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Camera Calibration from Surfaces of Revolution
Kwan-Yee K. Wong, Paulo R.S. Mendonça, and Roberto Cipolla, Member, IEEE

Abstract—This paper addresses the problem of calibrating a pinhole camera from images of a surface of revolution. Camera

calibration is the process of determining the intrinsic or internal parameters (i.e., aspect ratio, focal length, and principal point) of a

camera, and it is important for both motion estimation and metric reconstruction of 3D models. In this paper, a novel and simple

calibration technique is introduced, which is based on exploiting the symmetry of images of surfaces of revolution. Traditional

techniques for camera calibration involve taking images of some precisely machined calibration pattern (such as a calibration grid).

The use of surfaces of revolution, which are commonly found in daily life (e.g., bowls and vases), makes the process easier as a result

of the reduced cost and increased accessibility of the calibration objects. In this paper, it is shown that two images of a surface of

revolution will provide enough information for determining the aspect ratio, focal length, and principal point of a camera with fixed

intrinsic parameters. The algorithms presented in this paper have been implemented and tested with both synthetic and real data.

Experimental results show that the camera calibration method presented here is both practical and accurate.

Index Terms—Camera calibration, surface of revolution, harmonic homology, absolute conic, vanishing point.

æ

1 INTRODUCTION

AN essential step for motion estimation and 3D Euclidean
reconstruction, two important tasks in computer vision,

is the determination of the intrinsic parameters of cameras.
This process, known as camera calibration, usually involves
taking images of some special pattern with known geometry,
extracting the features from the images, and minimizing their
reprojection errors. Details of such calibration algorithms can
be found in [1], [2], [3], [4], [5, chapter 7] and [6, chapter 3].
These methods do not require direct mechanical measure-
ments on the cameras, and often produce very good results.
Nevertheless, they involve the design and use of highly
accurate tailor-made calibration patterns, which are often
both difficult and expensive to be manufactured.

In this paper, a novel technique for camera calibration is
introduced. It relates the idea of calibration from vanishing
points [7], [8], [9] to the symmetry properties exhibited in
the silhouettes of surfaces of revolution [10], [11], [12], [13],
[14]. The method presented here allows the camera to be
calibrated from two or more silhouettes of surfaces of
revolution (like bowls and vases, etc.), which are commonly
found in daily life. The use of such objects has the
advantages of easy accessibility and low cost, in contrast
to traditional calibration patterns.

This paper is organized as follows: Section 2 gives a
literature survey on existing camera calibration techniques.
Section 3 defines the camera model used and gives brief
reviews on camera calibration from vanishing points and the
symmetry properties associated with the silhouettes of

surfaces of revolution. These provide the theoretical back-
ground needed for the camera calibration method [15]
introduced in Section 4. The algorithms and implementation
details are given in Section 5, followed by a discussion of the
singular cases and an error analysis in Sections 6 and 7.
Section 8 first presents results of experiments conducted on
synthetic data, which are used to perform an evaluation on
the robustness of the algorithms in the presence of noise.
Experiments on real data then show the usefulness of the
proposed method. Finally, conclusions are given in Section 9.

2 PREVIOUS WORKS

Classical calibration techniques [16], [17], [18] in photogram-
metry involve full-scale nonlinear optimizations with large
numbers of parameters. These techniques are able to cope
with complex camera models and they produce accurate
results, but require a good initialization and are computa-
tionally expensive. In [19], Abdel-Aziz and Karara presented
the direct linear transformation (DLT) technique, which is one
of the most commonly used calibration techniques in the field
of computer vision. By ignoring lens distortion and treating
the coefficients of the 3� 4 projection matrix as unknowns,
DLT only involves solving a system of linear equations, which
can be done by a linear least-squares method. In practice, the
linear solution obtained from DLT is usually refined
iteratively by minimizing the reprojection errors of the
3D reference points [1], [6]. In [2], [3], Tsai and Lenz
introduced the radial alignment constraint (RAS) and devel-
oped a technique which also accounts for lens distortion.

All the calibration techniques mentioned so far require the
knowledge of the 3D coordinates of a certain number of
reference points and their corresponding image coordinates.
In [7], Caprile and Torre showed that, under the assumption
of zero skew and unit aspect ratio, it is possible to calibrate a
camera from the vanishing points associated with three
mutually orthogonal directions. This idea was further
elaborated in [8], [9] to develop practical systems for
reconstructing architectural scenes. In contrast to traditional
calibration techniques, these methods depend only on the
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presence of some special structures, but not on the exact
geometry of those structures.

The theory of self-calibration was first introduced by
Maybank and Faugeras [20], who established the relation-
ship between camera calibration and the epipolar transfor-
mation via the absolute conic [6]. Implementation of the
theory in [20], together with real data experiments, were
given by Luong and Faugeras [21] for fixed intrinsic
parameters. In [22], Triggs introduced the absolute quadric
and gave a simpler formulation which can easily incorpo-
rate any constraint on the intrinsic parameters. Based on
[22], a practical technique for self-calibration of multiple
cameras with varying intrinsic parameters was developed
by Pollefeys et al. in [23]. Specialized methods of self-
calibration have also been derived when the camera motion
is restricted to pure rotation [24] or planar motion [25].

The calibration technique introduced in this paper,
namely, calibration from surfaces of revolution, falls into the
same category as calibration from vanishing points (see
Fig. 1). Like calibration from vanishing points, which only
requires the presence of three mutually orthogonal direc-
tions, the technique presented here only requires the
calibration target to be a surface of revolution, but the exact
geometry of the surface is not important. An important
problem not addressed in this paper is how to detect surfaces
of revolution in an image, so that they can be used in the
calibration algorithm. A practical solution to this has been
presented by Zisserman et al. in [13]. The technique
developed in that paper is based on the same symmetry
properties exploited here, and works well even in the
presence of partial occlusion and clustered background.

