3,361 research outputs found

    Orientation matching for diffusion tensor image registration.

    Get PDF
    This thesis develops a registration algorithm specifically for diffusion-tensor (DT) images. The proposed approach matches the tensor orientations to find the registration transformation. Early results show that local optimisation does not find the global minimum in registration of DT-MR brain images. Therefore, a global optimisation registration technique is also implemented. This thesis proposes several new similarity measures for DT registration and provides a comparison of them along with several others previously proposed in the literature. The thesis also proposes several new performance evaluation measures to assess registration quality and develops a performance evaluation framework that uses directional coherence and landmark separation. Experiments with direct optimisation demonstrate increased local minima in tensor registration objective functions over scalar registration. Using registration with global optimisation, this thesis compares the performance of scalar-derived similarity measures with those derived from the full tensor. Results suggest that similarity measures derived from the full tensor matrix do not find a more accurate registration than those based on the derived scalar indices. Affine and higher-order polynomial registration is not reliable enough to make a firm conclusion about whether diffusion tensor orientation matching improves the accuracy of registration over registration algorithms that ignore orientation. The main problem preventing a firm conclusion is that the local minima problem persists despite the use of global optimisation, causing poor registration of the regions of interest

    Spatial transformations of diffusion tensor magnetic resonance images

    Get PDF
    The authors address the problem of applying spatial transformations (or “image warps”) to diffusion tensor magnetic resonance images. The orientational information that these images contain must be handled appropriately when they are transformed spatially during image registration. The authors present solutions for global transformations of three-dimensional images up to 12-parameter affine complexity and indicate how their methods can be extended for higher order transformations. Several approaches are presented and tested using synthetic data. One method, the preservation of principal direction algorithm, which takes into account shearing, stretching and rigid rotation, is shown to be the most effective. Additional registration experiments are performed on human brain data obtained from a single subject, whose head was imaged in three different orientations within the scanner. All of the authors' methods improve the consistency between registered and target images over naive warping algorithms

    Diffeomorphic Metric Mapping of High Angular Resolution Diffusion Imaging based on Riemannian Structure of Orientation Distribution Functions

    Full text link
    In this paper, we propose a novel large deformation diffeomorphic registration algorithm to align high angular resolution diffusion images (HARDI) characterized by orientation distribution functions (ODFs). Our proposed algorithm seeks an optimal diffeomorphism of large deformation between two ODF fields in a spatial volume domain and at the same time, locally reorients an ODF in a manner such that it remains consistent with the surrounding anatomical structure. To this end, we first review the Riemannian manifold of ODFs. We then define the reorientation of an ODF when an affine transformation is applied and subsequently, define the diffeomorphic group action to be applied on the ODF based on this reorientation. We incorporate the Riemannian metric of ODFs for quantifying the similarity of two HARDI images into a variational problem defined under the large deformation diffeomorphic metric mapping (LDDMM) framework. We finally derive the gradient of the cost function in both Riemannian spaces of diffeomorphisms and the ODFs, and present its numerical implementation. Both synthetic and real brain HARDI data are used to illustrate the performance of our registration algorithm

    Alterations in white matter microstructure in neurofibromatosis-1.

    Get PDF
    Neurofibromatosis (NF1) represents the most common single gene cause of learning disabilities. NF1 patients have impairments in frontal lobe based cognitive functions such as attention, working memory, and inhibition. Due to its well-characterized genetic etiology, investigations of NF1 may shed light on neural mechanisms underlying such difficulties in the general population or other patient groups. Prior neuroimaging findings indicate global brain volume increases, consistent with neural over-proliferation. However, little is known about alterations in white matter microstructure in NF1. We performed diffusion tensor imaging (DTI) analyses using tract-based spatial statistics (TBSS) in 14 young adult NF1 patients and 12 healthy controls. We also examined brain volumetric measures in the same subjects. Consistent with prior studies, we found significantly increased overall gray and white matter volume in NF1 patients. Relative to healthy controls, NF1 patients showed widespread reductions in white matter integrity across the entire brain as reflected by decreased fractional anisotropy (FA) and significantly increased absolute diffusion (ADC). When radial and axial diffusion were examined we found pronounced differences in radial diffusion in NF1 patients, indicative of either decreased myelination or increased space between axons. Secondary analyses revealed that FA and radial diffusion effects were of greatest magnitude in the frontal lobe. Such alterations of white matter tracts connecting frontal regions could contribute to the observed cognitive deficits. Furthermore, although the cellular basis of these white matter microstructural alterations remains to be determined, our findings of disproportionately increased radial diffusion against a background of increased white matter volume suggest the novel hypothesis that one potential alteration contributing to increased cortical white matter in NF1 may be looser packing of axons, with or without myelination changes. Further, this indicates that axial and radial diffusivity can uniquely contribute as markers of NF1-associated brain pathology in conjunction with the typically investigated measures

    Voxel-wise comparisons of cellular microstructure and diffusion-MRI in mouse hippocampus using 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND)

    Get PDF
    A key challenge in medical imaging is determining a precise correspondence between image properties and tissue microstructure. This comparison is hindered by disparate scales and resolutions between medical imaging and histology. We present a new technique, 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND), for registering medical images with 3D histology to overcome these limitations. Ex vivo 120 × 120 × 200 μm resolution diffusion-MRI (dMRI) data was acquired at 7 T from adult C57Bl/6 mouse hippocampus. Tissue was then optically cleared using CLARITY and stained with cellular markers and confocal microscopy used to produce high-resolution images of the 3D-tissue microstructure. For each sample, a dense array of hippocampal landmarks was used to drive registration between upsampled dMRI data and the corresponding confocal images. The cell population in each MRI voxel was determined within hippocampal subregions and compared to MRI-derived metrics. 3D-BOND provided robust voxel-wise, cellular correlates of dMRI data. CA1 pyramidal and dentate gyrus granular layers had significantly different mean diffusivity (p > 0.001), which was related to microstructural features. Overall, mean and radial diffusivity correlated with cell and axon density and fractional anisotropy with astrocyte density, while apparent fibre density correlated negatively with axon density. Astrocytes, axons and blood vessels correlated to tensor orientation

    Characterization of age-related microstructural changes in locus coeruleus and substantia nigra pars compacta.

    Get PDF
    Locus coeruleus (LC) and substantia nigra pars compacta (SNpc) degrade with normal aging, but not much is known regarding how these changes manifest in MRI images, or whether these markers predict aspects of cognition. Here, we use high-resolution diffusion-weighted MRI to investigate microstructural and compositional changes in LC and SNpc in young and older adult cohorts, as well as their relationship with cognition. In LC, the older cohort exhibited a significant reduction in mean and radial diffusivity, but a significant increase in fractional anisotropy compared with the young cohort. We observed a significant correlation between the decrease in LC mean, axial, and radial diffusivities and measures examining cognition (Rey Auditory Verbal Learning Test delayed recall) in the older adult cohort. This observation suggests that LC is involved in retaining cognitive abilities. In addition, we observed that iron deposition in SNpc occurs early in life and continues during normal aging
    corecore