24 research outputs found

    Exploiting Full-duplex Receivers for Achieving Secret Communications in Multiuser MISO Networks

    Full text link
    We consider a broadcast channel, in which a multi-antenna transmitter (Alice) sends KK confidential information signals to KK legitimate users (Bobs) in the presence of LL eavesdroppers (Eves). Alice uses MIMO precoding to generate the information signals along with her own (Tx-based) friendly jamming. Interference at each Bob is removed by MIMO zero-forcing. This, however, leaves a "vulnerability region" around each Bob, which can be exploited by a nearby Eve. We address this problem by augmenting Tx-based friendly jamming (TxFJ) with Rx-based friendly jamming (RxFJ), generated by each Bob. Specifically, each Bob uses self-interference suppression (SIS) to transmit a friendly jamming signal while simultaneously receiving an information signal over the same channel. We minimize the powers allocated to the information, TxFJ, and RxFJ signals under given guarantees on the individual secrecy rate for each Bob. The problem is solved for the cases when the eavesdropper's channel state information is known/unknown. Simulations show the effectiveness of the proposed solution. Furthermore, we discuss how to schedule transmissions when the rate requirements need to be satisfied on average rather than instantaneously. Under special cases, a scheduling algorithm that serves only the strongest receivers is shown to outperform the one that schedules all receivers.Comment: IEEE Transactions on Communication

    Attacking Spectrum Sensing With Adversarial Deep Learning in Cognitive Radio-Enabled Internet of Things

    Get PDF
    Cognitive radio-based Internet of Things (CR-IoT) network provides a solution for IoT devices to efficiently utilize spectrum resources. Spectrum sensing is a critical problem in CR-IoT network, which has been investigated extensively based on deep learning (DL). Despite the unique advantages of DL in spectrum sensing, the black-box and unexplained properties of deep neural networks may lead to many security risks. This article considers the fusion of traditional interference methods and data poisoning which is an attack method on the training data of a machine learning tool. We propose a new adversarial attack for reducing the sensing accuracy in DL-based spectrum sensing systems. We introduce a novel design of jamming waveform whose interference capability is reinforced by data poisoning. Simulation results show that significant performance enhancement and higher mobility can be achieved compared with traditional white-box attack methods

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral

    The Role of Physical Layer Security in IoT: A Novel Perspective

    Get PDF
    This paper deals with the problem of securing the configuration phase of an Internet of Things (IoT) system. The main drawbacks of current approaches are the focus on specific techniques and methods, and the lack of a cross layer vision of the problem. In a smart environment, each IoT device has limited resources and is often battery operated with limited capabilities (e.g., no keyboard). As a consequence, network security must be carefully analyzed in order to prevent security and privacy issues. In this paper, we will analyze the IoT threats, we will propose a security framework for the device initialization and we will show how physical layer security can effectively boost the security of IoT systems

    Signal Processing and Learning for Next Generation Multiple Access in 6G

    Full text link
    Wireless communication systems to date primarily rely on the orthogonality of resources to facilitate the design and implementation, from user access to data transmission. Emerging applications and scenarios in the sixth generation (6G) wireless systems will require massive connectivity and transmission of a deluge of data, which calls for more flexibility in the design concept that goes beyond orthogonality. Furthermore, recent advances in signal processing and learning have attracted considerable attention, as they provide promising approaches to various complex and previously intractable problems of signal processing in many fields. This article provides an overview of research efforts to date in the field of signal processing and learning for next-generation multiple access, with an emphasis on massive random access and non-orthogonal multiple access. The promising interplay with new technologies and the challenges in learning-based NGMA are discussed

    PHY-layer Security in Cognitive Radio Networks through Learning Deep Generative Models: an AI-based approach