3 THEORETICAL BACKGROUND

3.1 Camera Model

In this paper, a camera is modeled as a pinhole (perspec-
tive) camera and the imaging process can be expressed as

�
u
v
1

24 35 ¼ P

X
Y
Z
1

2664
3775; ð1Þ

where ðX;Y ; ZÞ are the coordinates of a 3D point X, ðu; vÞ
are the image coordinates of the projection of X and � is an
arbitrary scale factor. P is a 3� 4 matrix known as the

projection matrix [26], which models the pinhole camera. The
projection matrix P is not a general 3� 4 matrix but has a
special structure given by [6]

P ¼ K½R t�; ð2Þ

where K is a 3� 3 upper triangular matrix known as the
camera calibration matrix, R is a 3� 3 rotation matrix and t is
a 3� 1 translation vector. R and t are called the extrinsic
parameters [6] of the camera and they represent the rigid
body transformation between the camera and the scene (see
Fig. 2). The camera calibration matrix K has the form [6]

K ¼
fu & u0

0 fv v0

0 0 1

24 35 ¼ af & u0

0 f v0

0 0 1

24 35; ð3Þ

where f is the focal length, a ¼ fu=fv is the aspect ratio and & is
the skew which depends on the angle between the image axes.
ðu0; v0Þ is called the principal point and it is the point at which
the optical axis (zc-axis) intersects the image plane (see Fig. 2).
The focal length, aspect ratio, skew, and principal point are
referred to as the intrinsic parameters [6] of the camera, and
camera calibration is the process of estimating these para-
meters. If the image axes are orthogonal to each other, which
is often the case, & will be equal to zero. In practice, the aspect
ratio and skew of a camera are often assumed to be one and
zero, respectively, to reduce the dimension of the search space
in camera calibration. This generally speeds up the calibra-
tion process and makes the results more stable. Such an initial
estimate of the intrinsic parameters can be further refined
later by relaxing the unit aspect ratio and zero skew
constraints. A camera is said to be calibrated if its intrinsic
parameters are known. If both the intrinsic and extrinsic
parameters of a camera are known, then the camera is said to
be fully calibrated.

3.2 Calibration from Vanishing Points

In [7], Caprile and Torre showed that under the assumption of
zero skew and unit aspect ratio, the principal point of a
camera will coincide with the orthocenter of a triangle with
vertices given at three vanishing points from three mutually
orthogonal directions. Such properties of the vanishing
points, together with the symmetry properties associated
with the silhouettes of surfaces of revolution, will be used
later in Section 4 to derive a simple technique for camera
calibration. A simple derivation of Caprile and Torre’s result
is given below.
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Fig. 1. Different categories of camera calibration techniques.

Fig. 2. The extrinsic parameters of a camera represent the rigid body
transformation between the world coordinate system (centered at o) and
the camera coordinate system (centered at c), and the intrinsic
parameters represent the camera internal parameters like focal length,
aspect ratio, skew, and principal point.



Consider a pinhole camera with focal length f , unit aspect
ratio, zero skew, and principal point ~xx0. The vector from the
camera center to any point ~xx on the image plane, in camera
coordinate system, is given by ½ð~xxÿ ~xx0ÞT f �T. Let ~vvq, ~vvr, and ~vvs
be three vanishing points associated with three mutually
orthogonal directions Nq, Nr, and Ns, respectively. The three
vectors from the camera center to ~vvq, ~vvr, and ~vvs will be
mutually orthogonal to each other and, hence,

ð~vvq ÿ ~xx0Þ � ð~vvr ÿ ~xx0Þ þ f2 ¼ 0; ð4Þ
ð~vvr ÿ ~xx0Þ � ð~vvs ÿ ~xx0Þ þ f2 ¼ 0; ð5Þ
ð~vvs ÿ ~xx0Þ � ð~vvq ÿ ~xx0Þ þ f2 ¼ 0: ð6Þ

Subtracting (6) from (4) gives

ð~vvq ÿ ~xx0Þ � ð~vvr ÿ ~vvsÞ ¼ 0: ð7Þ

Equation (7) shows that ~xx0 lies on a line passing through ~vvq
and orthogonal to the line joining ~vvr and ~vvs. Similarly,
subtracting (4) from (5) and (5) from (6) gives

ð~vvr ÿ ~xx0Þ � ð~vvs ÿ ~vvqÞ ¼ 0; ð8Þ
ð~vvs ÿ ~xx0Þ � ð~vvq ÿ ~vvrÞ ¼ 0: ð9Þ

Equations (7), (8), and (9) imply that the principal point ~xx0

coincides with the orthocenter of the triangle with vertices ~vvq,
~vvr, and ~vvs. Besides, (4), (5), and (6) show that the focal length
f is equal to the square root of the product of the distances
from the orthocenter to any vertex and to the opposite side
(see Fig. 3). As a result, under the assumption of zero skew
and unit aspect ratio, it is possible to estimate the principal
point and the focal length of a camera using vanishing points
from three mutually orthogonal directions. A similar
derivation was also presented by Cipolla et al. in [8].

3.3 Symmetry in Surfaces of Revolution

As will be shown in the next paragraph, the silhouette of a
surface of revolution, viewed under a pinhole camera, will
be invariant to a harmonic homology [13]. Such properties
of the silhouette can be exploited to calibrate the intrinsic
parameters of a camera, as will be shown in Section 4. A
simple proof of such symmetry properties is given below
which also shows that the axis of the associated harmonic
homology is given by the image of the revolution axis, and
that the center of the homology is given by the vanishing

point corresponding to the normal direction of the plane
containing the axis of revolution and the camera center.

