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parents, Lea and Kalle, who provided me with the very foundation on which the
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ABSTRACT

Wireless connectivity, with its relative ease of over-the-air information sharing, is a
key technological enabler that facilitates many of the essential applications, such as
satellite navigation, cellular communication, andmedia broadcasting, that are nowa-
days taken for granted. However, that relative ease of over-the-air communications
has significant drawbacks too. On one hand, the broadcast nature of wireless com-
munications means that one receiver can receive the superposition of multiple trans-
mitted signals. But on the other hand, it means that multiple receivers can receive
the same transmitted signal. The former leads to congestion and concerns about re-
liability because of the limited nature of the electromagnetic spectrum and the vul-
nerability to interference. The latter means that wirelessly transmitted information
is inherently insecure.

This thesis aims to provide insights and means for improving physical layer reli-
ability and security of wireless communications by, in a sense, combining the two
aspects above through simultaneous and same frequency transmit and receive oper-
ation. This is so as to ultimately increase the safety of environments where wire-
less devices function or where malicious wirelessly operated devices (e.g., remote-
controlled drones) potentially raise safety concerns. Specifically, two closely re-
lated research directions are pursued. Firstly, taking advantage of in-band full-duplex
(IBFD) radio technology to benefit the reliability and security of wireless commu-
nications in the form of multifunction IBFD radios. Secondly, extending the self-
interference cancellation (SIC) capabilities of IBFD radios to multiradio platforms
to take advantage of these same concepts on a wider scale.

Within the first research direction, a theoretical analysis framework is developed
and then used to comprehensively study the benefits and drawbacks of simultane-
ously combining signals detection and jamming on the same frequency within a sin-
gle platform. Also, a practical prototype capable of such operation is implemented
and its performance analyzed based on actual measurements. The theoretical and
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experimental analysis altogether give a concrete understanding of the quantitative
benefits of simultaneous same-frequency operations over carrying out the operations
in an alternating manner. Simultaneously detecting and jamming signals specifically
is shown to somewhat increase the effective range of a smart jammer compared to
intermittent detection and jamming, increasing its reliability.

Within the second research direction, two interference mitigation methods are
proposed that extend the SIC capabilities from single platform IBFD radios to those
not physically connected. Such separation brings additional challenges in modeling
the interference compared to the SIC problem, which the proposedmethods address.
These methods then allowmultiple radios to intentionally generate and use interfer-
ence for controlling access to the electromagnetic spectrum. Practical measurement
results demonstrate that this effectively allows the use of cooperative jamming to pre-
vent unauthorized nodes from processing any signals of interest, while authorized
nodes can use interference mitigation to still access the same signals. This in turn
provides security at the physical layer of wireless communications.
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1 INTRODUCTION

1.1 Motivation

Wireless connectivity is a key technological enabler that facilitates many of the prac-
tical applications, such as satellite navigation, cellular communication, and media
broadcasting, that are nowadays taken for granted. And, the reliance onwireless con-
nections is steadily increasing as more and more applications, e.g., sensor and drone
networks, take advantage of the relative ease of sharing information over the air. All
of thementioned examples would be difficult to imagine, or at least implement, with
wired connections. However, that relative ease of over-the-air communications has
its drawbacks.

On one hand, the broadcast nature of wireless communicationsmeans thatmulti-
ple receivers can receive the same transmitted signal, but on the other hand, it means
that one receiver can receive the superposition of multiple transmitted signals. The
former results in considerable concern for the security of wirelessly transmitted in-
formation because of the susceptibility to eavesdropping, while the latter causes con-
cern about robustness and congestion because of the vulnerability to interference
and the limited nature of the electromagnetic spectrum. The increasing reliance on
wireless connectivity is only amplifying those concerns.

Since many of the applications that rely on wireless connectivity involve cyber-
physical systems that interact with the physical world around them, these concerns
not only affect the security and reliability of information, but also the physical safety
of the systems’ surroundings [2, 6]. In order to ensure safety in the environments
where wireless systems operate or where wirelessly operated devices could be used
with malicious intent, it is therefore vital to have the insight on how significant is
the impact of security and reliability on safety, but also to have the means to alleviate
the security, reliability, and safety concerns.
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1.2 Objective and Main Contributions

The main objective of this thesis is to provide the insight and means for improving
the safety of environments where wireless devices function or where malicious wire-
lessly operated devices can potentially raise safety concerns (as illustrated in Fig. 1.1).
Or, in other words, to gain dominance in the electromagnetic spectrum and trans-
late that to improved safety in the physical domain, e.g., when countering remotely-
controlled drones. To that end, two closely related research directions are targeted:
taking advantage of in-band full-duplex (IBFD) radio technology to benefit security
and reliability of wireless communications in the form of multifunction IBFD ra-
dios; and extending the self-interference cancellation (SIC) capabilities of IBFD ra-
dios to multi-radio platforms on a wider scale.

GNSS

Rogue
UAV

Authorized operator

Eavesdropper

Authorized
UAV

Wireless
communications

Electronic
countermeasures

Unauthorized operator

Radio shield

Figure 1.1 Idealized concept for protection from cyber-physical threats — a radio shield.

Typical wireless nodes are incapable of simultaneously transmitting and receiving
on the same frequency because of the inevitable self-interference (SI) that any such
attempt results in [11]. Still, seemingly full-duplex (FD) two-way communication is
achievable by separating the transmission and reception in either time or frequency.
However, these approaches take twice the resources that true FD operation would.
Motivated by the promise of doubling the spectral efficiency of wireless communi-
cations, recent research has led to sufficient SI cancellation capabilities, making true

2

FD radio technology, or IBFD radio technology, a viable solution [12]. Various
benefits have also been envisioned for multi-radio systems that could suppress inter-
ference across nodes instead of within a single node, but doing so is a more complex
challenge that has yet to receive the same level of attention as SIC [13].

As such, the specific objectives within the two research directions are as follows.
Firstly, finding out the extent that advances in SIC and the feasibility of IBFD op-
eration mode can be used for combining radio functions other than information
transmission and reception on a single platform in the form of multifunction radios
and what is the resulting impact on the reliability and security of these systems. Sec-
ondly, developing interference cancellation methods that allow to extend the IBFD
radio concept from a single radio to multiple radios, so that interference across ra-
dios can be canceled. And also, studying the impact that such capability can have in
practice on the security of wireless communication systems.

The main contributions of this thesis are:

• A theoretical framework for studying the impact of half-duplex (HD) and FD
operation modes in counter-drone scenarios along with a detailed comparison
highlighting the benefits of either mode [P6] and an overview of the impact
that IBFD operation can have on tactical information and electronic warfare
systems [P4].

• A deep learning-based method for detecting and classifying signals, along with
measurements-based analysis of its performance when simultaneously inter-
fering and detecting drone remote control signals in IBFD mode [P3].

• A digitally assisted analog interference mitigation scheme for suppressing pe-
riodic interference in co-existing interferer and receiver scenarios where pow-
erful interference needs to be handled in the analog domain so as to avoid
quantization noise from masking any weak signals of interest [P1]. A study
of the scheme’s performance for improving global navigation satellite system
(GNSS) reception [P2].

• An adaptive frequency offsets least mean squares (FO-LMS) filter capable of
simultaneously and explicitly estimating and tracking a wireless channel as
well as carrier and sampling frequency offsets1 [P5] and an extensive study of
its performance in the context of cooperative jamming [P7].

1An implementation of the algorithm is open-sourced at https://github.com/karel/gr-adapt
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• An extension of thewell-known energy conservation relationmethod to facili-
tate analyzing the steady-state performance of adaptive filterswith self-induced
nonstationarity, such as the proposed FO-LMS [P5].

Altogether, these contributions provide amuch improved understanding onwhen
and how IBFD radio technology can be used for enhancing the reliability and se-
curity of wireless systems, but also when it is better to rely on conventional HD
technology. The contributions presented herein with regards to IBFD technology
rely on the significant advances in SIC made over the recent years and assume that
SI is suppressible to a great extent. However, suppressing interference across multi-
ple radios is considerably more challenging and not nearly as well studied as dealing
with SI. As such, in order to provide practical means for extending the reliability
and security benefits of IBFD radios to multi-radio setups, this work provides novel
methods for radio interference suppression across nodes. Furthermore, the work
demonstrates the effectiveness of these methods in enhancing the security of practi-
cal wireless communication systems.

1.3 Structure of the Thesis

The remainder of this thesis is aligned with the structure in Fig. 1.2 and is organized
as follows. Firstly, Chapter 2 reviews the fundamental methods used for improving
and degrading the resilience of wireless communications. Then, Chapter 2 gives an
overview of IBFD radio technology, including the SI problem, its cancellation tech-
niques, and the general ideas behind multifunctional IBFD radios. Chapter 2 also
gives an overview of the potential benefits of interference cancellation across mul-
tiple platforms and discusses the challenges therein. Chapter 3 presents proof-of-
concept measurements that demonstrate the viability of applying IBFD radio tech-
nology for combining simultaneous signals intelligence and neutralization tasks and
studies the practicality of several such relevant combinations. Chapter 4 proposes
methods for suppressing periodic or known interference and demonstrates the per-
formance of those methods in cooperative jamming scenarios. Finally, Chapter 5
presents the summary and conclusions of this thesis.
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Figure 1.2 Structure of the research presented in this doctoral thesis.

5



• An extension of thewell-known energy conservation relationmethod to facili-
tate analyzing the steady-state performance of adaptive filterswith self-induced
nonstationarity, such as the proposed FO-LMS [P5].

Altogether, these contributions provide amuch improved understanding onwhen
and how IBFD radio technology can be used for enhancing the reliability and se-
curity of wireless systems, but also when it is better to rely on conventional HD
technology. The contributions presented herein with regards to IBFD technology
rely on the significant advances in SIC made over the recent years and assume that
SI is suppressible to a great extent. However, suppressing interference across multi-
ple radios is considerably more challenging and not nearly as well studied as dealing
with SI. As such, in order to provide practical means for extending the reliability
and security benefits of IBFD radios to multi-radio setups, this work provides novel
methods for radio interference suppression across nodes. Furthermore, the work
demonstrates the effectiveness of these methods in enhancing the security of practi-
cal wireless communication systems.

1.3 Structure of the Thesis

The remainder of this thesis is aligned with the structure in Fig. 1.2 and is organized
as follows. Firstly, Chapter 2 reviews the fundamental methods used for improving
and degrading the resilience of wireless communications. Then, Chapter 2 gives an
overview of IBFD radio technology, including the SI problem, its cancellation tech-
niques, and the general ideas behind multifunctional IBFD radios. Chapter 2 also
gives an overview of the potential benefits of interference cancellation across mul-
tiple platforms and discusses the challenges therein. Chapter 3 presents proof-of-
concept measurements that demonstrate the viability of applying IBFD radio tech-
nology for combining simultaneous signals intelligence and neutralization tasks and
studies the practicality of several such relevant combinations. Chapter 4 proposes
methods for suppressing periodic or known interference and demonstrates the per-
formance of those methods in cooperative jamming scenarios. Finally, Chapter 5
presents the summary and conclusions of this thesis.

4

Multifunction Radios and Interference Suppression
for Enhanced Reliability and Security of Wireless Systems

Multifunction Full-Duplex Radios

P3: Jamming and Classification of Drones
Using Full-Duplex Radios and Deep Learning

P6: Physical-Layer Reliability
of Drones and Their Counter-Measures:

Full vs. Half Duplex

P4: Full-Duplex Tactical Information
and Electronic Warfare Systems

Interference Mitigation

P1: Digitally Assisted Analog Mitigation
of Narrowband Periodic Interference

P2: Analog Mitigation of
Frequency-Modulated Interference
for Improved GNSS Reception

P5: Estimating and Tracking
Wireless Channels under Carrier and

Sampling Frequency Offsets

P7: Known-Interference Cancellation in
Cooperative Jamming

Figure 1.2 Structure of the research presented in this doctoral thesis.

5



6

2 BACKGROUND

This chapter provides fundamental background information on the security and reli-
ability of wireless communications, reviews the same-frequency simultaneous trans-
mit and receive (SF-STAR) technology that facilitates single platform radios to op-
erate in IBFD mode, and finally discusses the challenges and appeal of extending the
SF-STAR concept to multi platform radios.

2.1 Wireless Communications and Electronic

Countermeasures

The wireless medium is inherently accessible to anyone and this is what facilitates
communication between mobile devices that cannot rely on wired infrastructure.
However, this accessibility is also what makes these same wireless communications
vulnerable. In contrast to wired communications, where attackers cannot carry out
hostile actions towards the communications without being physically connected to
the network, wireless communications are susceptible to electronic countermeasures
that require nothing other than the attacker being in the vicinity of the otherwireless
nodes. These countermeasures include, e.g., eavesdropping and jamming. Improv-
ing the resilience of wireless communications against countermeasures has been, and
continues to be, an important research goal. At the same time, it is also of interest
to improve the countermeasures themselves so that wireless devices (e.g., drones)
cannot be freely used for malicious purposes. Herein this contest for control of the
electromagnetic spectrum is considered by relying on the three-node system model
illustrated in Fig. 2.1. The system model includes a transmitter-receiver pair and an
adversary that is capable of intercepting or jamming the wireless communications
between the pair.
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Figure 2.1 Three-node system model for wireless communications and electronic countermeasures.

2.1.1 Anti-Jam & Anti-Intercept Techniques

Regardless of whether the adversary intends to intercept or jam the wireless commu-
nication between the transmitted and receiver, the communicating nodes are moti-
vated to prevent the adversary from succeeding. Ensuring the escape from intercep-
tion or jamming in wireless communications is regretfully impossible. Under the
right circumstances all wireless systems can be eavesdropped or jammed [14]. That
is, with sufficient signal-to-noise ratio (SNR) at the interceptor or jammer-to-signal
ratio (JSR) at the receiver these attacks will succeed. Still, anti-jam and anti-intercept
techniques have been developed to deter such attacks.

The prevalent methods for protecting wireless communications against eaves-
dropping and jamming are various spread spectrum techniques which, in one way
or another, try to hide the communication signal from the adversary, consequently
making the signal a more difficult target. Essentially, as the name suggests, spread
spectrum systems take advantage of the transmitted signal occupying a significantly
wider bandwidth than the information signal requires. This bandwidth expansion
accounts for the favorable properties of spread spectrum systems and is typically
referred to as the processing gain, which is defined as

GP =
W
B
, (2.1)

whereW is the bandwidth of the spread spectrum signal and B is that of the infor-
mation signal.

8

t

P

f

Data

Code
Transmit Signal

(a) DSSS

t

P

f

Data

Hop Sequence

Transmit Signal

(b) FHSS

Figure 2.2 Comparison of the signal power, P , distribution over time, t , and frequency, f , for spread
spectrum techniques.

Themost practical and dominant spread spectrum techniques are direct-sequence
spread spectrum (DSSS) and frequency-hopping spread spectrum (FHSS) techniques
(illustrated in Fig. 2.2). Direct-sequence spreading entails combining a high-rate
spreading code with relatively low-rate data, which results in a transmitted signal
with wider bandwidth than that of the data. Compared to a plain data signal, the
direct-sequence spread spectrum signal will occupy a wider bandwidth but at a lower
power spectral density, keeping the total power unchanged. As such, the spread spec-
trum signal becomes less indistinguishable from the noise floor and more challeng-
ing to detect. Ideally, a direct sequence signal with binary phase shift keying can be
expressed as

x(t ) = u(t )p(t )cos (2π fc t ), (2.2)

where u(t ) is the data signal, p(t ) is the spreading code, and fc is the carrier fre-
quency. Direct sequencing requires that both the transmitter and receiver know and
use the same spreading code p(t ). Removing the spreading code in the receiver re-
sults in contraction of the bandwidth back to the data bandwidth and, against certain
types of interference, this contraction can be taken advantage of through filtering to
remove a portion of the interference [15].

Frequency hopping entails systematically changing the carrier frequency of the
transmitted signal. In contrast to direct sequencing, which spreads the instantaneous
bandwidth of the transmitted signal, frequency hopping moves the instantaneously
narrowband signal around within a wide bandwidth. Like direct sequencing, fre-
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quency hopping tries to avoid being intercepted or jammed by making its position
and existence in the electromagnetic spectrum less obvious to an electronic coun-
termeasure system. When avoiding these countermeasures fails, it is hopefully only
momentary due to the systematic changing of the carrier frequency. A frequency-
hopped signal with binary frequency shift keying can be represented by

x(t ) = cos (2π( fc(t )+ u(t ) f∆)t ), (2.3)

where the carrier frequency fc(t ) is time-varying and f∆ is the frequency deviation.
The main requirement for frequency hopping is that both the transmitter and re-
ceiver agree on how the carrier frequency changes in time and that the receiver is
actually able to adjust its carrier frequency in unison with the transmitter.

Both direct sequencing and frequency hopping rely on the transmitter-receiver
pair having a preshared secret (i.e., spreading code or frequency hopping sequence)
and the benefits of spectrum spreading rely on the adversary not knowing that secret.
This added complexity of agreeing on and managing a shared secret across multiple
devices, in addition to having the hardware capable of utilizing that secret, is the cost
of improved security and resilience over plain wireless communications. However,
it is remarkable that for the effectiveness of spread spectrum communications, no
underlying theoretical limit exists. That might not be immediately clear because,
e.g., it could be assumed that increasing the bandwidth of a direct-sequence spread
spectrum signal needs the receiver filter to pass more noise than necessary to the
subsequent signal processing stages. However, when applying a matched filter to
the superposition of a signal, which it is matched to, and additive white Gaussian
noise (AWGN) noise, then the output of that filter has a SNR that depends only on
the energy-to-noise density ratio [15]. Therefore, the spread spectrum signal’s band-
width is inconsequential and without inherent theoretical limitations. Although,
practical radio-frequency (RF) front-ends are typically limited in frequency, which
also limits the frequency rage in which the signals can be spread.

