T2(β

′d) = T2(βc).

So the code Cc is independent of the choice of c ∈ K \ L.

⊓⊔

Lemma 4 We have F
∗
4 ⊆ Aut(Cfc,s).

Proof Let ω be a generator for F
∗
4. Since s and k are odd, the exponents 2s + 1 and

2k + 1 are both multiples of 3 and hence fc,s(ωx) = fc,s(x).

⊓⊔

Lemma 5 We have L∗ ⊆ Aut(Cfc,s).

Proof If z ∈ L∗ it is easy to check that fc,s(zx) = z2
s+1fcz1−2s (x). All transformations

involved do not change the code Cfc,s , using Lemma 3. So multiplication by a primitive

element of L is an automorphism.

⊓⊔

Hence we obtain the following result:

Theorem 4 Aut(Cfc,s ) contains a subgroup U ∼= (K,+) : (F∗
4 × L∗) of order 22k ·

3(2k − 1).

Note that Aut(Cfc,s ) is not abelian, since the subgroup U we know about is not

abelian.

For s = 1 we obtain one more automorphism giving rise to a subgroup of order

22k · 3k · (2k − 1) of Aut(Cfc,1). We conjecture that this is the actual order. This has

been verified by computer for k = 3 and k = 5.

Lemma 6 Aut(Cfc,1) has an element δ of order 3k, such that δk = ω from Lemma 4.

Proof Choose c = b(2
k+1)/3. Then c ∈ K \L and by Lemma 3 we may assume without

loss of generality that f = fc,1. It is easily checked that fc,1(bx) is equal to σ2(f(x)),

where σ is the Frobenius automorphism of K over F2. Letting Tb(f(x)) = f(bx), the

map δ := σ−2 ◦ Tb is hence an automorphism of Cfc , and its order can be checked to

be 3k.

⊓⊔

The automorphism groups of other families of APN functions do not appear to

be as easy to work with as for Family (2). Therefore we have not been able to prove

similar results for other families.
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6 Inequivalence.

We apply the results of the previous sections to give a proof that Family (2) functions

are not CCZ-equivalent to Gold functions.

Theorem 5 Let g : K → K be a Gold-function and f : K → K be an APN function

in Family (2). If f and g are EA-equivalent, then the associated codes Cf and Cg are

equal.

For the proof of the theorem we need two lemmas, the first one is surely well-known.

Recall that if a group G acts on a set X and a ∈ X then the stabilizer subgroup of a,

denoted StabG(a) is the set of elements of G that fix a.

Lemma 7 NGLn(F2)(K
∗) = K∗ : Gal(K/F2).

Proof Let G = NGLn(F2)(K
∗). Clearly K∗ ≤ G = K∗StabG(1). So it is enough to

show that the elements π ∈ G with π(1) = 1 are indeed field automorphisms of K

and therefore contained in Gal(K/F2). Choose π ∈ G such that π(1) = 1. Since π ∈

GLn(F2), the mapping π acts linearly on the set K and hence respects the addition.

We now show that

π(ab) = π(a)π(b) for all a, b ∈ K.

To see this let α, β ∈ K∗ ⊂ Sn be such that α(1) = a, β(1) = b. Since π normalizes

K∗, also

α̃ := παπ−1 and β̃ := πβπ−1 ∈ K∗.

We calculate π(a) = π(α(1)) = (παπ−1)(1) = α̃(1) and similarly π(b) = β̃(1). Clearly

ab = α(β(1)) and

π(ab) = (παβπ−1)(1) = α̃(β̃(1)) = π(a)π(b).

⊓⊔

Lemma 8 The group G from Lemma 7 contains a unique cyclic subgroup of order

3(2k − 1).

Proof All elements of G are of the form aγ where a ∈ K∗ and γ ∈ Gal(K,F2). Assume

that such an element aγ has order 3(2k − 1). Let ℓ be the order of γ. Then ℓ divides

2k = ℓm and also the order of aγ. We calculate

(aγ)ℓ = NK/F2m
(a) ∈ F

∗
2m

∼= Z2m−1.

So aγ has order dividing ℓ(2m − 1) and we conclude that

3(2k − 1) divides ℓ(22k/ℓ − 1)

from which we obtain that ℓ = 1.

⊓⊔

Proof (of Theorem 5) Assume that there is some π ∈ A with π(Cf ) = Cg . We identify

the places of the code with K. Since Aut(Cg) is 2-transitive on K (cf. [6]), we may

assume without loss of generality that

π(0) = 0 and π(1) = 1 so π ∈ GLn(F2) = StabA(0).
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Moreover π conjugates U ≤ Aut(Cf ) into G = Aut(Cg), and since π fixes 0, also

Z3(2k−1)
∼= πStabU (0)π

−1 = π(L∗ × F
∗
4)π

−1 ≤ StabG(0) = K∗ : Gal(K,F2).

By Lemma 8 this implies that π normalizes L∗×F
∗
4 ≤ K∗. Since L∗ and F

∗
4 generate K

as an F2-algebra, the linear span of the matrices in L∗×F
∗
4 is equal to K = K∗∪{0} ⊂

F
n×n
2 . Therefore π also normalizes K and hence K∗, so π ∈ Gal(K,F2) ≤ G by Lemma

7. This proves the theorem since we have shown that any equivalence π between the

codes Cf and Cg is indeed already contained in Aut(Cg).

⊓⊔

Theorem 6 Cf 6= Cg.

Proof Suppose that Cf = Cg . Then given any ǫ ∈ F2, α, β ∈ K there exist ǫ′ ∈ F2,

α′, β′ ∈ K satisfying

ǫ+ Tr(αx) + Tr(β(T2(bx
2s+1) + cx2

k+1)) = ǫ′ + Tr(α′x) + Tr(β′x2
r+1))

for all x ∈ K, so in particular we must have ǫ = ǫ′. Choose β ∈ L. Then we have

Tr(β(T2(bx
2s+1))) = Tr(T2(βbx

2s+1)) = 0 and so

Tr((α+ α′)x) = Tr(βcx2
k+1) + Tr(β′x2

r+1),

for all x ∈ K. Using the linearity of the LHS we obtain

Tr(βc(x2
k

a+xa2
k

)+β′(x2
r

a+xa2
r

)) = Tr((βx2
k

(c+c2
k

)+(β′)2
−r

x2
−r

+β′x2
r

)a) = 0,

for all x, a ∈ K. This implies that βx(c+ c2
k

) + (β′)2
k−r

x2
k−r

+ (β′)2
k

x2
k+r

∈ K[x]

is identically zero, which, observing the degree of this polynomial and the fact that

(r, 2k) = 1, we see is impossible unless β = β′ = 0.

⊓⊔

Remark 3 In fact this can also be readily seen by Lemma 1 by a simple comparison of

coefficients.

We now combine the results of Theorems 5, 6 and Corollary 3 in the following

statement.

Corollary 3 The functions of Family 2 are not CCZ-equivalent to the Gold functions.

Acknowledgements We thank the referees whose comments led to a much better presenta-
tion of this paper.
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