Consider a surface of revolution Sr, whose axis of
revolution coincides with the y-axis, being viewed by a
pinhole camera P̂P ¼ ½II3 ÿ c� centered at c ¼ ½0 0 ÿ dz�T,
with dz > 0 (see Fig. 4). By symmetry considerations, it is
easy to see that the silhouette �̂� of Sr formed on the image
plane will be bilaterally symmetric about the image of the
revolution axis l̂ls ¼ ½1 0 0�T. The lines of symmetry (i.e.,
lines joining symmetric points in �̂�) will be parallel to the
normal Nx ¼ ½1 0 0 0�T of the plane �s that contains the axis
of revolution and the camera center, and the vanishing
point associated with Nx is given by v̂vx ¼ ½1 0 0�T. The
bilateral symmetry exhibited in �̂� can be described by the
transformation [27], [28]

T ¼
ÿ1 0 0

0 1 0

0 0 1

264
375

¼ II3 ÿ 2
v̂vx l̂l

T
s

v̂vT
x l̂ls

:

ð10Þ

Note that the transformation T is a harmonic homology (see the
Appendix and also [29], [30] for details) with axis l̂ls and center
v̂vx, which maps every point in �̂� to its symmetric counterpart
in �̂�. The silhouette �̂� is thus said to be invariant to the
harmonic homology T (i.e., �̂� ¼ T�̂�).

Now, consider an arbitrary pinhole camera P by
introducing the intrinsic parameters represented by the
camera calibration matrix K to P̂P and by applying the
rotation R to P̂P about its optical center. Hence, P ¼
KR½II3 ÿ c� or P ¼ HP̂P, where H ¼ KR. Let x be the
projection of a 3D point X in P, hence

x ¼ PX

¼ HP̂PX

¼ Hx̂x

; ð11Þ

where x̂x ¼ P̂PX. Equation (11) implies that the 3� 3 matrix
H represents a planar homography which transforms the
image formed by P̂P into the image formed by P. Similarly,
Hÿ1 transforms the image formed by P into the image
formed by P̂P. The silhouette � of Sr, formed on the image
plane of P, can thus be obtained by applying the planar
homography H to �̂� (i.e., � ¼ H�̂�). Let x̂x and x̂x0 be a pair of
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Fig. 3. The principal point ~xx0 of the camera coincides with the
orthocenter of the triangle with vertices given at the vanishing points
~vvq, ~vvr, and ~vvs associated with three mutually orthogonal directions, and
the focal length of the camera is given by f ¼

ffiffiffiffiffiffiffiffiffi
dqd0q

p
¼

ffiffiffiffiffiffiffiffiffi
drd0r

p
¼

ffiffiffiffiffiffiffiffiffi
dsd0s

p
.

Fig. 4. A surface of revolution Sr, whose axis of revolution coincides with

the y-axis, being viewed by a pinhole camera P̂P ¼ ½II3 ÿ c� centered at

c ¼ ½0 0 ÿ dz�T.



symmetric points in �̂�, and x ¼ Hx̂x and x0 ¼ Hx̂x0 be their
correspondences in �. The symmetry between x̂x and x̂x0 is
given by

x̂x0 ¼ Tx̂x: ð12Þ

Substituting x̂x and x̂x0 in (12) by Hÿ1x and Hÿ1x0,
respectively, gives [27], [28]

ðHÿ1x0Þ ¼ TðHÿ1xÞ
x0 ¼ HTHÿ1x

¼ H II3 ÿ 2
v̂vx l̂l

T
s

v̂vT
x l̂ls

 !
Hÿ1x

¼ II3 ÿ 2
vxl

T
s

vT
x ls

� �
x;

ð13Þ

where vx ¼ Hv̂vx, and ls ¼ HÿT l̂ls. Note that vx is the
vanishing point corresponding to the normal direction Nx

in P, and ls is the image of the revolution axis of Sr in P. Let
W ¼ HTHÿ1 be the harmonic homology with axis ls and
center vx. Equation (13) shows that W will map each point
in � to its symmetric counterpart in � and, hence, � is
invariant to the harmonic homology W (i.e., � ¼W�).

In general, the harmonic homology W has four degrees of
freedom. When the camera is pointing directly towards the
axis of revolution, the harmonic homology will reduce to a
skew symmetry [31], [32], [33], [34], where the vanishing point
vx is at infinity. The skew symmetry can be described by the
transformation

S ¼ 1

cosð�ÿ �Þ

ÿ cosð�þ �Þ ÿ2 cos� sin � 2dl cos�
ÿ2 sin� cos � cosð�þ �Þ 2dl sin�

0 0 cosð�ÿ �Þ

24 35;
ð14Þ

where dl ¼ u0 cos �þ v0 sin �. The image of the revolution
axis and the vanishing point are given by ls ¼ ½cos � sin � ÿ
dl�T and vx ¼ ½cos� sin� 0�T, respectively, and S has only
three degrees of freedom. If the camera also has zero skew
and unit aspect ratio, the transformation will then become a
bilateral symmetry, given by

B ¼
ÿ cos 2� ÿ sin 2� 2dl cos �
ÿ sin 2� cos 2� 2dl sin �

0 0 1

24 35: ð15Þ

While ls will have the same form as in the case of skew
symmetry, the vanishing point will now be at infinity and
will have a direction orthogonal to ls. As a result, B has only
two degrees of freedom. These three different cases of
symmetry are illustrated in Fig. 5.

4 CAMERA CALIBRATION

4.1 Vanishing Points and the Harmonic Homology

Consider a surface of revolution Sr viewed by a pinhole
cameraP ¼ K½R t�.Let�bethesilhouetteofSr, ls bethe image
of the revolution axis of Sr, and vx be the vanishing point
corresponding to the normal direction Nx of the plane �s that
contains the revolution axis of Sr and the camera center of P.
The silhouette � is then invariant to the harmonic homology
W with axis ls and center vx (see Section 3.3).

