2,916 research outputs found

    Elementary notions of lattice trigonometry

    Get PDF
    In this paper we study properties of lattice trigonometric functions of lattice angles in lattice geometry. We introduce the definition of sums of lattice angles and establish a necessary and sufficient condition for three angles to be the angles of some lattice triangle in terms of lattice tangents. This condition is a version of the Euclidean condition: three angles are the angles of some triangle iff their sum equals \pi. Further we find the necessary and sufficient condition for an ordered n-tuple of angles to be the angles of some convex lattice polygon. In conclusion we show applications to theory of complex projective toric varieties, and a list of unsolved problems and questions.Comment: 49 pages; 16 figure

    The cross covariogram of a pair of polygons determines both polygons, with a few exceptions

    Full text link
    The cross covariogram g_{K,L} of two convex sets K and L in R^n is the function which associates to each x in R^n the volume of the intersection of K and L+x. Very recently Averkov and Bianchi [AB] have confirmed Matheron's conjecture on the covariogram problem, that asserts that any planar convex body K is determined by the knowledge of g_{K,K}. The problem of determining the sets from their covariogram is relevant in probability, in statistical shape recognition and in the determination of the atomic structure of a quasicrystal from X-ray diffraction images. We prove that when K and L are convex polygons (and also when K and L are planar convex cones) g_{K,L} determines both K and L, up to a described family of exceptions. These results imply that, when K and L are in these classes, the information provided by the cross covariogram is so rich as to determine not only one unknown body, as required by Matheron's conjecture, but two bodies, with a few classified exceptions. These results are also used by Bianchi [Bia] to prove that any convex polytope P in R^3 is determined by g_{P,P}.Comment: 26 pages, 9 figure

    Introducing symplectic billiards

    Full text link
    In this article we introduce a simple dynamical system called symplectic billiards. As opposed to usual/Birkhoff billiards, where length is the generating function, for symplectic billiards symplectic area is the generating function. We explore basic properties and exhibit several similarities, but also differences of symplectic billiards to Birkhoff billiards.Comment: 41 pages, 16 figure
    corecore