461 research outputs found

    Affine Grassmann Codes

    Full text link
    We consider a new class of linear codes, called affine Grassmann codes. These can be viewed as a variant of generalized Reed-Muller codes and are closely related to Grassmann codes. We determine the length, dimension, and the minimum distance of any affine Grassmann code. Moreover, we show that affine Grassmann codes have a large automorphism group and determine the number of minimum weight codewords.Comment: Slightly Revised Version; 18 page

    Duals of Affine Grassmann Codes and their Relatives

    Get PDF
    Affine Grassmann codes are a variant of generalized Reed-Muller codes and are closely related to Grassmann codes. These codes were introduced in a recent work [2]. Here we consider, more generally, affine Grassmann codes of a given level. We explicitly determine the dual of an affine Grassmann code of any level and compute its minimum distance. Further, we ameliorate the results of [2] concerning the automorphism group of affine Grassmann codes. Finally, we prove that affine Grassmann codes and their duals have the property that they are linear codes generated by their minimum-weight codewords. This provides a clean analogue of a corresponding result for generalized Reed-Muller codes.Comment: 20 page

    Automorphism groups of Grassmann codes

    Full text link
    We use a theorem of Chow (1949) on line-preserving bijections of Grassmannians to determine the automorphism group of Grassmann codes. Further, we analyze the automorphisms of the big cell of a Grassmannian and then use it to settle an open question of Beelen et al. (2010) concerning the permutation automorphism groups of affine Grassmann codes. Finally, we prove an analogue of Chow's theorem for the case of Schubert divisors in Grassmannians and then use it to determine the automorphism group of linear codes associated to such Schubert divisors. In the course of this work, we also give an alternative short proof of MacWilliams theorem concerning the equivalence of linear codes and a characterization of maximal linear subspaces of Schubert divisors in Grassmannians.Comment: revised versio

    Extrinsic Methods for Coding and Dictionary Learning on Grassmann Manifolds

    Get PDF
    Sparsity-based representations have recently led to notable results in various visual recognition tasks. In a separate line of research, Riemannian manifolds have been shown useful for dealing with features and models that do not lie in Euclidean spaces. With the aim of building a bridge between the two realms, we address the problem of sparse coding and dictionary learning over the space of linear subspaces, which form Riemannian structures known as Grassmann manifolds. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping. This in turn enables us to extend two sparse coding schemes to Grassmann manifolds. Furthermore, we propose closed-form solutions for learning a Grassmann dictionary, atom by atom. Lastly, to handle non-linearity in data, we extend the proposed Grassmann sparse coding and dictionary learning algorithms through embedding into Hilbert spaces. Experiments on several classification tasks (gender recognition, gesture classification, scene analysis, face recognition, action recognition and dynamic texture classification) show that the proposed approaches achieve considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelized Affine Hull Method and graph-embedding Grassmann discriminant analysis.Comment: Appearing in International Journal of Computer Visio

    Bags of Affine Subspaces for Robust Object Tracking

    Full text link
    We propose an adaptive tracking algorithm where the object is modelled as a continuously updated bag of affine subspaces, with each subspace constructed from the object's appearance over several consecutive frames. In contrast to linear subspaces, affine subspaces explicitly model the origin of subspaces. Furthermore, instead of using a brittle point-to-subspace distance during the search for the object in a new frame, we propose to use a subspace-to-subspace distance by representing candidate image areas also as affine subspaces. Distances between subspaces are then obtained by exploiting the non-Euclidean geometry of Grassmann manifolds. Experiments on challenging videos (containing object occlusions, deformations, as well as variations in pose and illumination) indicate that the proposed method achieves higher tracking accuracy than several recent discriminative trackers.Comment: in International Conference on Digital Image Computing: Techniques and Applications, 201
    corecore