Now, consider any two vectors Ny and Nz parallel to the
plane �s and orthogonal to each other, which together with
Nx form a set of three mutually orthogonal directions (see
Fig. 6). Under the assumption of zero skew and unit aspect
ratio, the vanishing points associated with these three
directions can be used to determine the principal point and
the focal length of P, as shown in Section 3.2. By construction,
the vanishing points vy and vz, corresponding to the
directions Ny and Nz, respectively, will lie on the image of
the revolution axis ls. Given the harmonic homology W
associated with �, with an axis given by the image of the
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Fig. 5. (a) Silhouette of a surface of revolution under general viewing conditions. The symmetry of the silhouette is described by a harmonic
homology defined by the image of the revolution axis and a vanishing point. (b) When the camera is pointing directly towards the axis of revolution,
the transformation reduces to a skew symmetry, which is a particular case of the harmonic homology where the vanishing point is at infinity. (c) If the
camera also has zero skew and unit aspect ratio, the transformation becomes a bilateral symmetry, in which the vanishing point is at infinity and has
a direction orthogonal to the image of the revolution axis.

Fig. 6. Three mutually orthogonal directions associated with a surface of
revolution.



revolution axis ls and a center given by the vanishing point vx,
the principal point x0 of P will therefore lie on a line lx passing
through vx and orthogonal to ls, and the focal length f will be
equal to the square root of the product of the distances from
the principal point x0 to vx and to ls, respectively, (see Fig. 7).
As a result, given two or more silhouettes of surfaces of
revolution, the principal point can be estimated as the
intersection of the lines lx and the focal length follows.

4.2 Pole-Polar Relationship and the Absolute Conic

Following the notations in the previous section, consider the
equation of the plane �s which can be deduced from P and
the image of the revolution axis ls, and is given by

�s ¼ PTls: ð16Þ

By definition, vx is the vanishing point corresponding to the
normal direction Nx of the plane �s and, hence,

vx ¼ PNx: ð17Þ

Now, let


 ¼ II3 03

0T
3 0

� �
be the absolute dual quadric [22]. Observe that �s can be
expressed as �s ¼ ½nT

x ÿ d�
T, where nx is the normal direction

of �s in Cartesian (nonhomogeneous) coordinates. Therefore,

�s ¼ ½nT

x 0�T ¼ Nx, which allows (17) to be rewritten as

vx ¼ P
�s

¼ P
PTls

¼ KKTls

KÿTKÿ1vx ¼ ls

!! vx ¼ ls;

ð18Þ

where!! ¼ KÿTKÿ1 is the projection of the absolute quadric in
P, known as the image of the absolute conic. Equation (18) gives
the pole-polar relationship, with respect to the image of the
absolute conic, between the vanishing point vx of the normal
direction of the plane �s and the vanishing line ls of �s [35]. By
assuming the skew of P to be zero, expanding (18) gives

1
f2
u

0 ÿ u0

f2
u

0 1
f2
v

ÿ v0

f2
v

ÿ u0

f2
u
ÿ v0

f2
v

u0

fu

� �2
þ v0

fv

� �2
þ1

2664
3775vx ¼ ls; ð19Þ

where fu, fv, and (u0, v0) are the intrinsic parameters of P. It
follows that the harmonic homology associated with the
silhouette of a surface of revolution will provide two
constraints on the four intrinsic parameters of a camera. As
a result, under the assumption of fixed intrinsic parameters
and zero skew, it is possible to calibrate a camera from two
or more silhouettes of surfaces of revolution. Further, under
the assumption of unit aspect ratio (i.e., fu ¼ fv), it can be
derived from (19) that the focal length f is equal to the
square root of the product of the distances from the
principal point ðu0; v0Þ to the vanishing point vx and to
the image of the revolution axis ls. These results agree with
the analysis of the vanishing points in the previous section.

5 ALGORITHMS AND IMPLEMENTATIONS

5.1 Estimation of the Harmonic Homology

The silhouette � of a surface of revolution can be extracted
from the image by applying a Canny edge detector [36] (see
Fig. 8). The harmonic homology W that maps each side of the
silhouette � to its symmetric counterpart is then estimated by
minimizing the geometric distances between the original
silhouette � and its transformed version �0 ¼W�. This can be
done by sampling N evenly spaced points xi along the
silhouette � and optimizing the cost function

Costwðvx; lsÞ ¼
XN
i¼1

dist Wðvx; lsÞxi; �ð Þ2; ð20Þ

where distðWðvx; lsÞxi; �Þ is the orthogonal distance from the
transformed sample point x0i ¼Wðvx; lsÞxi to the original
silhouette �.

The success of most nonlinear optimization problems
requires a good initialization so as to avoid convergence to
local minima. This is achieved here by using bitangents of
the silhouette [10]. Two points in the silhouette � near a
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Fig. 7. The vanishing point vx and the image of the revolution axis ls
define a line lx on which the principal point x0 must lie, and the focal

length f is equal to
ffiffiffiffiffiffiffiffiffiffi
dxd0x

p
.

Fig. 8. The silhouette of a surface of revolution (candle holder) extracted by applying a Canny edge detector.



bitangent are selected manually and the neighborhood of
each point is transformed into a curve in the Hough space
(see Fig. 9). The bitangent and the bitangent points can then
be located by finding the intersection of the two trans-
formed curves in the Hough space (see [37] for details).

Consider two corresponding bitangents lb and l0b on the
two sides of �, with bitangent points x1, x2 and x01, x02,
respectively, (see Fig. 10). Let ld be the line joining x1 and
x02, and l0d be the line joining x01 and x2. The intersection of lb

with l0b and the intersection of ld with l0d define a line which
will provide an estimate for the image of the revolution axis
ls. Let lc be the line joining x1 and x01, and l0c be the line
joining x2 and x02. The intersection of lc with l0c will provide
an estimate for the vanishing point vx. The initialization of
ls and vx from bitangents often provides an excellent initial
guess for the optimization problem. This is generally good
enough to avoid any local minimum and allows conver-
gence to the global minimum in a small number of
iterations. Note that bitangents are used here only to
provide an initial estimate for ls and vx, which will be
further refined by optimizing the cost function given in (20).
As a result, error in the estimation of the bitangents will not

directly affect the accuracy of the final estimation of the
intrinsic parameters. Alternatively, in the absence of any
bitangents, ls can be initialized manually by observing the
symmetry in the silhouette, and vx can be initialized to be a
point at infinity having a direction orthogonal to ls.

