8 research outputs found

    Camera calibration from surfaces of revolution

    Get PDF
    This paper addresses the problem of calibrating a pinhole camera from images of a surface of revolution. Camera calibration is the process of determining the intrinsic or internal parameters (i.e., aspect ratio, focal length, and principal point) of a camera, and it is important for both motion estimation and metric reconstruction of 3D models. In this paper, a novel and simple calibration technique is introduced, which is based on exploiting the symmetry of images of surfaces of revolution. Traditional techniques for camera calibration involve taking images of some precisely machined calibration pattern (such as a calibration grid). The use of surfaces of revolution, which are commonly found in daily life (e.g., bowls and vases), makes the process easier as a result of the reduced cost and increased accessibility of the calibration objects. In this paper, it is shown that two images of a surface of revolution will provide enough information for determining the aspect ratio, focal length, and principal point of a camera with fixed intrinsic parameters. The algorithms presented in this paper have been implemented and tested with both synthetic and real data. Experimental results show that the camera calibration method presented here is both practical and accurate.published_or_final_versio

    Shape description and matching using integral invariants on eccentricity transformed images

    Get PDF
    Matching occluded and noisy shapes is a problem frequently encountered in medical image analysis and more generally in computer vision. To keep track of changes inside the breast, for example, it is important for a computer aided detection system to establish correspondences between regions of interest. Shape transformations, computed both with integral invariants (II) and with geodesic distance, yield signatures that are invariant to isometric deformations, such as bending and articulations. Integral invariants describe the boundaries of planar shapes. However, they provide no information about where a particular feature lies on the boundary with regard to the overall shape structure. Conversely, eccentricity transforms (Ecc) can match shapes by signatures of geodesic distance histograms based on information from inside the shape; but they ignore the boundary information. We describe a method that combines the boundary signature of a shape obtained from II and structural information from the Ecc to yield results that improve on them separately

    Object-Image Correspondence for Algebraic Curves under Projections

    Full text link

    Affine Integral Invariants for Extracting Symmetry Axes

    No full text
    In this paper, we propose integral invariants based on group invariant parameterisation. The new invariants do not suffer from occlusion problems, do not require any correspondence of image features unlike existing algebraic invariants, and are less sensitive to noise than differential invariants. Our framework applies arline differential geometry to derive novel arline integral invariants. The new invariants are exploited for extracting the symmetry axes of planar objects viewed under weak perspective. The proposed method is tested on natural leaves and is shown to extract symmetry axes reliably
    corecore