2.1.2 Jamming

As it is practically impossible to prevent wireless communications from being inter-
cepted or jammed under all circumstances, it is in the attacker’s interest to succeed
with minimal effort or equivalently with maximal effective range. That is, from the
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electronic countermeasures perspective, an ideal jamming attack would be highly
energy efficient regardless of anti-jamming techniques a communication system uses
and, at the same time, have a low probability of detection itself, so that the target
would not realize the presence of an attacker. In general, to approach these objec-
tives, the attack needs to be tailored for the targeted communication system. For
that, the attacker needs to have a thorough understanding of the targeted system and
a sophisticated enough jamming platform that can utilize this knowledge to optimize
the attack. Against direct sequencing or frequency hopping spread spectrum tech-
niques this means having some knowledge about the spreading code or frequency
hopping sequence while also being able to spread the interference instantaneously
or rapidly hop it around. Depending on the scenario, parameters of the targeted
communication systemmay be readily available and fixed or unknown and adaptive
to adverse conditions.
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Figure 2.3 Common jamming techniques.

Consequently, various jamming techniques differ based on howmuch knowledge
about the targeted system is expected to be known to the jammer at the time of the
attack. Fig. 2.3 illustrates three common jamming techniques: barrage, sweep, and
follower jamming. Barrage jamming is the simplestmethod in that it only assumes an
approximate knowledge about the total frequency range used by the communication
system. Barrage jammer transmits instantaneously wideband noise across that entire
frequency range used by the targeted communication system. As the noise level at
the receiver is increased, it makes it more difficult for the communication system
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to function. The main limitation of barrage jamming is that it results in low power
spectral density as limited jamming power is spread very wide. However, barrage
jamming is often the best that a jammer can do when it knows nothing else about
the targeted signal [16].

Sweep jamming is similarly simple in that it assumes some knowledge about the
total frequency range used by the target, but instead of instantaneously spreading the
interference across that entire bandwidth, it sweeps a narrowband interference signal
across the frequency band of interest at some rate. Therefore, at any given time, the
jamming signal is only affecting a small portion of the spectrum. Concentrating the
full jamming power to a portion of the targeted signal in time can be sufficient to
prevent the receiver from processing the entire signal. As such, this approach can
be more effective than barrage jamming against frequency-hopped communications
if the timing characteristic of the targeted communication systems are known and
taken into consideration. The frequency sweep must be quick enough, so that the
target system does not have a chance of avoiding being affected, but also not too
quick to prevent spreading the power completely [17].

Follower jamming is a technique specifically to combat frequency hopping. A fol-
lower jammer tries to locate the frequency towhich the target has hopped (while also
making sure that the signal is not confusedwith anything else) and then jam that new
frequency only. Frequency-hopped communication systems often use large band-
widths and short hop duration, which make it challenging for a follower jammer
to detect and timely react to the changes in the communications carrier frequency.
However, if implemented adequately, then follower jamming is the most efficient
technique, as the jamming energy can be concentrated to only where the targeted
signal is in the electromagnetic spectrum [1].

2.1.3 Detection & Interception

The more sophisticated a jamming attack is, the more it relies on target signal detec-
tion and interception, but detection and interception are valid electronic measures
on their own too. Simply knowing that the communication is taking place can be
valuable information, e.g., when trying to detect the physical presence of an adver-
sary [18]. And accessing the communicated information even more so, e.g., to inter-
cept the plans of an adversary. The anti-jam and anti-intercept techniques discussed
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previously are equally challenging to detect and intercept as they are to jam. These
techniques force the non-cooperative receiver to operate over a large bandwidth, in-
creasing sensitivity to noise and placing greater demands on the receiver hardware
capabilities. In order to deal with very large bandwidths, detectors often employ
an RF front-end with modest bandwidth but with agile center frequency, scanning
through the entire range of interest [14].
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Figure 2.4 Detection and classification taxonomy.

Detection and interception are both valid electronic support measures in the con-
text of electronic opposition, but the former is typically a prerequisite for the latter.
This is because a signal of interest can only be intercepted (i.e., demodulated), if its
presence and position in the electromagnetic spectrum have been identified. And, if
prior knowledge about these is not available, then they need to be sensed. Further-
more, it is then also necessary to classify the signal’s modulation type and extract
the parameters that are essential for demodulation. Numerous methods exist for
detecting and classifying wireless signals, with some of the most prevalent methods
illustrated in Fig. 2.4 and discussed next.
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For signal detection purposes, the input to the receiver can be considered to fall
under one of the two hypotheses

H0 : d (t ) = n(t ), (2.4)

H1 : d (t ) = s (t )+ n(t ), (2.5)

where d (t ) is the input to the receiver, s (t ) is the received signal of interest including
channel effects and n(t ) is measurement noise. The objective of the detector is to
make a decision on the binary hypothesis testing based on the receiver input, i.e.,
choose H0 or H1. When nothing is known about the signal to be detected and the
noise is stationary, then the optimal detection technique is energy detection [14]. En-
ergy detection is also the simplest technique, relying on filtering the input, integrat-
ing the received signal power over some time duration, which results in a test statis-
tic z(t ), and comparing the test statistic to a predefined threshold λ (as illustrated in
Fig. 2.5). In order to deal with frequency-hopped signals, it is also straightforward
and common to combine multiple energy detectors in a channelized manner. Each
of the individual outputs can then be compared to a separate threshold or the largest
test statistic used only (as illustrated in Fig. 2.6) depending on the application.
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Figure 2.6 Block diagram of a channelized energy detector.

However, energy detection in itself does not provide insight about anything other
than the signal’s existence. In order to both detect and classify signals, the received
signal needs to be analyzed using a more advanced approach. Time-frequency analy-
sis methods (e.g., short-time Fourier transform, Wigner-Ville distribution, or Choi-
Williams distribution) are popular basic tools that take advantage of different sig-
nals having different time-frequency representations [19]. The basic idea of time-

14

frequency analysis methods is to develop a joint function of both time and frequency
that describes a signal’s energy density simultaneously in both domains. The result-
ing distribution can then be used both for detection and classification.

Another aspect that can be exploited is the cyclostationarity of typical commu-
nication signals. Detection and classification is in that case performed by correlating
the received signal with a portion of itself and analyzing the correlation output [20].
An advantage of cyclostationarity analysis is that AWGN noise is stationary and,
therefore, the cyclostationary spectrum is noise free, which leads to increased sen-
sitivity [21]. Finally, deep learning techniques have been gaining popularity for de-
tecting and classifying low probability of intercept (LPI) signals and are demonstrat-
ing comparable or superior performance over other methods [22]. Deep learning-
based method are especially interesting because they can be extended to not only
classify signals but also identify specific transmitters based on their physical-layer
attributes [23].

2.2 In-Band Full-Duplex Radio Technology

The ever-increasing demands on the limitedwireless spectrum are driving the pursuit
for systems with higher and higher spectral efficiency and among the various ways
to achieve better spectral efficiency is the IBFD radio technology. While the nodes
of most conventional wireless communication systems do operate as both transmit-
ters and receivers, they do so in either HD mode or emulate FD mode by dividing
the transmission and reception in time or frequency (i.e., time divison or frequency
division duplexing). In contrast to these methods that emulate FD operation, IBFD
entails wireless nodes transmitting and receiving simultaneously over the same fre-
quency band. Compared to the time and frequency division methods, this offers
potentially double the spectral efficiency, as measured by the number of informa-
tion bits reliably communicated per second per Hz [11]. This makes IBFD radio
technology of considerable interest for next-generation wireless networks.

2.2.1 Self-Interference Cancellation

The key obstacle that has prevented IBFD radio technology frombeing implemented
in wireless communication systems thus far is the powerful SI from a node’s own
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transmission that submerges the signal of interest transmitted from any far-away
node. And that SI cannot be simply subtracted from the total received signal dur-
ing digital signal processing in the receiver, even if the receiver can accurately model
the path of the SI from the digital-to-analog converter (DAC) to the analog-to-digital
converter (ADC). That is because typically the powerful SI spans most of the ADC’s
dynamic range and significantly increases the quantization noise for the signal of in-
terest [24]. However, recent research has demonstrated that by dividing the SIC
into separate stages, both before and after digitization, the SI can be attenuated suffi-
ciently such that the resulting IBFD wireless system can achieve better spectral effi-
ciency than a system that emulates FD operation [25]. Typically, SIC is divided into
three stages as illustrated in Fig. 2.7 and briefly explained in the following paragraphs.
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Figure 2.7 SI cancellation techniques at various stages (passive, analog, and digital). Passive suppres-
sion and analog cancellation can be approached broadly in two ways: passive isolation by
using either a circulator or separate antennas and analog cancellation by filtering a replica of
the transmitted signal in software or hardware to match it to the SI in the analog domain.

Passive suppression methods aim to isolate the transmit chain from the receive
chain so that the SI does not reach the receive chain. This can be achieved to some
extent by using separate antennas or a circulator that limits the amount of leakage
from the transmit to receive chain. The main benefit of passive SI suppression is
that these methods do not require complex signal processing algorithms nor addi-
tional special hardware to function. However, it is in general unfeasible that the SI
is suppressed in its entirety using simply passive isolation. The effectiveness of such
methods is limited by physical imperfections and the terminals’ form-factor. Circula-
tors unfortunately have some leakage while adjacently placed antennas exhibit some
coupling and in smaller devices there is less room to implement isolation techniques
altogether [11]. Furthermore, passive isolation techniques are inherently ineffec-
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tive against reflected-path SI that is caused by the transmitted signal reflecting back
into the device from the near-by environment. Handling SI that is affected by the
environment, in which the device operates and that is typically subject to changes,
requires active and channel-aware suppression techniques.

The analog domainmethods aim to suppress the SI in the receive chain before the
ADC digitizes the signal. It has been demonstrated that this can be achieved broadly
in two ways. Firstly, by tapping a portion of the analog transmit signal before the
transmit antenna, processing the tapped signal in analog domain to have an opposite
phase to the SI in the receive chain, and feeding the processed signal into the receiver
chain [26]. Secondly, by tapping a portion of the digital transmit signal, processing
that signal in the digital domain to have an opposite phase to the SI in the receive
chain, converting that digital processed signal to analog using an auxiliary transmit
chain, and feeding that signal into the receiver chain before digitization [25]. Tapping
the analog signal as close to the transmit antenna as possible has its advantage that
it allows to capture the nonlinear distortions of the transmit chain, which when
tapping the digital signal need to be explicitly modeled. Then again, tapping the
digital signal potentially allows for farmore elaborate channelmodeling and does not
require specific hardware for processing the tapped signal in the analog domain, but
simply a separate transmit chain. Due to the complexity of analog signal processing
and the imperfections of analog hardware, this SIC stage is still typically left with
some residual SI. But, assuming that the reflections from nearby environment are
not too powerful, this residual SI is typically weak enough that it does not cause the
quantization noise to negatively impact the signal of interest.

The digital domain methods aims to suppress the SI in the received digitized sig-
nal, i.e., after theADC, and essentially need to deal with the shortcomings of the two
previous stages. The digital-domain methods have to account for everything that af-
fects the signal between the DAC and ADC, whereas often the biggest challenge is
modeling the nonlinearities caused by the power amplifier (PA). The limitation of
working in the digital domain is that the dynamic range therein is restricted by the
ADC and in order for digital methods to be effective, the previous stages will have
needed to suppress the SI sufficiently beforehand. However, the advantage of work-
ing in the digital domain is that the algorithms are relatively easy to implement and
develop. As such, there are numerous digital SI suppression methods that have been
published, ranging from using polynomial models to machine learning [27].
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2.2.2 Spectral Efficiency

Current state-of-the-art IBFD radio prototypes achieve total SIC in excess of 100 dB
in proof-of-concept scenarios and environments [5] and, therefore, provide promis-
ing conditions for wireless applications aimed at information exchange [24]. It is
clear that in a two-node system with adequate SIC, IBFD operation doubles the
spectral efficiency compared to a HD system. However, typical wireless applica-
tions consist of more than two nodes, and the impact of IBFD operation mode in
such scenarios is more multi-faceted. For example, IBFD operation mode allows ter-
minals to be continuously cognitive, meaning that even during a transmission the
terminal can detect a collision and immediately abort the transmission, which can
lead to improved network throughput. Furthermore, IBFD operation mode allows
forwarding a packet that is still being received, which has the potential to greatly re-
duce the end-to-end delay of a multi-hop network compared to conventional store-
and-forward techniques employed inHDmode. Still, IBFDmode does not necessar-
ily always outperform its HD counterpart, and, as such, it is quite often that hybrid
schemes are considered that take advantage of IBFD capabilities when suitable, but
otherwise rely on HD mode. Hybrid schemes typically outperform either of the
individual schemes [24].

2.3 In-Band Co-Existing Radio Technology

Whereas IBFD radio technology applies to wireless nodes that carry out both the
transmission and reception, thus knowing the transmitted signal and having the po-
tential to cancel the transmitted signal in the receive path, there are many scenarios
where it is not the same node that does the transmission and reception, but the re-
ceiving node nonetheless knows the transmitted signal, which is often referred to
as known interference (KI). And in those scenarios, like in IBFD radios, it would
be beneficial to estimate the wireless channel and the impairments that impact the
signal so that the received signal could be suppressed. This section discusses the ad-
ditional challenges that come with separating the transmit and receive functionality
across different nodes compared to IBFD radios and also the benefits of suppressing
KI across nodes.
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2.3.1 Channel Estimation and Frequency Offsets

Inworkswhere the use ofKI is considered, especially in information theoreticworks,
perfect known-interference cancellation (KIC) is often assumed [28, 29, 30]. How-
ever, because of hardware imperfections and the propagation environment, the re-
ceived KI in practice significantly differs from that what is transmitted and even the
SI cancellation methods of IBFD radios do not necessarily suffice. Fig. 2.8 illus-
trates some of the typical impairments between wireless transmitter and receiver
pairs. Firstly, oscillator inaccuracies between different transmitters and receivers
inevitably result in carrier and sampling frequency offsets, and oscillators generally
exhibit long-term drifting and short-termfluctuations thatmake these frequency off-
sets time-varying. To make matters worse, in wireless propagation these frequency
offsets can be further aggravated by the Doppler effect. If not compensated for, then
time-varying frequency offsets are harmful to the performance of systems trying to
suppress the KI [13, 31].
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Figure 2.8 RF impairments that affect KIC between two nodes.

Compensating the frequency offsets so as to suppress their negative effects re-
quires the offsets to be estimated and, due to their time-varying nature, continuously
tracked. This must of course be done simultaneously to estimating and tracking the
wireless channel itself too. In cases where the latter alone is sufficient, conventional
adaptive filters have proven especially popular due to their robustness and simplicity.
Practical use of adaptive filters is also supported by their well-understood behavior in
steady and tracking states. However, frequency offsets tend to compromise the per-
formance of classical adaptive filters [32]. As such, a robust-yet-simple adaptive filter
with analytically well-understood behavior that can jointly and explicitly estimate
and track both the wireless channel and frequency offsets is an appealing solution
for KIC. Later in this work, such an adaptive filter is provided that further bridges
the gap between KIC being theoretically desirable and practically viable.
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2.3.2 Cooperative and Coexisting Operation

Although synchronizing known signals across wireless nodes has several applica-
tions, then using KI for cooperative jamming is an especially enticing way for im-
proving physical layer security of wireless communications. The general idea behind
such cooperative operation (as illustrated in Fig. 2.9) is that while a legitimate trans-
mitter broadcasts a signal of interest to the legitimate receiver, a cooperative node
simultaneously transmits an interference signal, which is known to the legitimate
receiver. It is then highly challenging, albeit possible, for an eavesdropper to extract
the signal of interest from the superposition of the two signals. The eavesdropper
may still be successful if it can be positioned favorably or use beamforming to null
out the jamming node. However, the legitimate receiver is envisioned to use its prior
knowledge to suppress the interfering signal, therefore facilitating the processing of
the signal of interest in a straightforward manner. Cooperative jamming has the
potential to prevent eavesdropping without relying on upper layer encryption, and
provides a welcome alternative for the upper layer security mechanism. Simulated
and numerical results have demonstrated that cooperative jamming can improve the
secrecy rate of wireless communications in scenarios ranging from simple two-way
communications [33, 34] to relayed link [35]. Furthermore, experimental results
with periodic KI have demonstrated the practical feasibility of using cooperative
jamming for improving physical layer security [36]. However, a comprehensive and
practical solution for use with any type of KI waveform still has been missing.
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Figure 2.9 Cooperative jamming system model for improved physical layer security.
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3 MULTIFUNCTION IN-BAND FULL-DUPLEX

RADIOS

In this chapter, the contributions to multifunction radios are presented. Multifunc-
tion radio is a highly coveted concept [37, 38, 39, 40] and essentially an extension
to that of the multistandard radio, which is already facilitated by software-defined
radios [41, 42]. Both multifunction and multistandard radios address the desire to
provide more flexibility and capabilities with overall fewer hardware components.
However, while themultistandard radio concept assumes the capability to seamlessly
adjust a wide range of parameters of a communication system, true multifunction
operation assumes that the radio is capable of carrying out various different func-
tions simultaneously and possibly even at the same frequency. For example, mul-
tifunction radios envision integrating RF functions such as radar, electronic coun-
termeasures, and wireless communications into a single system utilizing a common
set of hardware (as shown in Fig. 3.1) for which the functionality is programmed
as necessary [6]. However, combining any such distinct set of RF operations on a
common set of hardware simultaneously is complicated as the individual operations
tend to interfere with one another.
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Figure 3.1 Multifunction radios envision integrating various functions, including radar, electronic counter-
measures, and wireless communications, into a shared set of antennas and signal processing
hardware to provide radio functionality as fitting for the situation.
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Typical single-function HD systems are able to operate in the electromagnetic
spectrum together and at peak performance by applying isolation techniques that
are custom-suited to each individual system, but this approach cannot be used when
a single aperture is taskedwith performingmultiple functions. So far, aspiringmulti-
function RF systems have therefore mostly relied on separating transmit and receive
antennas to provide moderate isolation between the respective signal paths. How-
ever, providing adequate transmit-to-receive isolation is a key challenge in developing
truly multifunction radios [37]. As such, IBFD radio technology can become a criti-
cal part of the multifunction radio concept because it allows the transmit and receive
functions, whatever they are, to operate simultaneously [2, 4, 5, 6].