The above approach of estimating the harmonic homol-
ogy is similar to the one presented in [13]. However, the
initialization using bitangent points allows for optimizing
the full projective model, represented by the harmonic
homology, in contrast to the affine approximation used in
[13], which corresponds to a skew symmetry transforma-
tion. An alternative method, which computes the harmonic
homology implicitly, was developed in [38]. The method
presented here is much simpler than the one shown in [38],
which relies on an unnecessarily complicated prediction,
verification and selection scheme. An important point to
note is that both the results in [13] and [38] demonstrate that
the harmonic homology can be successfully computed in
the presence of partial occlusion and clustered background.

5.2 Estimation of the Intrinsic Parameters

5.2.1 Method I

Under the assumption of zero skew and unit aspect ratio,
the line lx passing through the principal point ðu0; v0Þ and
the vanishing point vx will be orthogonal to the image of the
revolution axis ls (see Section 4). Let vx ¼ ½v1 v2 v3�T and
ls ¼ ½l1 l2 l3�T. The line lx can be expressed in terms of vx
and ls, and is given by

lx ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl2v3Þ2 þ ðl1v3Þ2
q l2v3

ÿl1v3

l1v2 ÿ l2v1

24 35: ð21Þ
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Fig. 9. Two points in the silhouette � near a bitangent are selected manually and the neighborhood of each point is transformed into a curve in the

Hough space. The bitangent and the bitangent points can then be located by finding the intersection of the two transformed curves in the Hough space.

Fig. 10. Initialization of the optimization parameters ls and vx from the

bitangents and lines formed from the bitangent points.

Fig. 11. A conic C will be invariant to any harmonic homology with a center

given by any point xe outside the conic, and an axis given by le ¼ Cxe.



Given two such lines lx1 and lx2, the principal point ðu0; v0Þ
will then be given by the intersection of lx1 with lx2. When
more than two lines are available, the principal point ðu0; v0Þ
can be estimated by a linear least-squares method from

lTx1

lTx2

..

.

lTxM

2666664

3777775
�u0

�v0

�

24 35 ¼ 0; ð22Þ

where M � 2 is the total number of lines (i.e., number of

silhouettes) and � is a scale factor. The estimated principal

point ðu0; v0Þ is then projected onto each line lxi orthogon-

ally as x0i, and the focal length f will be given by

f ¼ 1

M

XM
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
distðx0i;vxiÞ � distðx0i; lsiÞ

p
; ð23Þ

where distðx0i;vxiÞ is the distance between x0i and vxi, and

distðx0i; lsiÞ is the orthogonal distance from x0i to the image

of the revolution axis lsi. Note that the terms for summation

are the focal lengths estimated from each pair of vxi and lsi
with the estimated principal point projected onto the

corresponding lxi (see Section 4) and the focal length f is

then taken to be the mean of these estimated values.
When the aspect ratio of the camera is known but not equal

to one, there exists a planar homographyAðaÞ that transforms

the image into one that would have been obtained from a

camera with the same focal length f , unit aspect ratio, and

principal point ðu00; v00Þ. The homography AðaÞ is given by

AðaÞ ¼
1
a 0 ÿ u0

a þ u00
0 1 ÿv0 þ v00
0 0 1

24 35; ð24Þ

where a is the aspect ratio of the original camera, and

ðu0; v0Þ and ðu00; v00Þ are the principal points of the original

and transformed cameras, respectively. By setting the

principal point ðu00; v00Þ of the transformed camera to

ðu0=a; v0Þ, the homography AðaÞ is reduced to

A0ðaÞ ¼
1
a 0 0
0 1 0
0 0 1

24 35: ð25Þ

The vanishing points vxi and the images of the revolution

axis lsi are transformed by A0ðaÞ and A0
ÿTðaÞ, respectively,

and (21), (22), and (23) can then be applied to obtain the

principal point ðu00; v00Þ and the focal length f . Note that the

principal point ðu00; v00Þ obtained in this way is the principal

point of the transformed camera, and the principal point

ðu0; v0Þ of the original camera is simply given by

u0

v0

� �
¼ au00

v00

� �
: ð26Þ

5.2.2 Method II

When the aspect ratio of the camera is unknown, the camera

can be calibrated by first estimating the image of the absolute

conic !!. Let vx ¼ ½v1 v2 v3�T and ls ¼ ½l1 l2 l3�T. From (19),

under the assumption of zero skew, each pair of vx and ls will

provide the following two constraints

v1l3!1 þ ðv3l3 ÿ v1l1Þ!2 ÿ v2l1!4 ÿ v3l1!5 ¼ 0; and ð27Þ
v1l2!2 ÿ v2l3!3 þ ðv2l2 ÿ v3l3Þ!4 þ v3l2!5 ¼ 0; ð28Þ

where !i are the matrix elements of the absolute conic !!:

!! ¼
!1 0 !2

0 !3 !4

!2 !4 !5

24 35: ð29Þ

Hence, the image of the absolute conic can be estimated, up
to a scale factor, by a linear least-squares method when
there are two or more pairs of vx and ls. After obtaining an
estimate for !!, the camera calibration matrix K can then be
obtained from !! by Cholesky decomposition [39, chapter 2].
Note that the unit aspect ratio constraint can also be easily
incorporated by setting !1 ¼ !3 in (28) and (29).
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Fig. 12. Error analysis in the estimation of the principal point as the focal

length varies.

Fig. 13. Linear dependency between the error in the position of the

principal point and the magnitude of the focal length. Each point on each

curve is the average norm of the errors in the position of the principal

point over 100 experiments.

Fig. 14. The experimental setup consisted of a surface of revolution,

which was composed of two intersecting spheres, viewed by a synthetic

camera at three different positions.