    Get PDF
    PhD ThesisRecently, Cognitive Radio (CR) has been intended as an intelligent radio endowed with cognition which can be developed by implementing Artificial Intelligence (AI) techniques. Specifically, data-driven Self-Awareness (SA) functionalities, such as detection of spectrum abnormalities, can be effectively implemented as shown by the proposed research. One important application is PHY-layer security since it is essential to establish secure wireless communications against external jamming attacks. In this framework, signals are non-stationary and features from such kind of dynamic spectrum, with multiple high sampling rate signals, are then extracted through the Stockwell Transform (ST) with dual-resolution which has been proposed and validated in this work as part of spectrum sensing techniques. Afterwards, analysis of the state-of-the-art about learning dynamic models from observed features describes theoretical aspects of Machine Learning (ML). In particular, following the recent advances of ML, learning deep generative models with several layers of non-linear processing has been selected as AI method for the proposed spectrum abnormality detection in CR for a brain-inspired, data-driven SA. In the proposed approach, the features extracted from the ST representation of the wideband spectrum are organized in a high-dimensional generalized state vector and, then, a generative model is learned and employed to detect any deviation from normal situations in the analysed spectrum (abnormal signals or behaviours). Specifically, conditional GAN (C-GAN), auxiliary classifier GAN (AC-GAN), and deep VAE have been considered as deep generative models. A dataset of a dynamic spectrum with multi-OFDM signals has been generated by using the National Instruments mm-Wave Transceiver which operates at 28 GHz (central carrier frequency) with 800 MHz frequency range. Training of the deep generative model is performed on the generalized state vector representing the mmWave spectrum with normality pattern without any malicious activity. Testing is based on new and independent data samples corresponding to abnormality pattern where the moving signal follows a different behaviour which has not been observed during training. An abnormality indicator is measured and used for the binary classification (normality hypothesis otherwise abnormality hypothesis), while the performance of the generative models is evaluated and compared through ROC curves and accuracy metrics

    Multifunction Radios and Interference Suppression for Enhanced Reliability and Security of Wireless Systems

    Get PDF
    Wireless connectivity, with its relative ease of over-the-air information sharing, is a key technological enabler that facilitates many of the essential applications, such as satellite navigation, cellular communication, and media broadcasting, that are nowadays taken for granted. However, that relative ease of over-the-air communications has significant drawbacks too. On one hand, the broadcast nature of wireless communications means that one receiver can receive the superposition of multiple transmitted signals. But on the other hand, it means that multiple receivers can receive the same transmitted signal. The former leads to congestion and concerns about reliability because of the limited nature of the electromagnetic spectrum and the vulnerability to interference. The latter means that wirelessly transmitted information is inherently insecure. This thesis aims to provide insights and means for improving physical layer reliability and security of wireless communications by, in a sense, combining the two aspects above through simultaneous and same frequency transmit and receive operation. This is so as to ultimately increase the safety of environments where wireless devices function or where malicious wirelessly operated devices (e.g., remote-controlled drones) potentially raise safety concerns. Specifically, two closely related research directions are pursued. Firstly, taking advantage of in-band full-duplex (IBFD) radio technology to benefit the reliability and security of wireless communications in the form of multifunction IBFD radios. Secondly, extending the self-interference cancellation (SIC) capabilities of IBFD radios to multiradio platforms to take advantage of these same concepts on a wider scale. Within the first research direction, a theoretical analysis framework is developed and then used to comprehensively study the benefits and drawbacks of simultaneously combining signals detection and jamming on the same frequency within a single platform. Also, a practical prototype capable of such operation is implemented and its performance analyzed based on actual measurements. The theoretical and experimental analysis altogether give a concrete understanding of the quantitative benefits of simultaneous same-frequency operations over carrying out the operations in an alternating manner. Simultaneously detecting and jamming signals specifically is shown to somewhat increase the effective range of a smart jammer compared to intermittent detection and jamming, increasing its reliability. Within the second research direction, two interference mitigation methods are proposed that extend the SIC capabilities from single platform IBFD radios to those not physically connected. Such separation brings additional challenges in modeling the interference compared to the SIC problem, which the proposed methods address. These methods then allow multiple radios to intentionally generate and use interference for controlling access to the electromagnetic spectrum. Practical measurement results demonstrate that this effectively allows the use of cooperative jamming to prevent unauthorized nodes from processing any signals of interest, while authorized nodes can use interference mitigation to still access the same signals. This in turn provides security at the physical layer of wireless communications
    corecore