In this work, the potential of multifunction IBFD radios is studied in the context
of remote-controlled drones to show the impact that physical layer performance of
wireless systems can have on the safety of cyber-physical systems. This is especially
fitting as drones pose an increasingly large threat and RF-based counter-drone meth-
ods are the prominent tools for dealing with that threat [1, 8], [43]. The study
herein covers both the drone and counter-drone system perspectives, but fundamen-
tally concerns a wireless system as illustrated in Fig. 2.1 and extends to any such
system whether it involves a drone or not. In IBFD operation mode, an electronic
counter-drone system can create an invisible electromagnetic dome, or a so called
radio shield, around the IBFD node as illustrated in Fig. 3.2. The feasibility of im-
plementing an IBFD radio shield has in numerous occasions been demonstrated in
laboratory environments [7], [44].
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Figure 3.2 Defensive IBFD radio shield — simultaneously preventing unauthorized drones from access-
ing the defended airspace and monitoring the RF spectrum (e.g., locating the drones and
their remote control station).
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In practice, an IBFD radio shield could be used to prevent malicious drones in
a drone swarm from wirelessly communicating with each other while at the same
time allowing to monitor the drones’ communication attempts — communication
within a drone swarm is essential for its operation, and this effectively prevents the
drone swarm from functioning as a coherent unit while still allowing to, e.g., track
drones by their RF fingerprints (i.e., classify and locate individual drones) [P4]. Sim-
ilarly, an IBFD radio shield could prevent drones in a swarm from positioning them-
selves relative to each other usingRF-basedmethod such as two-way ranging or radar-
based positioning, while simultaneously allowing the IBFD node to detect those ef-
forts [P4]. Another advantage is that the radio shield could prevent the malicious
remote controller from directing malicious drones while at the same time allowing
to intercept the remote control signals — this essentially means that inside the radio
shield, the drone or drone swarm is completely disconnected from its operator, but
the IBFD node can nonetheless observe (e.g., classify and locate) the remote con-
trol station [P4]. Finally, the radio shield could prevent drones from determining
their location using GNSS-based positioning while at the same time retaining the
IBFD node’s own ability to do so [P4]. This would be especially valuable in case
of a mobile IBFD node and radio shield. Of course, to some extent a similar effect
could be achieved in some cases by using anHD system that intermittently transmits
interference and processes the received signals. The following compares these two
approaches in detail.

3.1 Drones vs. Counter-Drone Measures

The pros and cons of HD and IBFD operation in counter-drone conflicts are herein
weighed in three different scenarios. Firstly, a counter-drone system’s ability to re-
strict the airspace into which a remote-controlled drone can enter is evaluated. Sec-
ondly, a remote-controlled drone’s ability to operate in an airspace that is guarded
by a counter-drone system is examined. Thirdly, a drone’s ability to detect jamming
is studied. The scenarios are summarized in Table 3.1, where the highlighted back-
ground indicates the operation mode comparison in question.
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Table 3.1 Drone vs. Counter-Drone System Scenarios

Scenario

Operation
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Device

HD HD RC
Jamming and Classification HD HD UAV

HD/FD HD/FD CDS

HD/FD HD/FD RC
Two-Way Communication HD/FD HD/FD UAV

HD/FD HD/FD CDS

HD HD RC
Communication and Detection HD/FD HD HD/FD UAV

HD/FD HD/FD CDS

3.1.1 System Description

The following parameters are used for the study in the three-node system model il-
lustrated in Fig. 2.1. The parameters are close to what can be found in many remote-
controlled drone and counter-drone systems [1], [45] and represent the general ca-
pabilities of practical systems, but do not strictly correspond to any specific system.
The total bandwidth that is used by the remote control link is taken to be 80MHz
and is divided into 160 equally spaced channels with bandwidths of 0.5MHz. Both
the remote controller and drone transmit a binary frequency-shift keying (BFSK)
signal that has a frequency deviation of 200 kHz, encoded data rate of 25 kbps, and
frequency hops 40 times per second. Output powers of the remote controller and
drone are 20 dBm in HD mode and 17 dBm in FD mode so as to maintain the same
energy-per-bit ratio as in HD mode.

The counter-drone system employs a channelized version of the energy detector
(that is illustrated in Fig. 2.6) for signal detection. On top of that, the counter-drone
system implements one of three strategies: constant, reactive, or follower jamming.
In reactive mode the system does not use the specific detected channel information,
but jams the entire band. For constant and reactive jamming strategies the system
can use either barrage or sweep jamming signal. The counter-drone system output
power is 40 dBm regardless of the operation mode in order to maximize its impact.
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In case of the sweeping jammer, 2.5 kHz sweep rate is used. The signal detection and
jamming times at the counter-drone system are 1.6ms and the HD counter-drone
system relies on a 50% duty cycle.

The noise floor is taken to be −90 dBm in a single channel and the radio link
between remote controller and drone is considered to be functional as long as the
channel-bit error rate is less than 1% in both ways. With a moderate coding rate,
this would allow to reach an information-bit error rate of 10−5 that is sufficient for
the repetitive nature of drone remote control communications [P6]. Furthermore,
it is assumed that the drone is operated 100m above ground level, while all other
nodes are on the ground, unless stated otherwise. To take into account the different
channels between the nodes without fading, this analysis relies on empirical studies
that have characterized the air-to-air, ground-to-air, and ground-to-ground channels
in wireless drone communications to have path loss exponents of 2.0, 2.2, and 3.3
respectively [46].

3.1.2 Verification of Analytical Expressions

In order to analyze the impact of operation mode and different strategies on the
drone vs. counter-drone interactions, analytical functions were derived in [P6] for
estimating the probabilities of detection and false alarm as well as of bit error in de-
modulating frequency-hopped BFSK signals under interference. The derivations are
not reproduced here but are relied on and the reader is referred to [P6] for details.
Herein, accuracy of the developed analytical techniques is first demonstrated by
comparison to simulations. The detection and false alarm probabilities of frequency-
hopped BFSK signals are checked using Propositions 1 through 4 from [P6]. The
simulations consider a channelized energy detector that receives SI and signal of in-
terest at specific power levels and makes a decision based on these. More details on
the simulations are provided in [P6]. The resulting receiver operating characteristic
(ROC) curves at the counter-drone system are plotted in Fig. 3.3 and demonstrate
that the estimations agree with the simulation results, but also give some insight
into the different strategies. For example, wideband detection (RJn) or (RJs) is as-
sured to correctly detect the presence of the signal of interest when the threshold is
low enough, but the channelized detector (FJn) is not guaranteed to determine the
correct channel. Furthermore, the ROC worsens with the increase in the SI level.
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Table 3.1 Drone vs. Counter-Drone System Scenarios

Scenario

Operation
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Device

HD HD RC
Jamming and Classification HD HD UAV

HD/FD HD/FD CDS

HD/FD HD/FD RC
Two-Way Communication HD/FD HD/FD UAV

HD/FD HD/FD CDS

HD HD RC
Communication and Detection HD/FD HD HD/FD UAV

HD/FD HD/FD CDS
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Figure 3.3 Counter-drone system receiver operating characteristic curves with different detection strate-
gies and at varying levels of self-interference powers denoted with Psi. The detector consid-
ers 20 samples and the signal of interest power level is Psoi =−91 dBm. Analytical results
are plotted with solid lines and simulated results with markers.

The detection results are extended by including also the demodulation analysis
using Propositions 5 and 6 from [P6]. That is, the estimated and simulated channel-
bit error rates (BERs) at the drone are compared, while the counter-drone system is
detecting and interfering with the signal transmitted by the remote controller. The
results are plotted in Fig. 3.4 and again demonstrate a goodmatch between analytical
estimations and simulations. Furthermore, it is evident that the follower jammer be-
comes effective at lower JSRs than the reactive jammer. This is because the follower
jammer is able to overcome the processing gain of frequency hopping unlike the
wideband reactive jammers. The reactive sweep jamming, however, has the poten-
tial to be more efficient than reactive noise jamming because the frequency-swept
jammer concentrates its energy to just 10% of the total bandwidth during a single
symbol transmission. This starts to degrade the BER at lower JSR, but at the same
time limits themaximumBER at higher JSRs. Finally, it is also evident that jamming
in IBFDmode is more effective than in HDmode because of the extra time spent in
jamming mode. However, that benefit diminishes as the SNR at the counter-drone
system drops. Altogether, the results in Fig. 3.3 and 3.4 indicate that the analytical
functions accurately estimate the system interactions and this allows to proceed in
the following sections by relying only on analytical expressions.
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Figure 3.4 Bit error rate of a frequency-hopped BFSK transmission under reactive or follower jamming
at different SNRs at the counter-drone system. The detection threshold at the counter-drone
system is chosen to match a false alarm rate of 1%. Analytical results are drawn with solid
lines and simulated results with markers.

3.2 Simultaneous Jamming and Classification

Firstly, a defensive counter-drone scenario is considered. The counter-drone system
is used to minimize the area behind the system that a malicious remote-controlled
drone can fly into (i.e., the area in which the remote control link has a BER below
1% in both ways). The counter-drone system could be, e.g., on a national border,
prison or airport perimeter, or around some other critical infrastructure. Using the
analytical functions derived in [P6], the efficiency of the strategies and operation
modes from the counter-drone system perspective is here examined. The operable
area of a remote-controlled drone depends not only on the strategy and mode but
also on the position of the three nodes relative to each other. Fig. 3.5 shows how
all of these affect the drone’s operable area as the remote controller is moved closer
to the counter-drone system. The results show that by using IBFD operation mode,
the counter-drone system can limit the drone to a slightly smaller area, but also that
the strategy selection essentially determines the jamming efficiency.

These results are summarized in Fig. 3.6 by showing the total area that a remote-
controlled drone can operate in based on the distance between its remote controller
and the counter-drone system. Because of the differing ground-to-air and ground-
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The detection results are extended by including also the demodulation analysis
using Propositions 5 and 6 from [P6]. That is, the estimated and simulated channel-
bit error rates (BERs) at the drone are compared, while the counter-drone system is
detecting and interfering with the signal transmitted by the remote controller. The
results are plotted in Fig. 3.4 and again demonstrate a goodmatch between analytical
estimations and simulations. Furthermore, it is evident that the follower jammer be-
comes effective at lower JSRs than the reactive jammer. This is because the follower
jammer is able to overcome the processing gain of frequency hopping unlike the
wideband reactive jammers. The reactive sweep jamming, however, has the poten-
tial to be more efficient than reactive noise jamming because the frequency-swept
jammer concentrates its energy to just 10% of the total bandwidth during a single
symbol transmission. This starts to degrade the BER at lower JSR, but at the same
time limits themaximumBER at higher JSRs. Finally, it is also evident that jamming
in IBFDmode is more effective than in HDmode because of the extra time spent in
jamming mode. However, that benefit diminishes as the SNR at the counter-drone
system drops. Altogether, the results in Fig. 3.3 and 3.4 indicate that the analytical
functions accurately estimate the system interactions and this allows to proceed in
the following sections by relying only on analytical expressions.
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3.2 Simultaneous Jamming and Classification

Firstly, a defensive counter-drone scenario is considered. The counter-drone system
is used to minimize the area behind the system that a malicious remote-controlled
drone can fly into (i.e., the area in which the remote control link has a BER below
1% in both ways). The counter-drone system could be, e.g., on a national border,
prison or airport perimeter, or around some other critical infrastructure. Using the
analytical functions derived in [P6], the efficiency of the strategies and operation
modes from the counter-drone system perspective is here examined. The operable
area of a remote-controlled drone depends not only on the strategy and mode but
also on the position of the three nodes relative to each other. Fig. 3.5 shows how
all of these affect the drone’s operable area as the remote controller is moved closer
to the counter-drone system. The results show that by using IBFD operation mode,
the counter-drone system can limit the drone to a slightly smaller area, but also that
the strategy selection essentially determines the jamming efficiency.

These results are summarized in Fig. 3.6 by showing the total area that a remote-
controlled drone can operate in based on the distance between its remote controller
and the counter-drone system. Because of the differing ground-to-air and ground-
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Figure 3.5 Remote-controlled drone’s operable area against counter-drone system. Counter-drone sys-
tem performance in FD mode is shown in solid lines and HD mode in dashed lines.

to-ground channels, it is more challenging for the counter-drone system to process
the remote control signals. Consequently, when there is a large distance between
the counter-drone system and the remote controller, constant jamming outperforms
other strategies that rely on detecting the remote control signals. As such, constant
jamming with frequency-swept interference is the safest choice to reduce the drone’s
operable area. The results also show that the IBFD operation mode helps reduce
the operable area over HD mode somewhat — specifically by 4% to 17% percent
depending on the strategy. This is again due to the extra time that an IBFD counter-
drone system can spend jamming the communications.

Themain feature that distinguishes counter-drone operations frommost other de-
tection and jamming attacks is the difference in the channels between all three nodes.
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Figure 3.6 Area behind the counter-drone system in which a unauthorized drone can be controlled. The
non-constant jammers are operated with a constant false alarm rate of 10%. Results for IBFD
counter-drone system are plotted in solid and HD in dashed lines.

The ground-to-air channel between a drone and its remote controller is much more
robust than the ground-to-ground channel between a counter-drone system and the
remote controller. In the preceding analysis it was presumed that the counter-drone
system is located on the ground. And this is reasonable assumption formost counter-
drone scenarios. However, it is also conceivable that the counter-drone system is ele-
vated to a similar altitude as the drone. This could be achieved using, e.g., a tethered
drone carrying the system or by placing the system on an antenna tower. Fig. 3.7
shows how much air- and ground-based counter-drone systems reduce the drone’s
operable area depending on the remote controller’s distance from the counter-drone
system. The results show that elevating the counter-drone system clearly levels the
playing field, in the sense that the counter-drone system can better detect the targeted
signals and act correspondingly. Of course this also affects the jamming stage pos-
itively in that the interference reaching the drone and its remote controller are less
attenuated. Furthermore, when the counter-drone system is lifted up, continuous
jamming is not anymore the best-performing strategy, as follower jamming signifi-
cantly outperforms it. Altogether, a counter-drone system that has been lifted up in
the air considerably outperforms it terrestrial counterpart regardless of their opera-
tion modes and strategies.
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signals and act correspondingly. Of course this also affects the jamming stage pos-
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attenuated. Furthermore, when the counter-drone system is lifted up, continuous
jamming is not anymore the best-performing strategy, as follower jamming signifi-
cantly outperforms it. Altogether, a counter-drone system that has been lifted up in
the air considerably outperforms it terrestrial counterpart regardless of their opera-
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Figure 3.7 Comparison of terrestrial and airborne counter-drone system performances.

3.2.1 Deep Learning-based Prototype

The analytical results have shown that simultaneous detection and jamming can in
theory at least somewhat improve the efficiency of a counter-drone system. Al-
though these results do not demonstrate any other benefits that the counter-drone
system might gain from IBFD operation, such as improved situational awareness.
Herein a proof of concept practical implementation of such a system is also pre-
sented. This implementation not only takes advantage of IBFD radio technology but
also deep learning [P3], which has proven hugely successful in various research areas
that focus on feature extraction from raw input data [47, 48]. These include wire-
less communications research, where it has been applied for modulation recogni-
tion [49], radar classification [50], and drone classification from radarmicro-Doppler
signatures [51], to name a few. Several signal representation and preprocessingmeth-
ods have been considered for deep learning-based feature extraction fromwireless sig-
nals. For example, simply feeding the complex-sampled time series directly into the
model without any preprocessing [52], extracting the amplitude and phase from the
complex signal [53], and computing a spectrogram from the complex signal [53].
The latter, spectrogram-based representation, is especially suitable for classifying
typical remote control systems that frequency-hop over a wide bandwidth, have dif-
ferent channel frequencies, channel bandwidths, and transmission times across dif-

30

ferent protocols. Therefore, herein a convolutional neural network (CNN) model
is presented that assumes a spectrogram-based input of 64 × 64 pixels (as illustrated
in Fig. 3.8) spanning 6.5ms in time and 5MHz in frequency. Such time-frequency
coverage is enough for all the drone remote control signals analyzed in this work.

Noise Taranis Lightbridge Phantom 2

Figure 3.8 Spectrogram-based representation of signals for classification in a convolutional neural net-
work model.

The architecture of the CNNmodel proposed in this work is depicted in Fig. 3.9.
It is similar to various other object recognitionmodels in that the spectrogram is pro-
cessed by a stack of convolutional layers that have filters with very small receptive
fields [48]. In order to decide into which of the categories (noise or one of the remote
control signals) the spectrogram belongs, it is passed through three convolutional
layers and two fully connected layers. The convolutional layers are fitted with rec-
tifiers for speeding up the training and with max-pooling layers for spatial pooling.
The fully connected layers are succeeded by a softmax classifier, which computes the
likelihood of each class over all the classes.

3.2.2 Measurement Results

To confirm the feasibility of simultaneously jamming and classifying drone remote
control signals, the following experiment was carried out in a controlled environ-
ment. The experiment imitated a scenario where a IBFD radio is used to neutralize
a malicious remote-controlled drone through simultaneous jamming and intercep-
tion as illustrated in Fig. 3.10. The devices were connected through coaxial cables,
instead of using antennas, to provide a controlled environment with precise control
of the power levels, remove all sources of external interference, and make sure that
the jammer does not interfere with other devices in its vicinity.
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It is similar to various other object recognitionmodels in that the spectrogram is pro-
cessed by a stack of convolutional layers that have filters with very small receptive
fields [48]. In order to decide into which of the categories (noise or one of the remote
control signals) the spectrogram belongs, it is passed through three convolutional
layers and two fully connected layers. The convolutional layers are fitted with rec-
tifiers for speeding up the training and with max-pooling layers for spatial pooling.
The fully connected layers are succeeded by a softmax classifier, which computes the
likelihood of each class over all the classes.

3.2.2 Measurement Results

To confirm the feasibility of simultaneously jamming and classifying drone remote
control signals, the following experiment was carried out in a controlled environ-
ment. The experiment imitated a scenario where a IBFD radio is used to neutralize
a malicious remote-controlled drone through simultaneous jamming and intercep-
tion as illustrated in Fig. 3.10. The devices were connected through coaxial cables,
instead of using antennas, to provide a controlled environment with precise control
of the power levels, remove all sources of external interference, and make sure that
the jammer does not interfere with other devices in its vicinity.
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Figure 3.10 Measurement setup for evaluating the performance of CNN-based drone classification while
at the same time jamming the remote control link. Jammer signal estimation, its cancellation,
and drone signal classification is implemented in the digital transceiver.