6 SINGULAR CASES

The algorithms presented in the previous section have two

main steps: the computation of the harmonic homologies, and

the subsequent computation of the camera intrinsic para-

meters using the just computed homologies. Therefore, the

only two situations where the algorithms fail are when the

homologies cannot be computed, and when the homologies

do not provide enough information for the calibration of the

camera. The following sections analyze the occurrence of

these degeneracies.

6.1 Conic Silhouette

If the silhouette � of a surface of revolution is a conic, there

will be an infinite number of harmonic homologies to which

the silhouette �will be invariant. Such a situation results in a

singular case for camera calibration from surfaces of

revolution.
Consider a conic represented by a 3� 3 symmetric

matrix C, such that every point x on the conic satisfies

xTCx ¼ 0: ð30Þ

Given a point xe outside the conic C, two tangents can be

drawn from xe to C (see Fig. 11) and the line le passing

through the two tangent points is given by

le ¼ Cxe: ð31Þ

Let We be a harmonic homology with axis le and center

xe, i.e.,

We ¼ II3 ÿ 2
xel

T
e

xT
e le

: ð32Þ

Substituting (31) into (32) gives

We ¼ II3 ÿ 2
xex

T
e CT

xT
e Cxe

: ð33Þ

Let x be a point on C and x0 ¼Wex, and consider the
equation

x0
T
Cx0 ¼ Wexð ÞTCðWexÞ
¼ xT WT

e CWe

ÿ �
x:

ð34Þ

Substituting (33) into (34) gives

x0
T
Cx0 ¼ xT II3 ÿ 2

xex
T
e CT

xT
e Cxe

� �T

C II3 ÿ 2
xex

T
e CT

xT
e Cxe

� �" #
x

¼ xT II3 ÿ 2
Cxex

T
e

xT
e Cxe

� �
Cÿ 2

Cxex
T
e CT

xT
e Cxe

� �� �
x

¼ xTCx

¼ 0:

ð35Þ

Equation (35) implies that any point xe outside the conic C
and the corresponding line le ¼ Cxe will define a harmonic
homology We to which the conic C will be invariant. As a
result, if the silhouette of the surface of revolution is a conic,
there will not be a unique solution to the optimization
problem of the harmonic homology W associated with the
silhouette and, hence, it provides no information on the
intrinsic parameters of the camera.

Assume now that the silhouette can be represented as a
homogeneous algebraic curve g of degree d [40]. As a result of
Bezout’s theorem, the silhouette will have k ¼ 3dðdÿ 2Þ
inflection points [41]. If a curve is invariant to a harmonic
homology W, its inflection points, which are projective
invariants, will be mapped to each other by W. If d � 3, there
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Fig. 15. Silhouettes of the surface of revolution in the three images taken by the synthetic camera with f ¼ 700.

Fig. 16. (a) The original silhouette. (b) The resultant silhouette after uniform random noise of maximum 0.5 pixels being added. (c) The noise-free

and noisy silhouettes are represented by solid and dash lines, respectively, and the dotted lines indicate the bounds for noise along the normal

direction of each point.



will be k � 9 inflection points, providing at least four matches
for computing the harmonic homology. Observe that, this
result is valid even when the inflection points are imaginary,
since there is no problem in mapping an imaginary inflection
point to an also imaginary counterpart by a real harmonic
homology. The result also holds when the inflection points
have multiplicity greater than one, because then the
derivatives of g at the inflection point will also be preserved
by W. As a result, if d � 3 and the matching of the inflection
points is known, the harmonic homology can be determined.
If the matching of the inflection points is not known, there will
be at most a finite number of solutions, for different choices in
the matching. In general, it should be possible to choose the
correct W by validating it against the rest of the curve. The
discussion above demonstrates that conics are the only
general (i.e., not for a particular view of a particular example)
degeneracy in the computation of the harmonic homology
when the silhouette is in the class of homogeneous algebraic

curves. It is worthwhile noting that any curve that admits a
rational parameterization, such as B-splines and NURBS, can
be expressed in homogeneous algebraic form [42] and,
therefore, the proof is also valid in these particular cases.

6.2 Vanishing Point at Infinity

Whenthecamera ispointingtowardstherevolutionaxisof the
surface, the silhouette will exhibit bilateral or skew symmetry
(see Section 3.3), and the vanishing point vx will be at infinity
(i.e.,v3 ¼ 0). In this situation, the line lx, on which the principal
point is constrained to lie, cannot be determined, and this may
cause the calibration equations to be under constrained.

To simplify the analysis, consider a camera with zero
skew and unit aspect ratio. Assume now that one homology
Wðvx; lsÞ with v3 6¼ 0 is available. If a second homology
Wðv0x; l0sÞ 6¼Wðvx; lsÞ is also available, there will then be
four distinct possibilities for the computation of the
principal point x0 and the focal length f :
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TABLE 1
Experimental Results of Calibration from Silhouettes under Different Focal Lengths and Noise Levels



1. v03 6¼ 0 and lx 6¼ l0x: there will be a unique solution for
x0, given by x0 ¼ lx � l0x.

2. v03 6¼ 0 and lx ¼ l0x: there will be exactly one solution
for x0 such that lTxx0 ¼ 0 satisfying

f2 ¼ distðx0;vxÞ � distðx0; lsÞ
¼ distðx0;v

0
xÞ � distðx0; l

0
sÞ:

3. v03 ¼ 0 and lx 6¼ l0s: note that the principal point is
now constrained to lie on l0s, and there will be a
unique solution for x0, given by x0 ¼ lx � l0s.

4. v03 ¼ 0 and lx ¼ l0s: there will be infinite number of
solutions for x0.

