186 research outputs found

    Constraint Satisfaction and Semilinear Expansions of Addition over the Rationals and the Reals

    Full text link
    A semilinear relation is a finite union of finite intersections of open and closed half-spaces over, for instance, the reals, the rationals, or the integers. Semilinear relations have been studied in connection with algebraic geometry, automata theory, and spatiotemporal reasoning. We consider semilinear relations over the rationals and the reals. Under this assumption, the computational complexity of the constraint satisfaction problem (CSP) is known for all finite sets containing R+={(x,y,z) | x+y=z}, <=, and {1}. These problems correspond to expansions of the linear programming feasibility problem. We generalise this result and fully determine the complexity for all finite sets of semilinear relations containing R+. This is accomplished in part by introducing an algorithm, based on computing affine hulls, which solves a new class of semilinear CSPs in polynomial time. We further analyse the complexity of linear optimisation over the solution set and the existence of integer solutions.Comment: 22 pages, 1 figur

    Constraint Satisfaction Problems over Numeric Domains

    Get PDF
    We present a survey of complexity results for constraint satisfaction problems (CSPs) over the integers, the rationals, the reals, and the complex numbers. Examples of such problems are feasibility of linear programs, integer linear programming, the max-atoms problem, Hilbert\u27s tenth problem, and many more. Our particular focus is to identify those CSPs that can be solved in polynomial time, and to distinguish them from CSPs that are NP-hard. A very helpful tool for obtaining complexity classifications in this context is the concept of a polymorphism from universal algebra

    Characterizing the integer points in 2-decomposable polyhedra by closedness under operations

    Full text link
    Characterizing the solution sets in a problem by closedness under operations is recognized as one of the key aspects of algorithm development, especially in constraint satisfaction. An example from the Boolean satisfiability problem is that the solution set of a Horn conjunctive normal form (CNF) is closed under the minimum operation, and this property implies that minimizing a nonnegative linear function over a Horn CNF can be done in polynomial time. In this paper, we focus on the set of integer points (vectors) in a polyhedron, and study the relation between these sets and closedness under operations from the viewpoint of 2-decomposability. By adding further conditions to the 2-decomposable polyhedra, we show that important classes of sets of integer vectors in polyhedra are characterized by 2-decomposability and closedness under certain operations, and in some classes, by closedness under operations alone. The most prominent result we show is that the set of integer vectors in a unit-two-variable-per-inequality polyhedron can be characterized by closedness under the median and directed discrete midpoint operations, each of these operations was independently considered in constraint satisfaction and discrete convex analysis.Comment: 22 page

    Sommaire / Contents tome 353, janvier–décembre 2015

    Get PDF

    On the consistency of a spatial-type interval-valued median for random intervals

    Full text link
    The sample dθd_\theta-median is a robust estimator of the central tendency or location of an interval-valued random variable. While the interval-valued sample mean can be highly influenced by outliers, this spatial-type interval-valued median remains much more reliable. In this paper, we show that under general conditions the sample dθd_\theta-median is a strongly consistent estimator of the dθd_\theta-median of an interval-valued random variable.Comment: 14 page
    • …
    corecore