The IBFD radio prototype was built using a high-quality vector signal transceiver
(PXIe-1073) and an actual drone jammer. The vector signal transceiver received and
recorded signals with a 120MHz sampling rate and duration of 50ms while the jam-
mer transmitted a 80MHzwide sweep jamming signal with output power of 43 dBm
that acted as SI for the vector signal transceiver. In order to facilitate processing the
drone remote control signals at the receiver, the SI from jamming was canceled in
three stages. As drone jammers typically use directional antennas, it is plausible that
transmit–receive antenna isolation of up to 60 dB could be achieved in practice [54].
Therefore, a circulator together with an attenuator was used to mimic transmit–
receive antenna isolation to that extent. The passive isolation stage was followed by
an analog SI canceler [55] and, lastly, the residual SI was suppressed digitally [3].

Three different remote control systems were used one by one to generate the sig-
nals of interest. The remote controllers were FrSky Taranis X9D Plus, DJI Phantom
2, andDJI Phantom 3 Advanced. Each of these utilizes in full the 2.4GHz industrial,
scientific, and medical (ISM) frequency band by way of frequency hopping, but they
do so using different patterns. They also used different channel bandwidths, mod-
ulation rates, and transmission durations. Differences in these parameters are what
allow the CNN model to classify between the remote control systems based on the
spectrograms. All of the remote controllers’ output powers respect the 20 dBm limit
of the ISM band and, in order to emulate varying link distances, a variable attenuator
between the remote controller and the receiver was used. The attenuator was varied
in the range of −80 dB to −110 dB with 5 dB steps.
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Figure 3.10 Measurement setup for evaluating the performance of CNN-based drone classification while
at the same time jamming the remote control link. Jammer signal estimation, its cancellation,
and drone signal classification is implemented in the digital transceiver.

The IBFD radio prototype was built using a high-quality vector signal transceiver
(PXIe-1073) and an actual drone jammer. The vector signal transceiver received and
recorded signals with a 120MHz sampling rate and duration of 50ms while the jam-
mer transmitted a 80MHzwide sweep jamming signal with output power of 43 dBm
that acted as SI for the vector signal transceiver. In order to facilitate processing the
drone remote control signals at the receiver, the SI from jamming was canceled in
three stages. As drone jammers typically use directional antennas, it is plausible that
transmit–receive antenna isolation of up to 60 dB could be achieved in practice [54].
Therefore, a circulator together with an attenuator was used to mimic transmit–
receive antenna isolation to that extent. The passive isolation stage was followed by
an analog SI canceler [55] and, lastly, the residual SI was suppressed digitally [3].

Three different remote control systems were used one by one to generate the sig-
nals of interest. The remote controllers were FrSky Taranis X9D Plus, DJI Phantom
2, andDJI Phantom 3 Advanced. Each of these utilizes in full the 2.4GHz industrial,
scientific, and medical (ISM) frequency band by way of frequency hopping, but they
do so using different patterns. They also used different channel bandwidths, mod-
ulation rates, and transmission durations. Differences in these parameters are what
allow the CNN model to classify between the remote control systems based on the
spectrograms. All of the remote controllers’ output powers respect the 20 dBm limit
of the ISM band and, in order to emulate varying link distances, a variable attenuator
between the remote controller and the receiver was used. The attenuator was varied
in the range of −80 dB to −110 dB with 5 dB steps.
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Both the analog and digital SI cancellation stages contributed about 40 dB to 45 dB
of cancellation on top of the passive isolation [3] and the analysis herein focuses on
the impact that these cancellation stages have on the signal classification. Fig. 3.11
illustrates theDJI Phantom 2 remote controller signal classification at different stages.
For reference, the case without SI is also included. It is evident that without SI,
the model easily detects the remote-control packets. However, when the jamming
is turned on and the SI is present, then the situation is not always as clear. When
relying only on passive isolation for dealing with the SI, the model is completely
blinded. By including analog SI cancellation, the model is able to detect and classify
the signals of interest in certain frequency ranges but not others. This is because of
the analog canceler’s frequency selectivity. However, after digital SI cancellation the
remote control packets are accurately detected across the entire frequency range and
the situation resembles that of without any SI.

These results are next considered in more detail over the entire power level range
and for all studied remote control systems. In order to verify and gain insight into
the measurements, we compared in [P3] the measurement results to simulations and
found that the simulated andmeasured results are in close agreement. For visual clar-
ity, only the simulated results are shown in Fig. 3.12. Again, the results illustrate the
inability of correctly detecting any of the remote control signals when only passive
isolation is relied on. That probability increases when analog cancellation is intro-
duced and when the received remote control signals are relatively powerful. Still,
it can be seen that without any SI the CNN model is able to correctly detect the
remote control signals at typically 20 dB lower signal-to-interference-plus-noise ra-
tio (SINR). This gap is significantly reduced by also introducing digital cancellation.
Then the detection penalty compared to the case without SI is only couple dBs.

Finally, accuracy of the classification model is shown in Fig. 3.13. These results
combine the measurements with good SNR to demonstrate the effect of residual
SI at different stages. Again, the results show that without active SIC, the model
cannot detect any of the remote control signals. After analog cancellation the model
is already somewhat successful in classifying the signals, but after digital cancellation
the model’s accuracy is only slightly below that without any SI. The results also
demonstrate that the proposedmodel is quite robust and regardless of the SI level, the
false alarm probability and incorrect classification rate remain low. This is aided by
the fact that the measurements were carried out through cables without the presence
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Figure 3.11 From top to bottom: Example signal classification (a) without SI, (b) with SI and only passive
isolation, (c) after analog SI cancellation, and (d) after digital SI cancellation. Classification
is indicated by the bounding boxes.

of other signals that could trigger false alarms.
The results demonstrate that combining simultaneous jamming and reconnais-

sance of drone remote control signals using IBFD radio technology and deep learn-
ing is feasible in practice. The residual SI degrades the classification accuracy to some
extent, but, bearing in mind that the classification in IBFD mode comes at almost
no cost to the jamming efficiency, the IBFD operation mode is an attractive way to
enhance the situational awareness of a counter-drone system.
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Both the analog and digital SI cancellation stages contributed about 40 dB to 45 dB
of cancellation on top of the passive isolation [3] and the analysis herein focuses on
the impact that these cancellation stages have on the signal classification. Fig. 3.11
illustrates theDJI Phantom 2 remote controller signal classification at different stages.
For reference, the case without SI is also included. It is evident that without SI,
the model easily detects the remote-control packets. However, when the jamming
is turned on and the SI is present, then the situation is not always as clear. When
relying only on passive isolation for dealing with the SI, the model is completely
blinded. By including analog SI cancellation, the model is able to detect and classify
the signals of interest in certain frequency ranges but not others. This is because of
the analog canceler’s frequency selectivity. However, after digital SI cancellation the
remote control packets are accurately detected across the entire frequency range and
the situation resembles that of without any SI.

These results are next considered in more detail over the entire power level range
and for all studied remote control systems. In order to verify and gain insight into
the measurements, we compared in [P3] the measurement results to simulations and
found that the simulated andmeasured results are in close agreement. For visual clar-
ity, only the simulated results are shown in Fig. 3.12. Again, the results illustrate the
inability of correctly detecting any of the remote control signals when only passive
isolation is relied on. That probability increases when analog cancellation is intro-
duced and when the received remote control signals are relatively powerful. Still,
it can be seen that without any SI the CNN model is able to correctly detect the
remote control signals at typically 20 dB lower signal-to-interference-plus-noise ra-
tio (SINR). This gap is significantly reduced by also introducing digital cancellation.
Then the detection penalty compared to the case without SI is only couple dBs.

Finally, accuracy of the classification model is shown in Fig. 3.13. These results
combine the measurements with good SNR to demonstrate the effect of residual
SI at different stages. Again, the results show that without active SIC, the model
cannot detect any of the remote control signals. After analog cancellation the model
is already somewhat successful in classifying the signals, but after digital cancellation
the model’s accuracy is only slightly below that without any SI. The results also
demonstrate that the proposedmodel is quite robust and regardless of the SI level, the
false alarm probability and incorrect classification rate remain low. This is aided by
the fact that the measurements were carried out through cables without the presence
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isolation, (c) after analog SI cancellation, and (d) after digital SI cancellation. Classification
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of other signals that could trigger false alarms.
The results demonstrate that combining simultaneous jamming and reconnais-

sance of drone remote control signals using IBFD radio technology and deep learn-
ing is feasible in practice. The residual SI degrades the classification accuracy to some
extent, but, bearing in mind that the classification in IBFD mode comes at almost
no cost to the jamming efficiency, the IBFD operation mode is an attractive way to
enhance the situational awareness of a counter-drone system.
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Figure 3.12 Correct detection probability of different remote control signals while simultaneously jam-
ming and using various levels of SI cancellation.
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Figure 3.13 Classification accuracy of the CNN model under relatively good SNRs.

3.3 Simultaneous Two-Way Communication

In the second scenario, the impact that the two-way communication operationmode
of a drone has on its ability to fly in the presence of amalicious counter-drone system
is analyzed. This scenario applies to situations where a remote-controlled drone is
flying over an area that it surveys. Similarly to the previous scenario, this could be,
e.g., a national border or the perimeter of any restricted area. The counter-drone
system is used to limit the area that the drone can survey in order to carry out some
activity in the area unseen. It is worth reminding here that, in order to retain the
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Figure 3.12 Correct detection probability of different remote control signals while simultaneously jam-
ming and using various levels of SI cancellation.
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Figure 3.13 Classification accuracy of the CNN model under relatively good SNRs.

3.3 Simultaneous Two-Way Communication

In the second scenario, the impact that the two-way communication operationmode
of a drone has on its ability to fly in the presence of amalicious counter-drone system
is analyzed. This scenario applies to situations where a remote-controlled drone is
flying over an area that it surveys. Similarly to the previous scenario, this could be,
e.g., a national border or the perimeter of any restricted area. The counter-drone
system is used to limit the area that the drone can survey in order to carry out some
activity in the area unseen. It is worth reminding here that, in order to retain the
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energy-per-bit ratio across operationmodes, the remote controller and drone use half
of the output power and double the transmission duration in IBFDmode compared
to HD mode.
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Figure 3.14 Operable area of a drone depending on the two-way communication mode between the
drone and remote controller. Operable area in HD mode is shown with dashed lines and in
FD mode with solid lines. The counter-drone system uses a false alarm rate of 10%.

Fig. 3.14 shows the area that a drone can be remotely controlled in for some
counter-drone system placements. The results show, as expected, that when the
counter-drone system moves closer to the remote controller, the operable area de-
creases regardless of the two-way communication operation mode between the re-
mote controller and drone. However, if the drone is transmitting and receiving at
the same time (i.e., in IBFD mode), then the area that it can cover is much reduced
compared to time divided communication (i.e., HD mode). This is largely because
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of the different channel models between the three nodes. In IBFD mode, the drone
becomes a much more convenient target for the counter-drone system than in HD
mode, since in IBFD mode the drone is essentially letting the counter-drone system
know about its presence and also which channel it is currently using. In HD mode
the counter-drone system is much more reliant on receiving signals from the remote
controller through the unfavorable ground-to-ground channel. The operable areas
depending on the distance between counter-drone system and remote controller are
summarized in Fig. 3.15. The results show that the operable area in IBFD mode is
always reduced compared to that in HDmode in the presence of an attacker. This is
a substantial issue concerning many of the potential IBFD drone application.
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Figure 3.15 Operable area of a drone depending on the distance between the remote controller and
counter-drone system. Operable area in HD mode is shown with dashed lines and in FD
mode with solid lines. The counter-drone system uses a false alarm rate of 10%.

3.4 Simultaneous Communication and Detection

In the third and final scenario, the defensive drone perspective is continued. How-
ever, instead of focusing on two-way communications, herein the drone’s ability to
detect interference from the counter-drone system, depending on whether the drone
has IBFD capabilities or is limited to HD operation, is analyzed. With IBFD capa-
bilities, the drone is taken to be able to detect interference on all channels, including
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energy-per-bit ratio across operationmodes, the remote controller and drone use half
of the output power and double the transmission duration in IBFDmode compared
to HD mode.
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Fig. 3.14 shows the area that a drone can be remotely controlled in for some
counter-drone system placements. The results show, as expected, that when the
counter-drone system moves closer to the remote controller, the operable area de-
creases regardless of the two-way communication operation mode between the re-
mote controller and drone. However, if the drone is transmitting and receiving at
the same time (i.e., in IBFD mode), then the area that it can cover is much reduced
compared to time divided communication (i.e., HD mode). This is largely because
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of the different channel models between the three nodes. In IBFD mode, the drone
becomes a much more convenient target for the counter-drone system than in HD
mode, since in IBFD mode the drone is essentially letting the counter-drone system
know about its presence and also which channel it is currently using. In HD mode
the counter-drone system is much more reliant on receiving signals from the remote
controller through the unfavorable ground-to-ground channel. The operable areas
depending on the distance between counter-drone system and remote controller are
summarized in Fig. 3.15. The results show that the operable area in IBFD mode is
always reduced compared to that in HDmode in the presence of an attacker. This is
a substantial issue concerning many of the potential IBFD drone application.
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Figure 3.15 Operable area of a drone depending on the distance between the remote controller and
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3.4 Simultaneous Communication and Detection

In the third and final scenario, the defensive drone perspective is continued. How-
ever, instead of focusing on two-way communications, herein the drone’s ability to
detect interference from the counter-drone system, depending on whether the drone
has IBFD capabilities or is limited to HD operation, is analyzed. With IBFD capa-
bilities, the drone is taken to be able to detect interference on all channels, including
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the one that it is currently transmitting on, while with HD capabilities it is assumed
to only be able to detect interference on channels that it is not transmitting on. It
is especially interesting if the drone in either mode can reliably detect the jamming
before being paralyzed by it. This scenario is again of interest in situations where
the remote-controlled drone is surveying an area and where the adversary looks to
escape or limit the surveillance. Only the follower jammer is considered in this sce-
nario as this type of jamming is the most difficult to detect and in other cases the
operation mode used by the drone probably will not limit its capability to detect the
interference.
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Figure 3.16 Comparison of HD and FD drone’s capability to detect jamming. Also the effective jamming
area is shown.

The third scenario is illustrated in Fig. 3.16, where the drone and its remote con-
troller are located at some fixed positions. The figure shows the area in which the
counter-drone system needs to be placed in order to be effective and the area from
which the counter-drone system can be detected by the drone. The results show
that a IBFD-enhanced drone can detect the jamming already at a much greater range
than a HD-limited drone. This is because simultaneous transmission and detection
allows the drone to detect jamming attacks that have been triggered by the drone’s
own transmission (i.e., at the correct channel). Therefore leading to more consistent
jamming detection. The HD-limited drone, on the other hand, can only detect at-
tacks that target the wrong channel or that are too late in attacking a recently vacated
channel. In summary, IBFD radio technology enables jamming detectionwithmuch
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improved performance and, depending on the position of the three nodes, detection
of jamming in IBFD mode possibly allows to detect the presence of a counter-drone
system before becoming paralyzed by it.
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4 KNOWN-INTERFERENCE CANCELLATION

In this chapter, the contributions to KI cancellation are presented. First, Section 4.1
provides a brief analysis about the necessity to combine different stages of interfer-
ence suppression in co-site radios. Then, Section 4.2 presents a digitally assisted ana-
log domain method for suppressing strong interference before its digitization and
Section 4.3 presents a fully digital method for suppressing KI after its digitization.
Finally, extensive measurement results are presented in Section 4.4 with application
to GNSS and Internet of Things.

4.1 Stages of Suppression

For an IBFD radio that forms a single physical device it is usually clear that SI needs
to be canceled in both analog and digital domains due to the typically poor achiev-
able passive isolation [9], [11]. However, the same does not necessarily apply when
canceling interference from separate devices that are positioned nearby. For such
co-site devices, mitigation of interference in the analog domain prior to digitization
is not required nor sensible under all circumstances, but does potentially offer an
opportunity to improve the receiver sensitivity depending on how close physically
the interfering radio is. Here, the circumstances under which analog mitigation of
interference between co-site devices becomes useful are briefly analyzed.

In a typical receiver, the automatic gain control (AGC) maintains the ADC input
at a constant full range level, meaning that a powerful interference will dictate the
ADC input range. This results in reduced effective resolution for the signal of inter-
est, which consequently may limit the receiver performance [56]. The final SINR
after all stages of interference cancellation can be calculated from

γ =
ρ

PSLS
PI LI /∆a

+ρ/∆d + 1
·

PSLS

PI LI /∆a
, (4.1)
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where PSLS/(PI LI /∆a) represents the SINR after the respective path losses LS and
LI as well as analog cancellation∆a , ρ is the ADC’s effective dynamic range, and∆d

is the amount of digital cancellation. Then, whether analog and digital cancellation
both are required or if digital cancellation alone is enough depends on the targeted
SINR γt . The minimum level of digital cancellation that is needed to achieve γ ≥ γt
given PSLS/PI LI ,∆a , and ρ can be solved from (4.1) from

∆d ≥
ρ

PSLS
PI LI /∆a

· ( ργt − 1)− 1
(4.2)

if ∆a ·
PSLS
PI LI

≥ γt
ρ , otherwise the target SINR cannot be reached despite the level of

digital cancellation [57].
Fig. 4.1 illustrates the maximum SINR that can be achieved after perfect digital

interference cancellation (∆d = ρ) depending on the distances between the three
nodes. The results account only for the free-space path loss, assume no analog inter-
ference cancellation, and the effective dynamic range of the receiver is assumed to be
ρ= 48 dB. The output power ratio of the signal of interest and interference is taken
to be PS/PI =−23 dB. The plotted results illustrate to which extent an interference
transmitter limits the receiver’s sensitivity if the receiver only mitigates the interfer-
ence using digital methods — whether or not digital cancellation alone is sufficient
depends on the specific scenario, the SINR requirement and placement of the nodes.