The discussion above demonstrates that whenever there are
two distinct homologies W and W0 such that both v3 and v03
are not equal to zero, the computation of the principal point
and, therefore, of the focal length is possible. Moreover,
even when there is only one homology with v3 6¼ 0, the
computation of the principal point and the focal length is
still possible, as long as the highly unlikely condition that
lx ¼ l0s does not occur. When the camera is pointing towards
the revolution axis in all images (i.e., v3 ¼ 0 8vx), then only
the principal point can be estimated.

7 ERROR ANALYSIS

7.1 Proportionality of the Error with the Focal
Length

Experiments show that in estimating the harmonic homology
W associated with the silhouette � of a surface of revolution,
the uncertainty is essentially in the vanishing point vx. Since
vx is, in general, tens of thousands of pixels away from the
axis ls, its error in a direction orthogonal to ls can be neglected
in the computation of the principal point and focal length. On
the other hand, the error of vx in a direction parallel to ls will
lead to the same error in the estimated principal point x0. This
is due to the fact that, under the assumption of zero skew and
unit aspect ratio, x0 must lie on the line lx passing through vx
and orthogonal to ls (see Section 4).

Fig. 12 shows a point x in � which is transformed by W
to its symmetric counterpart x0 in �. If vx has an error � in a
direction parallel to ls, then the transformed point will have
an error " (see Fig. 12). It is easy to see that � and " are
related to each other by

�

"
¼ dx þ d

0
x ÿ w

wþ w0 : ð36Þ

Since dx ¼ f2=d0x is much greater than d0x,w, andw0, and thatw
and w0 have nearly the same value, (36) can be rewritten as

�

"
’ f2

2d0xw
¼ f

2 tan w
; ð37Þ

where  is the angle between the optical axis and the plane
�s, and d0x ¼ f tan . Equation (37) implies that, if  , w, and
" are assumed to be approximately constant, then the error �
of vx and, hence, the error of the principal point x0, in a
direction parallel to ls, will be proportional to f . This might
limit the usefulness of the technique to wide angle cameras.

7.2 Validation of the Error Analysis

To validate the error analysis described in the previous
section, a simple experiment was performed. Four coplanar
points configured into a square were placed in front of a
camera with zero skew, unit aspect ratio, and variable focal
length. Initially, the image plane of the camera was parallel to
the square formed by these four points and the optical axis of
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Fig. 17. Normalized rms errors of the estimated focal lengths obtained

using method IIb under different noise levels.

Fig. 18. Six images of a calibration grid taken by the digital camera for calibration.



the camera passed through the center of this square. The

camera was then rotated about its optical center and away

from the symmetry plane of the four points, distorting the

otherwise bilaterally symmetric image to one invariant to a

harmonic homology with the vanishing point at a finite

position. Gaussian noise was then added to the coordinates of

the projected points and the corresponding harmonic homol-

ogywascomputed.Onecaneasilyrelate theparameters inthis

experiment with those in(37):" is thestandarddeviationof the

noise (i.e., noise level), is the angle by which the camera was

rotated from the symmetry plane prior to the projection of the

points, and w was taken as the average distance from the

points to ls. It is important to notice thatw changes as the focal

length changes, thus introducing a nuisance factor that will

hide the true linear dependency between the magnitude of the

focal length and the error in the position of the principal point.

To compensate for that, the optical center of the camera was

translated according to the value of the focal length (i.e., the

larger the focal length, the further away from the four points

the camera was placed), keeping the average value of

w constant. Intuitively, this has the effect of maintaining the

size of the calibration object (in this case, the four points)

approximately constant in the image, despite the changes in

the focal length. This experiment was repeated 100 times for

each noise level, and the average norm of the errors in the

position of the principal point is shown in Fig. 13, as a function

of the focal length. The linear relationship described in (37)

clearly holds, and the proportionality of the error with the

noise level � is also apparent.

8 EXPERIMENTS AND RESULTS

Experiments on both synthetic and real data were carried out,
and the results are presented in the following sections. In both
cases, the cameras were assumed to have zero skew.

8.1 SYNTHETIC DATA

8.1.1 Generation of Data

The experimental setup consisted of a surface of revolution
viewed by a synthetic camera at three different positions, as
shown in Fig. 14. The synthetic images had a dimension of
640� 480 pixels and the intrinsic parameters of the synthetic
camera were given by the calibration matrix

K ¼
f 0 320
0 f 240
0 0 1

24 35 where f ¼ 700; 1400: ð38Þ

The surface of revolution was composed of two spheres
intersecting each other. Each sphere was represented by a
4� 4 symmetric matrix Qi whose projection was given
by [43]

Cij ¼ PjQ
ÿ1
i PT

j

� �ÿ1
; ð39Þ

where Pj was a 3� 4 projection matrix and Cij was a
3� 3 symmetric matrix representing the conic, which was the
projection of Qi in Pj. The silhouette of the surface of
revolution in each image was found by projecting each sphere
Qi onto the image j as the conic Cij and finding points on each
conic that lie outside the other conic. The silhouettes in the
three images taken by the synthetic camera with f ¼ 700 are
shown in Fig. 15.

In order to evaluate the robustness of the algorithms
described in Section 5, uniform random noise was added to
each silhouette. Each point in the silhouette was perturbed in
a direction normal to the local tangent, and the magnitudes of
the noise were smoothed by a Gaussian filter so as to avoid
unrealistic jaggedness along the silhouette (see Fig. 16).

8.1.2 Results on Synthetic Data

Experiments on the synthetic data with seven different
noise levels were carried out. The seven noise levels were
0:5, 0:7, 1:0, 1:2, 1:5, 1:7, and 2:0 pixels, respectively. The
noise level for typical real images ranges from 0:7 to
1:5 pixels and the distortion of the silhouette will be too
great to be realistic when the noise level is above 2:0 pixels.
For each noise level, 100 experiments were conducted using
the algorithms described in Section 5. In the estimation of
the harmonic homology, the number of sample points used
was 100. Both Methods I and II described in Section 5.2
were used for the computation of the intrinsic parameters.
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TABLE 2
Results of Calibration from the Six Images

of the Calibration Grid

Fig. 19. Three images of two bowls with the extracted silhouettes and estimated images of the revolution axis plotted in solid and dash lines, respectively.