4.2 Analog Suppression of Periodic Interference

To suppress interference before digitization in scenarios that call for it, a digitally
assisted analog interference mitigation scheme is proposed as part of this work [P1].
Themethod relies on first estimating the instantaneous frequency of the narrowband
interference x(n), then producing a digital replica x̂(n) of that signal, and finally us-
ing an auxiliary transmit chain to inject an opposite-phase replica of the received
interference as illustrated in Fig. 4.2. Of course, the signal of interest acts as noise
for the interference estimation and this approach is feasible only if the received inter-
ference is sufficiently more powerful than the received signal of interest [3]. If that
is not the case and the received signal of interest is more powerful than the received
interference signal, then analog interference mitigation is unnecessary anyway.
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Figure 4.1 The maximum attainable SINR with ideal digital interference mitigation in terms of distances
between the transmitters of the desired and interfering signals and the receiver. Assuming
no analog interference mitigation, effective dynamic range ρ = 48 dB, PS/PI = −23 dB,
and considering only free-space path loss. TXS is the transmitter of signal of interest, TXI is
the transmitter of interference, and RX is the receiver.

In the proposed scheme, the received signal that is corrupted by interference is
employed as reference signal for the adaptive filter and the estimated interference
signal as input for the adaptive filter. The adaptive mechanism tunes the filter co-
efficients so that the filter output approximates the interference signal, forcing the
error signal e(n) to contain mostly the signal of interest. The proposed scheme relies
on coupling some of the input signal energy to a secondary receiver chain that is not
subject to interference cancellation, and therefore enables estimating the interference
signal while at the same time mitigating it in the primary receiver path.

It is inevitable that the interference reconstruction in digital domain takes some
time and therefore the computational delay in generating the interference replica
x̂(n) becomesmost probably longer than the path delay in the primary receiver chain
for the actual interference x(n). As a consequence, the system is effectively only
capable of canceling periodic interference. Compared to strictly digital methods,
analog interference mitigation is further complicated by the necessity to compensate
for the transfer function of the secondary path S(z), which includes everything in the
signal path going through the auxiliary transmit chain to the primary receive chain.
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Figure 4.2 Digitally assisted analog interference mitigation scheme for signal of interest (SoI) processing.
The PA in the auxiliary transmitter chain may be unnecessary depending on the received
signal powers and the rest of the hardware.

Therefore, a filtered-x version of the least mean squares (LMS) algorithm is used to
account for the transfer function in the secondary path [58]. The proposed scheme
can potentially be repurposed to function with wideband interference, such as, e.g.,
pseudorandom jamming. However, this would require replacing the narrowband
interference reconstruction with a respective signal generator and the filtered-x LMS
algorithm would need to be extended to account for frequency offsets.

4.3 Digital Suppression of Known Interference

In order to provide a method for suppressing KI in scenarios where digital interfer-
ence mitigation alone is sufficient, a novel algorithm is in this work proposed that is
able to estimate and track a wireless channel under frequency offsets [P5], which is
the main challenge in KI cancellation.

4.3.1 Estimating Wireless Channels under Frequency Offsets

In alignment with the system model illustrated in Fig. 2.8, the following starting
point is formulated. The relative sampling frequency offset between the two devices
is defined as η+β(n), where η=∆T /Tx represents the fundamental time-invariant
sampling frequency offset,∆T = 1/ fd −1/ fx is the difference between the sampling
periods at the receiver and transmitter, fd is the sampling frequency at the receiver,
fx is the sampling frequency at the transmitter, and β(n) is the time-varying offset,
including sampling jitter. The carrier frequency offset is defined as ε+φ(n), where
ε denotes the fundamental time-invariant carrier frequency offset ε =ωd −ωx be-
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tween the receiver and transmitter, ωd is the carrier frequency at the receiver, ωx

is the carrier frequency at the transmitter, and φ(n) is the time-varying offset that
also includes phase noise. Lastly, the complex-valued channel impulse response with
order M is denoted as w.

The transmitter broadcasts a complex signal x(n) that is known to the receiver in
its discrete-time form. However, because of noise, channel, andmismatches between
carrier and sampling frequencies at the transmitter and the receiver, the digitized
discrete-time signal at the receiver becomes

d (n) =wHyne
j
∑n

i=1 ε(i ) + v(n), (4.3)

where v(n) is the measurement noise with variance σ2
v , yn accounts for sampling

x(t ) with frequency offset η+β(n) so that

yn =
�

x

�n−M+1
∑

i=1

(1+ η+β(i ))
�

, . . . , x

� n
∑

i=1

(1+ η+β(i ))
��

(4.4)

and e j
∑n

i=1 ε+φ(i ) accounts for the carrier frequency offset. The received noise v(n)
can be considered to contain an unknown signal of interest that is uncorrelated to the
known signal x(n). Suppressing the known signal then makes it possible to process
the signal of interest.

To derive an adaptive algorithm for estimating and tracking these system param-
eters, a cost function is defined as the mean squared error (MSE)

J (n) = E
�

|e(n)|2
�

= E [e(n)e∗(n)] (4.5)

of the estimation error

e(n) = d (n)− ŵH
n−1ŷne

j
∑n

i=1 ε(i−1), (4.6)

where ŵn−1, ε̂(n − 1), and η̂(n − 1) are respectively the estimates of the channel’s
impulse response w, carrier frequency offset ε, and sampling frequency offset η at
iteration n, and ŷn is the result of resampling x(n) with η̂(n − 1). The purpose of
the adaptive filter is then to iteratively update the parameter estimates so that the
positive cost function J (n) is successively reduced. This will in general ensure that
the adaptive filter improves its parameter estimates after every iteration.
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Applying the stochastic gradient descent method for sequential computation of
themodel parameters based on the cost function in (4.5) leads to the following update
rules

ŵn = ŵn−1+µw ŷne
j
∑n

i=1 ε(i−1)e∗(n), (4.7a)

ε̂(n) = ε̂(n− 1)+µεℑ
�

ŵH
n−1ŷne

j
∑n

i=1 ε(i−1)e∗(n)
�

, (4.7b)

η̂(n) = η̂(n− 1)+µηℜ
�

ŵH
n−1ŷ

′
ne

j
∑n

i=1 ε(i−1)e∗(n)
�

, (4.7c)

where ŵ0, ε̂(0), and η̂(0) are initial guesses,µw ,µε, andµη are fixed positive step size
parameters that influence the algorithm’s performance, and ŷ′n is the derivative of
ŷn . The adaptive algorithm presented in this work for jointly and explicitly estimat-
ing and tracking a channel impulse response, carrier frequency offset, and sampling
frequency offset is listed as Algorithm 1 and its operation is illustrated in Fig. 4.3.
An implementation of the algorithm is open-sourced as part of an adaptive filters
toolkit1 for GNU Radio.

Algorithm 1 LMS-type frequency offsets tracking

1: procedure FO-LMS(x,d ,µw ,µϵ,µη,M )
2: ŵ0 ← 01,M
3: ε̂(0)← 0, η̂(0)← 0
4: φ(1)← 0, t (1)← 0

5: for n ← 1 to N do
6: ŷn ← [x(t (n)), x (t (n)− (1+ η(n− 1))) , . . . ,

x (t (n)− (M + 1)(1+ η(n− 1)))]
7: e(n)← d (n)− ŵH

n−1ŷne
jφ(n)

8: ŵn ← ŵn−1+µw ŷne
jφ(n)e∗(n)

9: ε̂(n)← ε̂(n− 1)+µεℑ
�

ŵH
n−1ŷne

jφ(n)e∗(n)
�

10: η̂(n)← η̂(n− 1)+µηℜ
�

ŵH
n−1ŷ

′
ne

jφ(n)e∗(n)
�

11: φ(n+ 1)←φ(n)+ ε̂(n)
12: t (n+ 1)← t (n)+ (1+ η̂(n))
13: end for
14: end procedure

1https://github.com/karel/gr-adapt
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Figure 4.3 Estimation of a wireless channel under frequency offsets with the FO-LMS adaptive filter.

4.3.2 Steady-State Analysis under Self-Induced Nonstationarities

A crucial performance measure of adaptive filters that is often relied on in literature
and that aids the practical use of these filters is the steady-state excess mean-square
error (EMSE). This is the excess error of the MSE on top of the noise floor

ζ =MSE−σ2
v . (4.8)

The steady-state performance of conventional adaptive filters is well understood and
can be analyzed using the energy conservation relation method [59]. However, the
adaptive filter proposed here is unique in the sense that the three update equations
are coupled and the update equations self-inflict a nonstationarity among themselves.
As such, the conventional steady-state analysis methods do not directly apply for the
proposed filter. The well-known energy conservation relation method was extended
in [P5] to account for those two issues and this provides an improved steady-state
analysis framework. The full derivation is not reproduced here, but instead a brief
overview of the final results is given.

Using the standard energy conservation relation method, the EMSE of conven-
tional LMS adaptive filter with Gaussian white input signal can be show to be
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x is the input signal variance. Using the extended energy conservation rela-
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Applying the stochastic gradient descent method for sequential computation of
themodel parameters based on the cost function in (4.5) leads to the following update
rules

ŵn = ŵn−1+µw ŷne
j
∑n

i=1 ε(i−1)e∗(n), (4.7a)
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�

, (4.7c)

where ŵ0, ε̂(0), and η̂(0) are initial guesses,µw ,µε, andµη are fixed positive step size
parameters that influence the algorithm’s performance, and ŷ′n is the derivative of
ŷn . The adaptive algorithm presented in this work for jointly and explicitly estimat-
ing and tracking a channel impulse response, carrier frequency offset, and sampling
frequency offset is listed as Algorithm 1 and its operation is illustrated in Fig. 4.3.
An implementation of the algorithm is open-sourced as part of an adaptive filters
toolkit1 for GNU Radio.

Algorithm 1 LMS-type frequency offsets tracking

1: procedure FO-LMS(x,d ,µw ,µϵ,µη,M )
2: ŵ0 ← 01,M
3: ε̂(0)← 0, η̂(0)← 0
4: φ(1)← 0, t (1)← 0

5: for n ← 1 to N do
6: ŷn ← [x(t (n)), x (t (n)− (1+ η(n− 1))) , . . . ,

x (t (n)− (M + 1)(1+ η(n− 1)))]
7: e(n)← d (n)− ŵH

n−1ŷne
jφ(n)

8: ŵn ← ŵn−1+µw ŷne
jφ(n)e∗(n)

9: ε̂(n)← ε̂(n− 1)+µεℑ
�

ŵH
n−1ŷne

jφ(n)e∗(n)
�

10: η̂(n)← η̂(n− 1)+µηℜ
�

ŵH
n−1ŷ

′
ne

jφ(n)e∗(n)
�

11: φ(n+ 1)←φ(n)+ ε̂(n)
12: t (n+ 1)← t (n)+ (1+ η̂(n))
13: end for
14: end procedure

1https://github.com/karel/gr-adapt
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4.3.2 Steady-State Analysis under Self-Induced Nonstationarities
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of the EMSEs related to each of the three update equations
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where the denominator γ is

γ = 4− 2µw (M + 1)σ2
x

− 2µε(1+
1
M

)σ2
x∥w∥2−

µε

µw
(1+

1
M

)∥w∥2

− 4µη(1+
1
M

)σ2
x∥w∥2− 2

µη

µw
(1+

1
M

)∥w∥2. (4.11)

It can be seen that if the step sizes µε and µη are set to zero, i.e., when only the
channel estimation is activated, the EMSE given by (4.10) simplifies to the EMSE of
the conventional LMS filter given in (4.9).

For any given system, the choice of step sizes is effectively the only way to steer
the algorithm’s performance. It might be desirable, e.g., to quicken the initial adap-
tation process with large step sizes that minimize the instantaneous error at every
iteration as much as possible. However, step sizes that are too large will cause the
algorithm to diverge and therefore it would be useful to have an easy-to-use and
practical guideline for determining the suitable step size ranges without extensive
steady-state analysis. Using Taylor series expansion-based analysis of the instanta-
neous error [60], in [P5] the following upper bounds for each step size were derived

0<µw ≤
2−µε|wH

n−1yn |
2−µη|wH

n−1y
′
n |2

∥yn∥2
, (4.12a)

0<µε ≤
2−µw∥yn∥2−µη|wH

n−1y
′
n |2

|wH
n−1yn |

2
, (4.12b)
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0<µη ≤
2−µw∥yn∥2−µε|wH

n−1yn |
2

|wH
n−1y

′
n |2

. (4.12c)

The upper bound limits above are necessary conditions for the stability of the pro-
posed algorithm but not strictly sufficient. The actual values of the step sizes need to
be slightly smaller because of the approximations used in their derivation. Also, the
step sizes need to be selected collectively as their upper bounds are coupled through
the step sizes. Still, they provide a useful guide for selecting the step sizes in practice.

To verify the theoretical steady-state EMSE expressions, the theoretical results are
herein briefly compared to steady-state simulations, where the channel impulse re-
sponse and frequency offsets are assumed known to the algorithm and time-varying
terms are omitted. The simulations are carried out with varying channel impulse re-
sponsesw of lengthM = 3 with a rather flat frequency response. The input signal xn
is Gaussian of unit variance and the noise v(n) is Gaussian with variance σ2

v = 10−3.
The carrier frequency is taken to be 2.4GHz and sampling frequency 2MHz. The
frequency offsets are equivalent to a 2.5 ppm oscillator inaccuracy, which is common
in low cost software-defined radio platforms. Each simulation result is the steady-
state statistical average of 1024 runs with 5000 iterations of the proposed algorithm
in every run.

Fig. 4.4 compares the theoretical MSE obtained from (4.10) with the simulated
MSE for various step size combinations and ranges. The results show that the theo-
retical and simulated results match closely, especially at smaller step sizes when the
assumptionsmade during the derivation of (4.10) are better justified. The results also
demonstrate the applicability of the upper bounds and how the step sizes need to be
selected with some back-off from these in order for the algorithm to remain stable.

4.4 Results

In this section, performance of both the digitally assisted analog interference and
fully digital interference cancellation methods are studied based on measurements
with practical hardware.
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Figure 4.4 Steady-state analysis of FO-LMS.
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4.4.1 Analog Interference Mitigation for Improved GNSS Reception

The impact of digitally assisted analog interference mitigation is in this work studied
on GNSS signal processing [P2]. This is a fitting choice because the GNSS signals
are typically received quite weakly, at around−130 dBmwhen acquired outdoors in
open-sky conditions [61], and any in-band interference can easily saturate a GNSS
receiver’s front-end. Also, GNSS has become ubiquitous and it is essential to guar-
antee its functionality even in adverse conditions. One of the most widespread at-
tacks against GNSS receivers is frequency-modulated jamming [62]. As such, the
proposed scheme is well positioned to improve reception under common jamming
attacks against GNSS. Specifically, the impact of frequency-modulated interference
and its mitigation is analyzed on GPS L1 and Galileo E1 reception by combining
the proposed interference mitigation scheme and a commercial off-the-shelf GNSS
receiver.
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Figure 4.5 The setup for measuring the over-the-air performance of the digitally assisted analog inter-
ference mitigation scheme using GPS L1 and Galileo E1 as signals of interest.

The experiment was carried out using the measurement setup that is illustrated
in Fig. 4.5 and described in more detail in [P1] and [P2]. The interference suppres-
sion scheme was implemented using an USRP B210 software-defined radio and the
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The experiment was carried out using the measurement setup that is illustrated
in Fig. 4.5 and described in more detail in [P1] and [P2]. The interference suppres-
sion scheme was implemented using an USRP B210 software-defined radio and the
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scheme’s performancewas evaluated using a commercial GNSS receiverU-Blox LEA-
M8T. The scheme’s performance was also verified using an open-source software-
defined GNSS signal processing toolboxGNSS-SDR [63] that processed the IQ sam-
ples from the USRP B210 directly. However, the two sets of results match rather
closely and herein only the former are presented, while the combined set of results
is available in [P2]. The GNSS receiver was restarted between each measurement to
avoid it relying on or take advantage of previously acquired parameters. Otherwise,
gradual increase in the JSR could potentially not immediately impact the positioning
accuracy in the measurements.

In order to avoid interfering with other GNSS receivers in the vicinity and to
be able to use a controlled GNSS source, the measurements were carried out in an
anechoic chamber. An SMBV100A signal generator was used as a controlled GNSS
source, which transmitted GPS L1 C/A and Galileo E1 signals simulating six satel-
lites with specific location, time, and power. At the same time, a SMBV100B signal
generator was used for transmitting a sinusoidally frequency-modulated interference
with a frequency deviation of 125 kHz, modulation rate of 1 kHz, and center fre-
quency of 1575.42MHz. To receive the transmitted signals, an active GNSS antenna
with 27 dBi gains and 1.5 dB noise figure was used. The antennawas connected to the
interference mitigation platform after which the signals passed on to the commercial
GNSS receiver.

The first GNSS receiver stage that is affected by the in-band interference is the
AGC. The interference power level determines how well the AGC is able to mini-
mize the quantization error of the GNSS signals in the ADC. The gain level set by
the AGC in the U-Blox receiver with respect to the received JSR with and without
interference mitigation is plotted in Fig. 4.6. As expected, these results show that, as
the power of the received interference increases, the AGC decreases the gain to pre-
vent saturating the ADC. It is also evident that with interferencemitigation, the gain
is decreased at a considerably higher pre-suppression JSR. The used GNSS receiver
also has a built-in interference detector, which provides an interference detection
confidence level. That interference confidence level is plotted in Fig. 4.6 alongside
the AGC data for the same conditions. The interference detection does a formidable
job and the interference detection confidence level increases with the increase of the
interference power. Both of these metrics, the AGC and interference confidence lev-
els, are improved to a similar extent by the proposed interference mitigation scheme
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Figure 4.6 U-Blox LEA-M8T hardware monitoring results under jamming with and without its mitigation.

and indicate that the mitigation scheme extends the operational range of the GNSS
receiver by 30 dB to 40 dB under frequency-modulated interference. However, this is
only the first stage of GNSS signal processing and the question remains about how
does the interference and its mitigation affect the successive processing stages and
finally the positioning accuracy.

Analysis of the intermediate signal processing stages is covered in [P2], but are
omitted here for brevity and focus is directly shifted to the positioning accuracy.
Fig. 4.7 shows the average positioning accuracy of the GNSS receiver for both GPS
L1 and Galileo E1 under interference with and without its mitigation. The interfer-
ence suppression clearly allows the receiver to operate under much higher JSRs even
though GPS L1 and Galileo E1 are affected differently by the interference mitiga-
tion, presumably because of the different modulations used therein. Altogether, the
results demonstrate that the proposed interference mitigation scheme has the ability
to prevent the RF front-end from saturating and subsequently enhance the position-
ing accuracy for both GPS L1 and Galileo E1 processing. The results also indicate
that the operational JSR range of the GNSS receiver is extended proportionally to
the amount of interference suppression, suggesting that the scheme itself does not
produce considerable negative side-effects.
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finally the positioning accuracy.
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Figure 4.7 GPS L1 and Galileo E1 positioning accuracy with and without interference mitigation with
regards to the received jammer-to-signal ratio (JSR).

4.4.2 Digital Interference Mitigation for Securing Internet of Things

Impact of the proposed digital interference mitigation method is herein studied in
the context of securing Internet of Things applications. These are a highly relevant
group of applications which have seen explosive growth recently and where relia-
bility and security are of major importance. As such, the signal of interest was im-
plemented according to the IEEE 802.15.4 standard that specifies the physical layer
and medium access control layer for low data rate wireless connectivity applications
with limited energy consumption requirements [64]. Several widely used Internet of
Things communications protocols, such as, e.g., Zigbee and 6LoWPAN, use IEEE
802.15.4 standard as the basis, making it a suitable target for this study. The standard
specifies several physical layer implementations, from which the 2.4GHz variant
was chosen. That variant uses O-QPSK modulation and direct sequence spectrum
spreadingwith about 9 dB of processing gain, offering 250 kbit/s data rate in a 2MHz
channel bandwidth. For KI, 4MHz bandlimited Gaussian noise signal was used.

A comprehensive experiment [P7]was carried out using the setup illustrated and
photographed in Fig. 4.8. The measurements were carried out in an anechoic cham-
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Figure 4.8 KIC experiment setup.

ber and the three nodes were implemented using USRP-2900 software-defined ra-
dios with about 0.5m between any two devices. The experiment was carried out
on 2.45GHz center frequency with 8MHz sampling rate. The transmitter gains of
both the transmitting nodes were varied over the roughly 90 dB gain range provided
by the radios with a 5 dB step. Some additional measurements were also done with
a 2.5 dB step. The measurements were recorded on disk by the receiver and the re-
ceiver gain was fixed at a level that took full advantage of the DAC dynamic range
when both transmitting nodes were transmitting at their highest output power. In
order to promote further research into this topic, the recorded measurements are
published in [10].
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4.4.2 Digital Interference Mitigation for Securing Internet of Things

Impact of the proposed digital interference mitigation method is herein studied in
the context of securing Internet of Things applications. These are a highly relevant
group of applications which have seen explosive growth recently and where relia-
bility and security are of major importance. As such, the signal of interest was im-
plemented according to the IEEE 802.15.4 standard that specifies the physical layer
and medium access control layer for low data rate wireless connectivity applications
with limited energy consumption requirements [64]. Several widely used Internet of
Things communications protocols, such as, e.g., Zigbee and 6LoWPAN, use IEEE
802.15.4 standard as the basis, making it a suitable target for this study. The standard
specifies several physical layer implementations, from which the 2.4GHz variant
was chosen. That variant uses O-QPSK modulation and direct sequence spectrum
spreadingwith about 9 dB of processing gain, offering 250 kbit/s data rate in a 2MHz
channel bandwidth. For KI, 4MHz bandlimited Gaussian noise signal was used.

A comprehensive experiment [P7]was carried out using the setup illustrated and
photographed in Fig. 4.8. The measurements were carried out in an anechoic cham-
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Figure 4.9 Power spectral densities of the superposed KI and signal of interest without KIC, with pro-
posed KIC, and with perfect KIC.

The power spectral density of the received superposition of the signal of interest
and KI is plotted in Fig. 4.9. This plot shows the received signal without KIC, after
the proposed KIC, and after perfect KIC (i.e., the signal of interest received without
the KI). The signal transmit gains in this case are such that the received KI is much
more powerful than the received signal of interest, hiding the latter completely when
KIC is not used. The results with these gain settings already indicate that the pro-
posed KIC method is able to suppress the KI considerably, although not perfectly,
as the SINR does not reach quite of that as when the KI is not transmitted at all.

The residual KI power levels before and after cancellation and without a signal of
interest are shown in Fig. 4.10a. These results provide an approximate upper limit
on how well the KIC method can potentially perform if there is a signal of interest
involved. Based on these measurements, the proposed FO-LMS algorithm is able to
suppress the KI at most by about 39 dB. From that point, the algorithm becomes
limited by the nonlinearities, phase noise, and sampling jitter within the KI. The
measurements results also show that the algorithm is practical already with rather
low interference-to-noise ratios.

The extended analysis, including the signal of interest and considering its BER,
is captured in Fig. 4.10b. In this case, the gain of the signal of interest is varied and
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Figure 4.10 Performance of the proposed KIC method.
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The power spectral density of the received superposition of the signal of interest
and KI is plotted in Fig. 4.9. This plot shows the received signal without KIC, after
the proposed KIC, and after perfect KIC (i.e., the signal of interest received without
the KI). The signal transmit gains in this case are such that the received KI is much
more powerful than the received signal of interest, hiding the latter completely when
KIC is not used. The results with these gain settings already indicate that the pro-
posed KIC method is able to suppress the KI considerably, although not perfectly,
as the SINR does not reach quite of that as when the KI is not transmitted at all.

The residual KI power levels before and after cancellation and without a signal of
interest are shown in Fig. 4.10a. These results provide an approximate upper limit
on how well the KIC method can potentially perform if there is a signal of interest
involved. Based on these measurements, the proposed FO-LMS algorithm is able to
suppress the KI at most by about 39 dB. From that point, the algorithm becomes
limited by the nonlinearities, phase noise, and sampling jitter within the KI. The
measurements results also show that the algorithm is practical already with rather
low interference-to-noise ratios.

The extended analysis, including the signal of interest and considering its BER,
is captured in Fig. 4.10b. In this case, the gain of the signal of interest is varied and
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the gain of the KI is set to either 85 dB or 0 dB. Setting the KI gain to 85 dB allows
to get the results with and without KIC, while setting the KI gain to 0 dB provides
a reference case that would be achieved with perfect KIC. Firstly, the measurement
results show that the BER curve is considerably impacted by the powerful interfer-
ence signal, as expected. Secondly, the results show that KI suppression rather di-
rectly translates to improved signal-of-interest BER, i.e., the results in Fig. 4.10a and
Fig. 4.10b are consistent, despite the added signal of interest. Finally, the consistency
of these results also means that the residual KI prevents the BER from reaching that
as after the perfect KIC.

Fig. 4.11 illustrates comprehensively the entire capturedmeasurement set by plot-
ting the SINRs before and after KIC for all the measured gain configurations. The
figure also shows the 50% packet error rate threshold. The results show that with-
out KIC there is a significant portion of the measurement grid where the SINR is
too low to successfully demodulate most of the packets, but KIC improves the SINR
sufficiently to facilitate successful demodulation. The results are also aligned with
the previous results, showing that for powerful KI, the proposed KIC method is not
able to cancel the KI all the way to the noise floor. This is evident in the SINR
degradation. Altogether, the proposed KIC facilitates a significant improvement in
the SINR and has the potential to therefore provide security already at the physical
layer.

That potential becomes evident by calculating the secrecy capacity that the legit-
imate receiver has over the eavesdropper given that the receiver has either the pro-
posed or perfect KIC. The secrecy capacity

Cs =max{log2 (1+ SINRRX)− log2 (1+ SINREV) , 0} (4.13)

that results then, is plotted in Fig. 4.12. In alignment with the previous results, it
is evident that the proposed KIC does not always lead to the same secrecy capacity
as the perfect KIC does. At low signal-of-interest and high KI powers, this happens
because the reference method is not able to deal with the nonlinearities and noise in
the KI. At high signal-of-interest and lowKI powers, this happens because the signal-
of-interest hampers the reference KIC. Still, the physical layer security provided by
the reference KIC method is significant, especially when considering that without
KIC the secrecy capacity is zero because then SINRRX = SINREV in the experiments.
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Figure 4.11 SINRs at the eavesdropper and receiver (i.e., without and with KIC) along with the PERs.
PKI and PSOI are the transmitted signal powers.
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5 CONCLUSIONS

In this final chapter, the contributions of this thesis to the physical layer security
and reliability of wireless communications are summarized along with discussing
possible future research directions.

5.1 Main Results

Chapter 3 built on the publications [P3], [P4], and [P6] to focus on the potential
of multifunction IBFD radios by considering various simultaneous combinations of
wireless operations, such as transmitting, receiving, detecting, and jamming. Ini-
tially, the potential impact of multifunction radios from an operational viewpoint
was considered [P4]. Various use cases were presented where IBFD radio technol-
ogy looks promising to improve the reliability and robustness of electronic coun-
termeasure systems through simultaneous operation and multifunctionality. The
concrete impact of multifunction radios on a technical level was studied from phys-
ical layer security and reliability viewpoint using an analytical framework revolving
around two-way communications, signal detection, and jamming in a three-node
system model [P6]. Each of the nodes within that system model were considered
to possess either conventional HD or enhanced IBFD capabilities for achieving its
objectives.

The benefits of multifunction IBFD radios in such scenarios have for long been
speculated over, including the potential use cases presented in this work, but the ana-
lytical and experimental results provide a concrete understanding on the system-level
benefits of some IBFDmultifunction combinations. The results show that IBFD op-
eration is not always beneficial to physical layer security and reliability, but that it
can considerably improve the performance of certain systems that otherwise rely on
separating wireless functions in time. Specifically, it can be concluded that combin-
ing signal detection and jamming on the same frequency simultaneously for smart
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jamming ismore effective than alternating between these functions in time, although
the efficiency gain is rather limited. Still, to demonstrate the feasibility of such com-
binations in practice, a deep learning-based RF signal classification method was pro-
posed and combined with simultaneous jamming on an IBFD prototype [P3]. The
practical study reinforced that while residual SI does negatively impact signal classi-
fication, it comes at almost no cost to the jamming efficiency and can improve the
situational awareness during jamming.

Chapter 4 expanded on the publications [P1], [P2], [P5], and [P7] and concen-
trated on cancellation of interference and purposefully using interference to provide
physical layer security. This began by analyzing the relevance of interference miti-
gation in the analog and digital signal processing stages of the receiver and illustrated
that, depending on the signal powers and node positions, it is either necessary to han-
dle the interference already in the analog domain or it is sufficient to suppress the
interference in the digital domain only [P1]. Then, two separate methods were pro-
posed thatmitigate interference in either of these domains— amethod formitigating
periodic narrowband interference in the analog domain by using digitally assisted
adaptive filtering [P1] and a method for mitigating known interference in the digital
domain using a novel adaptive filter FO-LMS that, in addition to the channel, also
estimates the frequency offsets [P5]. For the latter method, a novel approach was
derived to analyze its theoretical steady-state performance, which is complicated due
to the coupling of the algorithms update equations and self-induced nonstationarity.
Also, an open-source implementation was provided.

Performance of both of the interference mitigationmethods was studied in depth
through measurements and both methods demonstrated the ability to significantly
suppress received interference while ultimately becoming limited by nonlinearities,
phase noise, and sampling jitter [P2], [P7]. Still, the practical analysis showed that
interference mitigation with bothmethods directly translates to improvement in the
signal of interest processing to the same extent that themethods suppressed the inter-
ference. Furthermore, this then results in a positive secrecy capacity that effectively
allows securing wireless communications from unauthorized receivers by using co-
operative jamming together with interference cancellation [P7]. Conclusively, these
methods effectively allow to extend the IBFD radio concept to multiple radios and,
through simultaneous information and interference transmission, provide security
at the physical layer of wireless systems. In the advent of the quantum era, this can
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provide a welcome alternative to encryption on which the security of most wireless
systems relies. Furthermore, synchronization of known signals across devices does
not only facilitate cooperative jamming but potentially also various other applica-
tions, one of those being bistatic radar setups [P5].

5.2 Future Research Directions

While this work has made various contributions to the research of enhancing the se-
curity and reliability of wireless communications, numerous challenges remain that
need to be addressed to propel the technology to a level that satisfies the requirements
of commercial systems. Among these is the need to advance the technical readiness
level of SIC technology such that it would be usable in practice. For many applica-
tions, this means translating the existing technology to frequencies other than the
2.4GHz where academic IBFD radio prototypes typically operate, extending the
power range that the current state-of-the-art technology can handle, and reducing
the form factor of the proof-of-concept SI cancellation hardware to fit into com-
pact devices. Also, while 100 dB of SI cancellation is often considered enough for
wireless communication systems, then combining electronic warfare (EW) tasks, as
envisioned in form of multifunction radios, will require much better cancellation to
be achieved.

The interference cancellation measurement results in this work demonstrated
that co-site or known interference can be to a large extent mitigated by estimating
and compensating for the channel and frequency offsets. However, the results also
showed that by considering only these aspects, the interference cannot be always
mitigated completely, as RF front-end nonlinearities, phase noise, and sampling jit-
ter can ultimately limit performance. In order to suppress the interference further,
interference cancellation methods need to be developed to also account for these im-
pairments. Furthermore, the digital FO-LMS algorithm presented in this work was
run offline on recorded measurements. In order to facilitate KIC in practical appli-
cations, the interference will need to be suppressed in real-time and this is a challenge
that needs to be overcome in future algorithm development and implementations.
Fortunately, the proposed FO-LMS algorithm is computationally inexpensive and,
therefore, potentially lends itself well for implementation in real-time.
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Abstract—Interference mitigation in radio-frequency (RF) re-
ceivers has been studied extensively in various contexts. And
although most of the in-band interference mitigation techniques
rely on suppressing the interference in the digital domain, strong
in-band interference can saturate a receiver’s front-end and, thus,
prevent it from receiving comparatively weak signals of interest.
This is especially so in case of the self-interference (SI) encoun-
tered in enclosed full-duplex (FD) radios, but also in case of co-
located jammers or radars and signals intelligence receivers. This
work presents a digitally assisted method and its implementation
for the mitigation of narrowband periodic interference before
quantization in order to improve the sensitivity of receivers co-
located with strong interference sources. Experimental results
are provided and the potential for mitigating more complex
waveforms, e.g., pseudorandom jamming, is discussed.

I. INTRODUCTION

Impelled by the threat of adversarial jamming and the
increased congestion of the radio-frequency (RF) spectrum, the
mitigation of in-band interference in RF receivers has received
considerable attention in defense and security research. Based
on their usage domain, the mitigation techniques fall into two
categories. Digital interference mitigation can be sufficient
against adversarial jamming [1], whereas high-power interfer-
ence from co-located transmitters can lead to adjusting the
receiver’s analog-to-digital converter (ADC) range to prevent
overloading. Thus, the receiver would benefit from suppressing
the interference in the analog domain before quantization to
improve the effective resolution of the signal of interest [2].

The interference problem encountered in the case of co-
located transmitters and receivers is similar to the self-
interference (SI) challenge in full-duplex (FD) radios that
operate in same-frequency simultaneous transmit and receive
(SF-STAR) mode [3]. Such operation is expected to increase
the spectral efficiency in wireless communications but SF-
STAR has also been envisioned to reshape both the wireless
defense and security domains, e.g., in the form a so-called
FD radio shield [4]. Inside the radio shield, a central node
would be capable of receiving wireless signals while jamming
the reception of those or other malign signals for others. The
concept can be further elaborated to include pseudorandom
jamming signals, which the authorized users inside the FD
radio shield can suppress. This again potentially raises the
receiver overloading issue.

This research work was partly supported by the Academy of Finland under
the grant 315858 “Radio Shield Against Malign Wireless Communication.”

The aim of this work is to develop a method for miti-
gating narrowband interference in receivers co-located with
high power transmitters as envisioned in Fig. 1, i.e., without
having direct access to a copy of the interfering transmission
as opposed to FD radios. We propose a digitally assisted
analog interference cancellation technique using a single input
antenna and adaptive filtering by extending our previous work
on digital cancellation [5]. Experimental results characterize
the performance of the proposed method in a laboratory
environment and reveal that phase noise, which in the case
of FD radios with a shared local oscillator (LO) is inherently
mitigated [6], is one of the main limiting factors for interfer-
ence mitigation. With co-located devices, sharing the LO can
be impractical, otherwise the interfering signal could also be
shared to simplify its mitigation.
The remainder of this paper is organized as follows. In

Section II, the interference mitigation technique is introduced.
The experimental setup that was used assess this method
is discussed in Section III and the results are presented in
Section IV. Finally, the paper is concluded in Section V.
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Fig. 1. The mitigation of co-located interference facilitates, e.g., the remote
control of unmanned aerial vehicles (UAVs), the reception of global navigation
satellite system (GNSS) signals, tactical wireless communications, and many
other radio systems in the electronic battlefield as well as in civilian security.
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II. NARROWBAND INTERFERENCE MITIGATION

The mitigation of co-located interference in the analog do-
main prior to digitization offers an opportunity to improve the
receiver sensitivity of co-located radios [7]–[9]. This section
briefly analyzes the circumstances under which analog inter-
ference mitigation becomes necessary and proposes a digitally
assisted analog interference mitigation technique (Fig. 2).

A. SINR Analysis

As the receiver’s automatic gain control (AGC) keeps the
total ADC input at constant full range level, high interference
power means more ADC dynamic range is consumed by the
interference signal. This leads to reduced effective resolution
for the signal of interest, which may limit the receiver’s
performance [10]. The signal-to-interference-plus-noise ratio
(SINR) can be calculated [11] as follows:

γ =
ρ

PSLS

PILI/∆a
+ ρ/∆d + 1

· PSLS
PILI/∆a

, (1)

where PSLS/(PILI/∆a) represents SINR after path losses
and analog cancellation, ρ is the effective dynamic range, and
∆d is the amount of digital cancellation. Whether or not digital
cancellation is sufficient depends on the targeted SINR γt
of the application. The minimal level of digital suppression
needed to achieve γ ≥ γt given PSLS/PILI , ∆a, and ρ can
be solved from (1) as

∆d ≥
ρ

PSLS

PILI/∆a
· ( ργt − 1) − 1

, (2)

if ∆a · PSLS

PILI
≥ γt

ρ , otherwise the target SINR cannot be
achieved regardless of the level of digital suppression [11].