The experimental results are presented in Table 1, which
shows the root-mean-square (rms) errors of the estimated
intrinsic parameters. Note that the values listed in the table
have been normalized and are the percentage errors relative
to the corresponding ground truth focal lengths. It can be
seen from Table 1 that the focal lengths obtained using
Method II were better than those obtained using Method I,
regardless of whether the unit aspect ratio constraint was
imposed or not. For different versions of Method II (i.e., IIa
with free aspect ratio and IIb with unit aspect ratio), IIb
gave the best results. This is consistent with the well-known
fact that the enforcement of known constraints gives more
accurate results in camera calibration. Observe that this
does not contradict the fact that Method IIa gave better
results than Method I for, in this case, different algorithms
are being compared. As the noise level increased, the
relative errors in the estimated intrinsic parameters in-
creased. Table 1 also shows that the errors increased with
the focal length of the camera (see also Fig. 17), and this
agrees with the error analysis presented in Section 7. For a
noise level of 2.0 pixels, the errors in the estimated focal
lengths were less than 6.0 percent and 7.5 percent for the
synthetic cameras with f ¼ 700 and f ¼ 1; 400, respectively.

8.2 Real Data

8.2.1 The Ground Truth

The camera used in the real data experiments was a digital
camera with a resolution of 640� 480 pixels. The ground
truth for the intrinsic parameters of the camera was

obtained using a calibration grid. Six images of a calibration
grid were taken with the camera at different orientations
(see Fig. 18). Corner features were extracted from each
image using a Canny edge detector [36] and line fitting
techniques. For each image, the camera was calibrated
using the DLT technique [19] followed by an optimization
which minimized the reprojection errors of the corner
features [1], [6]. The results of calibration from the
calibration grid are shown in Table 2.

8.2.2 Results on Real Data

Two sets of real images of surfaces of revolution were used for
the calibration of the digital camera. The first set consisted of
three images of two bowls, which provided four silhouettes
for camera calibration (see Fig. 19). The second set consisted
of eight images of a candle holder, which provided eight
silhouettes for camera calibration (see Fig. 20). The results of
calibration from the two image sets are shown in Table 3, and
Table 4 shows the percentage errors of the estimated intrinsic
parameters relative to the ground truth focal lengths. Similar
to the results of the synthetic experiments, the intrinsic
parameters obtained in the real data experiments using
Method II were better than those obtained using Method I.
The focal lengths estimated from both the bowls set and the
candle holder set (using Method II with unit aspect ratio
constraint) had an error of only around 3 percent relative to
the ground truth focal length. Figs. 19 and 20 show the
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Fig. 20. Eight images of a candle holder with the extracted silhouettes and estimated images of the revolution axis plotted in solid and dash lines,
respectively.

TABLE 3
Results of Calibration from the Bowls and Candle Holder Sets

TABLE 4
Percentage Errors in the Results of Calibration

from the Two Image Sets



extracted silhouettes and the estimated images of the
revolution axis. Fig. 21 shows the lines lxi passing through
the corresponding vanishing point vxi and orthogonal to the
corresponding image of the revolution axis lsi.

From Table 3 and Table 4, it can be seen that the intrinsic

parameters estimated from the candle holder set were slightly

better than those from the bowls set. This can be explained as

the silhouettes in the candle holder set showed much greater

perspective effect than those in the bowls set (see Fig. 19 and

Fig. 20). Besides, the candle holder set also provided more

silhouettes, and hence more constraints, than the bowls set for

the estimation of the intrinsic parameters.

9 CONCLUSIONS

By exploiting the symmetry properties exhibited in the

silhouettes of surfaces of revolution and relating them to

vanishing points, a practical technique for camera calibration

has been developed. The use of surfaces of revolution makes

the calibration process easier in not requiring the use of any

precisely machined device with known geometry, such as a

calibration grid. Besides, a surface of revolution can always be

generated by rotating an object of any arbitrary shape around

a fixed axis. It means that the calibration technique

introduced here can be integrated into a motion estimation

and model building system for turntable sequences [44], [28].
Despite the fact that strong perspective effect is required,

the method introduced here is promising as demonstrated

by the experimental results on both synthetic and real data.

The focal lengths were estimated with high accuracy,

having an error of only around 3 percent with respect to

the ground truth. Nonetheless, note that neither of the

implementations proposed in Section 5 is statistically

optimal, even though the computation of each individual

harmonic homology is. The statistically optimal way, which

will not be discussed in details here, would be integrating

all the information provided by the silhouettes to estimate

the intrinsic parameters and the harmonic homologies

simultaneously. For a set of N images, this would involve

an optimization over a 2N þ 4 parameter space: 4 for the

intrinsic parameters, or equivalently, for the image of the

absolute conic !!; and 2N for the N vanishing points vx or,

equivalently, for the N images of the revolution axes ls (as

!!vx ¼ ls). This might be included in future work.

APPENDIX

DEFINITION OF THE HARMONIC HOMOLOGY

A perspective collineation [30], with center xc and axis la, is a

collineation which leaves all the lines through xc and points

of la invariant. If the center xc and the axis la are not incident,

the perspective collineation is called a homology [30];

otherwise, it is called an elation [30]. Consider a point x

which is mapped by a homology with center xc and axis la to

the point x0. Let x0c be the point of intersection between the

axis la and a line passing through the points x and x0. The

homology is said to be harmonic if the points x and x0 are

harmonic conjugates with respect to xc and x0c (i.e., the cross-

ratio fxc;x
0
c; x;x

0g equals ÿ1). The matrix W representing a

harmonic homology [30] with center xc and axis la, in

homogeneous coordinates, is given by W ¼ II3 ÿ 2
xcl

T
a

xT
c la

. More

details on harmonic homology can be found in [29], [30].
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