Taking free-space path loss into account and assuming no
analog cancellation, Fig. 3 illustrates the maximum attainable
SINR after ideal digital interference cancellation (∆d = ρ) in
terms of distances between the transmitters of the signals of
interest TXS and interference TXI from the receiver RX .
The output power ratio between the transmitters is taken to
be PS/PI = −23 dB and the effective dynamic range of the
receiver is assumed to be ρ = 48 dB, corresponding to a
12-bit ADC with effective number of bits (ENOB) equalling
10 [3]. The calculated results illustrate the extent to which a
co-located transmitter limits the receiver’s sensitivity if only
digital interference mitigation is used.

B. Digitally Assisted Analog Interference Mitigation

Expanding on our previous work in digital narrowband
interference mitigation, which relies on estimating the instanta-
neous frequency of the strong interfering signal, reconstructing
such a signal, and using adaptive filtering to suppress the
interference [5], we propose to use an auxiliary transmit chain
to subtract the reconstructed, delayed, and filtered interference
from the received signal in the analog domain as illustrated in
Fig. 2. Similar methods have been successfully applied in FD
radio prototypes to cancel the SI [12], in adaptive noise control
(ANC) to suppress acoustic noise by introducing “antinoise” of
equal amplitude and opposite phase [13], and have also been
considered in theory for evading radars by cancelling their
echoes [14]. However, this work combines RF interference
estimation and its mitigation before quantization and provides
experimental results.

The proposed method is based on the estimating the instan-
taneous frequency of the narrowband jamming signal x(n)
and constructing a digital representation x̂(n) of the jamming
signal such that it exactly follows the estimated frequencies.
As previously shown in [5], it is possible to estimate the
instantaneous frequency of narrowband interference as long as
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the interference is sufficiently more powerful than the signal of
interest. In order to obtain an interference-free version of s(n),
the clean input signal corrupted by interference s(n)+x(n) is
employed as the reference signal for the adaptive filter, whose
input is the estimated jamming signal x̂(n) that is strongly
correlated to the actual jamming signal x(n). The adaptive
mechanism adjusts the filter coefficients of W (z) in such a
manner that the filter output y(n) approximates the jamming
signal x(n), thus forcing the error signal e(n) to resemble
the signal of interest s(n). The system uses a directional
coupler to direct some of the input signal energy to a secondary
receiver port RXAUX that is not affected by the cancellation
and thus allows to continue estimating the interfering signal
simultaneously to its mitigation in the primary path RX .

Unfortunately, the digital interference reconstruction takes
a considerable amount of time and consequently the compu-
tational delay in generating the x̂(n) becomes longer than the
path delay in the primary receiver chain for the actual interfer-
ence x(n). Therefore, the system’s response is noncausal and
the system is capable of effectively canceling only narrowband
or periodic interference [13]. Furthermore, for the interference
estimation, the actual signals of interest act as noise.

Compared to digital interference mitigation, the use of
adaptive filtering for analog interference mitigation is further
complicated by the fact that the summation of signals rep-
resents RF superposition and it is necessary to compensate
for the secondary-path transfer function S(z), which includes
the digital-to-analog converter (DAC), TXAUX chain, power
amplifier (PA), power combiner, low-noise amplifier (LNA),
RX chain, and ADC. Thus, the purely digital adaptive filter
based on the normalized least mean squares (LMS) algorithm
is extended to a filtered-x version, where a transfer function
is present in the cancellation path.

The filtered-x least mean squares (FxLMS), however, be-
comes unstable at step sizes much lower than without the
secondary path, thus limiting the convergence speed [15].
That is because the secondary path influences the dynamic
response of the cancellation system by reducing the maximum
step size in the FxLMS algorithm. On the other hand, the
FxLMS algorithm is rather tolerant to errors made in the
estimation of S(z) by the filter Ŝ(z), as within the limit of
slow adaptation, the algorithm converges with nearly 90° of
phase error between S(z) and Ŝ(z) [13]. Therefore, offline
modeling can be used to estimate S(z) during an initial
training stage as the signal path from the auxiliary transmitter
TXAUX to the primary receiver RX can be considered static.

A single-frequency reference based adaptive canceller using
the LMS algorithm has the properties of a notch filter at the
reference frequency and the level of interference is reduced
at the expense of introducing some distortion on the desired
signal [16]. The same applies to the FxLMS with an inter-
vening transfer function in the cancellation path [15]. The
system in general can possibly be repurposed to work with
broadband interference, such as pseudorandom jamming, e.g.,
by replacing the narrowband interference reconstruction with
a respective signal generator.

III. EXPERIMENTAL SETUP

In order to characterize the performance of the proposed RF
interference mitigation technique, we carried out experiments
in a laboratory environment. The experimental setup as illus-
trated in Fig. 4 simulates a scenario, in which a co-located
jammer is interfering with a receiver, omitting any signals of
interest. All the devices involved in the measurements were
connected through coaxial cables, thus providing a controlled
environment in which all other sources of interference, besides
the devices under test, were eliminated. This also ensured
precise control of the power levels during the measurements.
Furthermore, effects in the radio channel, such as multipath
propagation and fading, do not have an effect on the measure-
ment results and a wide frequency range from 100 MHz to
2400 MHz could be studied without restrictions.
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Fig. 4. The measurement setup in which either the SMBV100A vector signal
generator or the USRP B200 software-defined radio is used to generate the
interference. An oven-controlled crystal oscillator (OCXO) is used as an
external reference either for the receiver only or for both the interference
generator and the receiver.

A. Experimental Receiver

The receiver prototype used in the measurements is built
using the USRP B210 commercial off-the-self (COTS) dual-
channel software-defined radio (SDR) that receives signals
in a 2 MHz bandwidth. In order to improve its phase noise
characteristics, a 10 MHz oven-controlled crystal oscillator
(OCXO) based reference clock is used as an external reference.
Furthermore, in order to examine the effect of using a shared
reference clock for both the receiver and the interference
generator, as is typically the case in FD radios, measurements
were carried out by using the OCXO as reference for only the
receiver or both the receiver and the interference generator.

The input signal, i.e., the interference, is split in two using
a directional coupler and a wideband electromechanical RF
switch is used to control the input signal flow into the primary
receiver path RX . This allows to carry out offline secondary
path modelling during an initial training stage. A two-way
power combiner is used to combine the received signal and
the generated cancellation signal. The resulting signal path
from the interference generator’s TXI to the receiver’s RX
attenuates the signal by 5 dB to 8 dB in the frequency range
of 100 MHz to 2400 MHz.



B. Interference

The interference was generated at center frequencies of
100, 200, 400, 800, 1600, and 2400 MHz with two different
methods. Using a Rohde & Schwarz vector signal generator
SMBV100A and using an Ettus USRP B200 SDR. Also
two different kind of interference were used, a single-tone
signal and a sinusoidally frequency-modulated (FM) signal
with frequency deviation of 125 kHz and modulation rate of
1 kHz. The frequency deviation and modulation rate were
chosen based on the limitations imposed by the SMBV100A
at 100 MHz and applied at all of the measured center fre-
quencies with both interference generators. In either case the
interference is instantaneously narrowband and periodic. The
interference power was limited to −20 dBm, which is close
to the specified maximum input level of the USRP B210.

IV. EXPERIMENTAL RESULTS

The interference cancellation results, i.e., the measured
power reduction after cancellation, over the examined fre-
quency range for both single-tone and FM interference are
plotted in Fig. 5. The vector signal generator has considerably
lower phase noise of the two tested interference sources, which
explains the better efficiency of the interference cancella-
tion. Specifically, the AD9364 transceiver chip used in the
USRP B200 has specified integrated phase jitter of 58.9 ps at
2400 MHz, whereas the SMBV100A has phase jitter of only
3.9 ps at 1000 MHz. The single-tone interference cancellation
results are thus in agreement with the active cancellation
studies with regards to the variance of phase noise in FD radios
with non-matched LOs [17].

Furthermore, the interference cancellation results demon-
strate an exponential dependence on the center frequency.
This is also explained by the differences in phase noise.
Ideally, frequency multiplication by N results in phase noise
increase by 20 · log10N , i.e., 6 dB in the case of frequency
doubling. Measurement results for the single-tone interfer-
ence cancellation are consistent with the 6 dB per octave
performance degradation. In the case of FM interference, the
maximum achievable suppression rate is further limited by
the frequency stability of the FM source and by the ability
of the interference mitigation system to exactly estimate and
regenerate the periodic interference.

From the results, it also becomes evident that sharing a
common external reference between the interference generator
and the interference mitigating receiver improves the active
cancellation efficiency. This is in accordance with the studies
on phase noise effects in FD radios, whereas sharing the LO
between the transmit and receive chains inherently mitigates
the performance hampering effect of phase noise. These results
stress the importance of using high-precision oscillators in
co-located radios in order to lower the phase noise and
achieve efficient interference cancellation. When considering
the mitigation of broadband or pseudorandom interference, the
jamming waveforms could perhaps be designed to facilitate
digital estimation and suppression of phase noise likewise to
recent advances in FD radios [18].
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Fig. 5. Analog interference mitigation achieved in the 100MHz to
2400MHz frequency range using the different measurement setup configu-
rations. The interference generator was referenced either by its internal clock
(I) or the oven-controlled crystal oscillator based external reference clock (O),
which was also used as an external reference for the receiver.

Another important aspect of adaptive filtering is the learning
rate by which the interference can be cancelled. The learning
rate of the analog RF interference cancellation for single-tone
and FM interference is visualized in Fig. 6. For the single-tone
interference, the adaptive filter converges in approximately
100 µs, whereas for the FM interference, the filter converges
typically in a matter of seconds. Furthermore, such predictive
interference cancellation method inherently produces a short
burst of interference by itself when the actual interference in
the input signal disappears. All of the measurements were
made with a small step size that was empirically found to
be close to (but still below) the upper bound beyond which
the adaptive filter becomes unstable. As mentioned previously,
this is affected by the imposed delay of the secondary path.



(a) under single-tone interference (b) under sinusoidally frequency-modulated interference

Fig. 6. Learning curves of the adaptive digitally assisted analog radio-frequency interference mitigation system as measured for a single-tone and a sinusoidally
frequency-modulated interference in a closed and static laboratory environment. Whenever no interference is present the system reaches noise level of−88dBm.

V. CONCLUSION

Analog interference mitigation, as opposed to plain digital
solutions, becomes necessary in case the interference starts
to limit the receiver’s sensitivity due to the limited dynamic
range of the analog-to-digital converter (ADC) as, e.g., in the
case of co-located jammers or radars and signals intelligence
receivers. In this paper, we proposed a method for mitigat-
ing narrowband interference in the analog domain by using
digitally assisted adaptive filtering and provided experimental
results on suppressing such interference in a static labora-
tory environment. The experimental results show promising
performance in terms of interference cancellation and the
convergence speed of the adaptive interference canceller over
a broad frequency range including the very high frequency
(VHF) and ultra high frequency (UHF) bands.

However, the results have also illustrated how phase noise,
one of the main performance limiting factors, degrades the
interference cancellation efficiency. The presented results are
limited to a closed experimental setup in a laboratory envi-
ronment at moderate transmission powers and require further
study to assess the feasibility of co-located analog interference
mitigation under realistic channel conditions, mobile scenar-
ios, together with signals of interest, and higher output powers.
The proposed interference mitigation method could possibly
be extended to work with broadband pseudorandom jamming
signals, e.g., in the case of a full-duplex (FD) radio shield,
if the narrowband interference reconstruction can be replaced
with a pseudorandom interference generator.
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Abstract—Powerful in-band interference can saturate a re-
ceiver’s front-end and limit the usefulness of digital interference
suppression methods that are bounded by the receiver’s limited
dynamic range. This is especially true for the self-interference
(SI) encountered in full-duplex (FD) radios, but also in the case
of strong interference between co-located radios. However, unlike
in FD radios, receivers co-located with interference sources do
not typically have direct access to the transmitted interference.
This work analyzes the performance of a digitally-assisted
analog interference mitigation method and its implementation
for the suppression of frequency-modulated (FM) interference
before quantization in global navigation satellite system (GNSS)
receivers that are co-located with interference sources. Over-the-
air measurement results are presented that illustrate the effects
of interference mitigation on GPS L1 and Galileo E1 reception in
a commercial off-the-shelf GNSS receiver and a software-defined
GNSS receiver. The analysis covers the effects of the interference
mitigation on the radio frequency (RF) front-end, acquisition,
tracking, and positioning stages.

I. INTRODUCTION

Radios with full-duplex (FD) capabilities are expected to
increase the spectral efficiency of wireless communications as
a result of the advances in self-interference (SI) cancellation
techniques, which enable FD radios to simultaneously transmit
and receive on the exact same frequency [1]. In addition, FD
radios have the potential to reshape both wireless defense and
security domains, e.g., in the form of a so-called FD radio
shield [2], [3]. Inside the radio shield, a central node would
be capable of receiving wireless signals while jamming the
reception of those signals for others. Elaborating this concept
further, it would be highly desirable for authorized co-located
receivers to also be capable of receiving signals-of-interest
inside the radio shield as illustrated in Fig. 1. Similarly to
the SI cancellation in FD radios, co-located receivers would
in some cases benefit from suppressing the interference in the
analog domain before quantization to improve the effective
resolution of the signal-of-interest [4].

To that end, we have proposed a digitally-assisted analog
interference cancellation technique relying on a single input
antenna and adaptive filtering [5]. Previously presented exper-
imental results have characterized the performance of the pro-
posed method in a laboratory environment and demonstrated
that phase noise of the interference source is one of the main
limiting factors for interference mitigation [5].

This research work was supported by the Academy of Finland, the Finnish
Scientific Advisory Board for Defence, and the Estonian Defence Forces.

However, our previous experiments have lacked any signals-
of-interest besides the interference. In this work, we take
them to be global navigation satellite system (GNSS) signals
because received GNSS signals are typically quite weak,
around −130 dBm when acquired outdoors in open-sky con-
ditions [6], and in-band interference can quickly saturate a
GNSS receiver’s front-end. We present measurements and
analyze the impact of frequency-modulated (FM) interference
and its cancellation on Global Positioning System (GPS) L1
and Galileo E1 reception using a commercial off-the-shelf
GNSS receiver and a software-defined GNSS receiver. The
analysis is also fitting due to the widespread use of FM
jamming against GNSS receivers [7], [8] and complements
works on FM interference mitigation in the digital domain [9].

The work is presented as follows. First, the digitally-assisted
analog interference mitigation method from [5] is briefly rein-
troduced in Section II. The laboratory setup used for assessing
the impact of the interference mitigation on processing GNSS
signals is presented in Section III, while the discussion and
analysis of the experimental results is carried out in Section IV.
Finally, Section V concludes the paper.
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Fig. 1. Full-duplex (FD) radio technology enables radio shields where only
the FD-capable jamming node is able to receive signals-of-interest in the
jammed frequency. However, adequate interference mitigation enables co-
located radios to also receive the signals-of-interest. This could be limited
to authorized receivers through pseudorandom jamming.
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Fig. 2. Digitally-assisted analog mitigation of frequency-modulated interference [5] applied to recover GNSS signals-of-interest.

II. NARROWBAND INTERFERENCE MITIGATION

The interference mitigation method used and analyzed
herein has previously been published in [5]. In essence, the
method is based on using an auxiliary transmit chain, similarly
to some of the proposed FD radio architectures [10], to sup-
press the interference in the received signal before quantization
as illustrated in Fig. 2. The implementation requires estimating
the instantaneous frequency of the narrowband interference
signal x(n) and constructing a digital representation x̂(n)
of the interference such that it exactly follows the estimated
frequencies. Of course, it is only possible to precisely estimate
the instantaneous frequency of the interference as long as
the interference is sufficiently more powerful than the signal-
of-interest. However, this is exactly the situation this work
focuses on with powerful co-located interference. Also, when
considering GNSS as signals-of-interest, estimation of the
interference’s instantaneous frequency is aided by the spread
spectrum nature of the GNSS signals.

In order to obtain an interference-free version of the signal-
of-interest s(n), the input signal s(n)+x(n) is employed as the
reference signal for the adaptive filter. The estimated jamming
signal x̂(n), which is strongly correlated to the actual jamming
signal x(n), is employed as the input for the adaptive filter.
The adaptive mechanism adjusts the filter coefficients of W (z)
in such a manner that the filter output y(n) approximates the
jamming signal, thus forcing the error signal e(n) to resemble
the signal-of-interest s(n).

The use of adaptive filtering for analog interference mit-
igation is complicated by the fact that the summation of
signals represents radio-frequency (RF) superposition and it
is necessary to compensate for the secondary-path transfer
function S(z), which includes a digital-to-analog converter
(DAC), a power amplifier (PA), a power combiner, a low-noise
amplifier (LNA), and an analog-to-digital converter (ADC).
Thus, the adaptive filter needs to imitate the secondary-path
transfer function S(z) with a transfer function Ŝ(z) applied
to the input [11]. Fortunately, offline modeling can be used to
estimate S(z) during an initial training stage as the signal path
from the auxiliary transmitter TXAUX to the primary receiver
RX can be considered static. Still, due to the computational
delays involved in estimating the instantaneous frequency,
filtering etc., the system’s response is non-causal and the
system is capable of effectively canceling only narrowband
pseudorandom or periodic interference [11].
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Fig. 3. The setup for measuring the over-the-air performance of the interfer-
ence mitigation platform using GPS L1 and Galileo E1 as signals-of-interest.

III. EXPERIMENTAL SETUP

The measurement setup is outlined in Fig. 3. The inter-
ference mitigation prototype is built using an USRP B210
software-defined radio (SDR) and the prototype’s performance
is analyzed by using simultaneously a commercial GNSS re-
ceiver U-Blox LEA-M8T and an open-source GNSS software-
defined receiver (GNSS-SDR) [12] that processes IQ samples
from the SDR. The measurements are carried out in an
anechoic chamber to avoid interfering with GNSS receivers in
the vicinity and to be able to use a controlled GNSS source.
A signal generator SMBV100A is used for transmitting GPS
L1 C/A and Galileo E1 signals that simulate six satellites
with predefined location, time, and power. A separate signal
generator SMBV100B is used for transmitting a sinusoidally
FM interference with deviation of 125 kHz, modulation rate
of 1 kHz, and center frequency of 1575.42 MHz.



An active GPS antenna with 27 dBi gain and 1.5 dB noise
figure (Trimble 39265-50) is used to receive the GNSS and
interference signals, whereas directional log-periodic anten-
nas are used for transmitting the signals. The signal after
interference mitigation is split between the U-Blox receiver
and the receiver for GNSS-SDR. The U-Blox receiver logs
National Marine Electronics Association (NMEA) and U-Blox
proprietary messages. The SDR is used for the interference
mitigation but also for recording IQ samples with sampling
rate of 4.096 MHz. The sampling rate is chosen to be slightly
above an integer multiple of the chipping rate as using a
multiple of the chipping rate leads to poor accuracy in the
estimation of pseudoranges [13].

For each measurement, 4 min of U-Blox logs and IQ sam-
ples are recorded so that both the U-Blox receiver and GNSS-
SDR could acquire the position from a cold-start situation. In
order to have a fair comparison between the U-Blox receiver
and the GNSS-SDR toolbox, the U-Blox receiver is restarted
before each measurement. In that way, every U-Blox recording
and IQ recording represents a standalone unit for analysis
without a priori information on satellites’ pseudoranges, etc.

IV. EXPERIMENTAL RESULTS

When receiving the combination of a GNSS signal and FM
interference, the platform provides about 35 dB of interference
suppression as illustrated in Fig. 4 (where GPS cases are
omitted as they are very similar to the Galileo ones). Those
results closely resemble the previous findings achieved without
any signals-of-interest [5]. But does this lead to improvements
in GNSS reception? In the following subsections, we provide
in-depth analysis into how the interference mitigation affects
actual GPS L1 and Galileo E1 reception in the RF front-end,
acquisition, tracking, and positioning stages.

A. RF Front-End

The first stage of a GNSS receiver is the RF front-end,
which is typically used to filter the input signal down to the
bandwidth of interest, downconvert, amplify using automatic
gain control (AGC), and finally quantize using an ADC.
In-band interference, however, by-passes such filtering and
affects the AGC, consequently determining how well the AGC
is capable of minimizing quantization errors of the GNSS
signals in the ADC. The gain level set by the AGC in the
U-Blox receiver with respect to the jammer-to-signal ratio
(JSR) is plotted in Fig. 5. It is evident that as the power of
the interference increases, the AGC decreases the gain level
to prevent from overflowing the ADC, which is exactly the
purpose of the AGC. Because AGC is typically the first in line
to be affected by adversarial interference, AGC is potentially
well suited for interference detection [14].

The U-Blox receiver also features an internal interference
detector that provides an interference detection confidence
level, although it is unclear, whether the interference indicator
takes the AGC information into account in this case. The
interference confidence level is plotted alongside the AGC data
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in Fig. 5. As the interference power increases so does the in-
terference detection confidence level. The reported AGC level
and interference confidence level are not exactly reciprocal,
yet both of these metrics seems to be similarly affected by the
interference mitigation. Comparing the AGC and interference
confidence levels with and without interference mitigation in-
dicates that interference mitigation extends the normal working
range of the U-Blox receiver RF front-end by 30 dB to 40 dB.
As such, analog interference mitigation might also turn useful
for improving the reception quality of systems, for which
baseband digital signal processing is not accessible.



B. Acquisition

Acquisition stage is the first digital stage in GNSS reception
and it is tasked with detecting the presence of GNSS signals
and providing coarse estimates of the signals’ code phase and
Doppler frequency for the tracking stage [15]. Acquisition is
essentially achieved by correlating the received signal with
locally generated replicas, which are characterized by specific
code delays and Doppler frequencies.

Figure 6 illustrates how the acquisition search space for
GPS L1 is affected by interference at JSR of 50 dB with
and without interference mitigation. The acquisition search
space is calculated using 1 ms of integration time and 2 Hz
Doppler frequency step in the GNSS-SDR toolbox. Galileo
E1 acquisition search space exhibits similar behaviour and has
not been included for brevity.

Without interference (cf. Fig. 6a), a single predominant peak
appears in the cross-ambiguity function (CAF) that indicates
the presence of the signal and its code delay and Doppler
shift. With interference, the separation between the cross-
correlation peak and the noise floor decreases drastically (cf.
Fig. 6b), leading to increased probability of false alarms or
even providing inaccurate code phase and Doppler frequency
estimates [16]. Interference mitigation improves the CAF
significantly (cf. Fig. 6c) and a single dominant peak is
distinguishable from the noise floor again.

C. Tracking

Tracking stage uses the coarse estimates from the acqui-
sition stage to provide fine estimates of the GNSS signal
parameters, which in turn are used for generating pseudor-
anges [16]. The tracking stage typically relies on a closed-loop
architecture where tracking loops are used to track the different
signal components. Loop discriminators use correlator outputs
to provide a measure of error between the actual and estimated
signal parameters. In good signal-to-noise ratio (SNR) condi-
tions, the discriminator outputs (∆phase and ∆code) are guided
close to zero by the tracking loops. However, as the SNR
deteriorates, the standard deviation of the discriminator outputs
increase (σphase and σcode), lending themselves for analyzing
the interference impact, as illustrated in Fig. 7. Based on
the measurement results, the tracking stage is more likely to
provide erroneous values with the interference mitigated as
opposed to without mitigation. Although the operational range
is extended similarly to the previous stages.

Besides the discriminator outputs, another aspect to analyze
at this stage is the estimated carrier-to-noise ratio C/N0. The
estimation of the C/N0 depends on both the signal power
estimation and the noise power estimation and several methods
exist for these estimations [17]. The estimates are of course
affected by interference and therefore they can also be an
indication of adversarial interference [18]. The measured effect
of FM interference on the estimation of C/N0 with and
without mitigation is plotted in Fig. 8. The C/N0 measurement
results are in line with the results presented in RF front-end
and acquisition stages, i.e., the interference mitigation extends
the normal C/N0 estimation range by 30 dB to 40 dB.

(a) GPS acquisition without interference

(b) GPS acquisition with interference

(c) GPS acquisition with interference mitigation

Fig. 6. Comparison of the cross ambiguity function for GPS L1 acquisition
search space without interference, with frequency-modulated interference
(jammer-to-signal ratio of 50dB) and with the interference suppressed.
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unable to acquire any position.

D. Positioning

If the GNSS signals can be acquired and tracked despite
the interference, then the GNSS receiver can estimate its
position. However, the position estimate may be degraded
by the inaccuracies in pseudorange estimates caused by the
interference. Figure 9 shows the average positioning accuracy
of the U-Blox and GNSS-SDR receivers for both GPS L1 and
Galileo E1 under interference with and without mitigation. It
is evident that interference suppression allows the receivers
to operate under much higher jammer-to-signal ratio (JSR),
even though the effect is slightly different for GPS L1 and
Galileo E1 positioning accuracy, presumably because of the
different modulations used in GPS L1 and Galileo E1. During
the 4 min measurements, poor SNR conditions tend to prevent
the receivers from acquiring any positional fix rather than lead
to very large positioning errors. In poor SNR conditions, the
position is available for a fraction of the total measurement
time whereas in good JSR conditions the position is available
most of the time after acquiring the satellite parameters.

In a relatively small JSR range, the interference is severe
enough to drastically decrease the GNSS receiver performance
but not severe enough to force the receiver to prevent the
acquisition of satellite signals or lose its lock on the satellite
signals. For four such interference cases, the horizontal GPS
positioning accuracy is illustrated in Fig. 10. The horizontal
error ranges from couple meters to hundreds of meters. Such
intermediate JSR ranges can perhaps be the most dangerous
because of the difficulty to detect the interference [19]. In case
the users fail to detect that the GNSS service is being interfered
with, the positional inaccuracies may have a significant impact
on the users’ safety and security [20].
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V. CONCLUSIONS

Analog interference mitigation, as opposed to plain digital
solutions, becomes necessary when the interference starts to
limit the receiver’s sensitivity due to the receiver’s limited
dynamic range. This is an outstanding issue in full-duplex
(FD) radios but can also cause problems in co-located ra-
dios, especially when considering the typically weak global
navigation satellite system (GNSS) transmissions as signals-
of-interest. In this work, we analyzed how a digitally-assisted
analog interference mitigation scheme affects GPS L1 and
Galileo E1 reception in the presence of frequency-modulated
interference, whereas the interference parameters are unknown
to the receiver. We characterized the impact of interference
and its mitigation on the radio-frequency (RF) front-end,
acquisition, tracking, and positioning stages of GNSS receivers
using a commercial off-the-shelf receiver and a separate open-
source sofware-defined receiver.

The experimental results demonstrate considerable improve-
ments in terms of preventing saturation in the RF front-end,
cleaning up the acquisition search space, improving tracking
accuracy and carrier-to-noise ratio estimates, and enhancing
positioning accuracy for both GPS L1 and Galileo E1. The
measurement results indicate that the operational jammer-to-
signal ratio range of the GNSS receivers is extended propor-
tionally to the amount of interference power suppression, for
which one of the main limiting factors is the phase noise
of the interference source. While the mitigation of periodic
interference might have limited usage, extending such inter-
ference mitigation to suppress pseudorandom jamming could
be desirable for differentiating between authorized and non-
authorized receivers, for example, inside a FD radio shield.
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Abstract—The emerging full-duplex (FD) radio concept is set
to double the spectral efficiency of commercial wireless networks,
but it also has potential applications in the defense and security
domains. In the form of multifunction military full-duplex radios
(MFDRs), the FD capability could enable armed forces to conduct
simultaneous electronic attacks, electronic support measures, and
tactical communications. This paper demonstrates the feasibility
of simultaneous jamming and reconnaissance of drones’ remote
control (RC) systems using a prototype MFDR. Alongside, we
apply deep learning in the form of a convolutional neural network
(CNN) for classifying the RC signals and analyze the effect of
FD operation on the classification performance.

I. INTRODUCTION

Recent advances in full-duplex (FD) radio research have
enabled concurrently receiving and transmitting on the exact
same frequencies. Such operation, as compared to the conven-
tional half-duplex (HD) mode, improves the spectral efficiency
of wireless communications and consequently enhances the
network throughput in commercial systems [1]. In addition,
FD radios can also reform the cyber battlefield by facilitating
simultaneous combinations of electronic attacks, electronic
support, and tactical communication [2], [3]. Several practi-
cal works have already demonstrated the feasibility of such
concepts in laboratories [4]–[6]. We consider herein the appli-
cation of the FD radio technology for countering the emerging
threats caused by remotely operated aerial vehicles [7]–[9].
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Fig. 1. Military full-duplex radios could be used to simultaneously detect
and jam adversary drones’ remote control systems, therefore benefiting from
improved situational awareness and enhanced jamming techniques.

This research work was supported in part by the Academy of Finland under
the grant 315858, in part by the Finnish Scientific Advisory Board for Defence
(MATINE), and in part by the Estonian Ministry of Defence.

The objectives of this work are to study the practical
feasibility of simultaneously receiving and jamming the remote
control (RC) signals of unmanned aerial vehicles/systems
(UAV/Ss)—referred to as ‘drones’ herein—using FD radio
technology and then to classify the intercepted signals using
machine learning. The challenge is illustrated in Fig. 1.
The RC signals received and classified during simultaneous
jamming could be used to, e.g., locate the adversary or tailor
the jamming waveform against the specific UAS. We propose
the application of deep learning in the form of convolutional
neural networks (CNNs) for the accurate classification of
different RC protocols. Through measured and simulated re-
sults, we demonstrate the CNN model’s feasibility to identify
commercial drone RC signals in HD and FD modes.

II. SIGNAL DETECTION AND CLASSIFICATION

Deep learning has recently enjoyed significant success in
various research areas that focus on feature extraction from
raw input data [10], [11] and these advances have not gone
unnoticed in the wireless communications research. Methods
based on CNNs have been proposed for modulation recog-
nition [12], wireless signals’ classification [13], transmitter
fingerprinting [14], radar classification [15] and, also, drone
classification from radar micro-Doppler signatures [16], to
name but a few. However, to the best of our knowledge, studies
into drone RC signal classification have not been reported.

A. Architecture

Several radio-frequency (RF) signal representation and pre-
processing methods have been proposed for deep learning-
based signal classification purposes. These include simply
using the complex-sampled time series of the signal without
any preprocessing [17], the amplitude and phase difference
representation [18], and the spectrogram-based method [18].
When considering the time-series representation, the wide
bandwidth of the 2.4GHz unlicensed radio band, in which
many commercial drones operate, renders high computational
complexity and can also degrade the overall classification
accuracy [19]. In addition, time-series signal representation in
deep learning methods for signal classification has been shown
to have negative impacts on the overall classification accuracy
for signals with frequency offsets, which could complicate the
classification of the frequency-hopping signals at hand [19].978-1-7281-4490-0/20/$31.00 c© 2020 IEEE
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name but a few. However, to the best of our knowledge, studies
into drone RC signal classification have not been reported.
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processing methods have been proposed for deep learning-
based signal classification purposes. These include simply
using the complex-sampled time series of the signal without
any preprocessing [17], the amplitude and phase difference
representation [18], and the spectrogram-based method [18].
When considering the time-series representation, the wide
bandwidth of the 2.4GHz unlicensed radio band, in which
many commercial drones operate, renders high computational
complexity and can also degrade the overall classification
accuracy [19]. In addition, time-series signal representation in
deep learning methods for signal classification has been shown
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Fig. 2. The architecture of the convolutional neural network (CNN) used in this work for the spectrogram-based detection and classification of unmanned
aerial vehicle (UAV) or ‘drone’ remote control (RC) signals after suppressing the self-interference (SI) caused by simultaneous same-band jamming.

The characteristics of typical drone RC systems, i.e., fre-
quency hopping over a wide bandwidth, different channel fre-
quencies, bandwidths and transmission times across different
protocols, suit the spectrogram-based representation, as it is
not sensitive to frequency offsets and phase shifts. In this work,
we therefore rely on the spectrogram-based representation. In
particular, the time-frequency evolution of the 80MHz input
signal is split into smaller spectrograms of size 64 × 64 pixels
that are input to the CNN. Thus, the time and frequency
coverage of the spectrograms is chosen to be 6.5ms and
5MHz, respectively, in order for each of the different drone
remote control signals analyzed in this paper to fit inside the
spectrograms. The input is also normalized, as this enhances
spectrogram-based classification accuracy [20].

The architecture of the proposed CNN model is outlined in
Fig. 2. Similarly to efficient object recognition models [11],
the spectrogram is passed through a stack of convolutional
layers that have filters with very small receptive fields. To
classify which of the categories (background interference and
noise or one of the RC signals) the 64 × 64 spectrogram
contains, it is passed through three consecutive convolutional
layers, followed by two fully connected layers. In each of
the convolutional layers, the convolution stride is 1 pixel and
the receptive field is 3 × 3 pixels. The spatial padding of
convolutional-layer inputs is such that the spatial resolution is
preserved after the convolution. All convolutional layers are
equipped with the rectified linear unit (ReLU) activation func-
tion that has been shown to speed up training in comparison
to other activation functions [10]. Each convolutional layer is
followed by a max-pooling layer for spatial pooling.

The two fully connected layers are followed by a softmax
classifier that computes the probability of each class label over
all classes. In order to prevent overfitting, dropout is used
with a coefficient of 0.5 that has been shown to be close to
optimal for a wide range of applications [21]. The model is
implemented using open source TensorFlow machine learning
framework [22] and Keras deep learning library [23].

B. Training

The CNN model was trained to classify between four
categories: ‘Noise’, ‘Taranis’, ‘Lightbridge’, or ‘Phantom 2’.
The data for training the model was recorded by connecting
the RCs to a digital receiver one-by-one. The samples were
recorded with different attenuation levels between the RC

transmitter and the receiver in order to diversify the train-
ing dataset. During data collection, FD jamming and self-
interference (SI) cancellation were not used. The noise class,
unlike the three RC classes, was trained with an antenna at
the 2.4GHz band in order to capture authentic background
transmissions. The noise samples were recorded in an urban
environment iteratively through reinforced learning to mini-
mize the false positive classification of the RCs.

Figure 3 gives examples of the time–frequency representa-
tions belonging to the classes that were used for training the
CNN. The training dataset consists of 63,600 spectrograms,
wherein 57,000 spectrograms represent the noise class and
each remote controller is characterized by 2,200 spectrograms.
The model was trained with a batch size of 128 using the
Adam optimization algorithm, which updates the weights of
the network adaptively to minimize classification errors [24].

Noise Taranis Lightbridge Phantom 2

Fig. 3. Each spectrogram is 64 by 64 pixels, has a time duration of 6.5ms,
and covers a frequency bandwidth of 5MHz. The ‘Noise’ class includes also
co-channel interference, e.g., from WiFi/Bluetooth, and partial RC waveforms.

III. EXPERIMENTAL SETUP

In order to verify the feasibility of simultaneous FD jam-
ming and classification, we carried out experiments in a labora-
tory environment. The measurement setup simulates a scenario
where an unauthorized drone is being remotely controlled
and a prototype military full-duplex radio (MFDR) is used
to simultaneously jam and intercept the RC link as shown in
Fig. 4. All of the devices involved in the measurements are
connected through coaxial cables instead of using antennas.
This provides a controlled environment in which all sources
of interference, besides the devices under test, are eliminated.
Also, this ensures precise control and measurement of the
power levels during the experiments and that the jammer does
not cause any unlawful collateral interference to its vicinity.
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A. Experimental Full-Duplex Transceiver

The MFDR prototype is built on top of a high-quality
vector signal transceiver (PXIe-1073) that receives and records
signals in a 80MHz bandwidth (120MHz sampling rate) with
duration of 50ms. A separate jammer with output power of
43 dBm is used to generate and transmit a 80MHz wide linear
chirp jamming signal that acts as SI for signal surveillance
at the receiver. In order to suppress the jamming signal, SI
cancellation is implemented in three stages. At the first stage,
a circulator is used together with 30 dB of attenuation imme-
diately after the jammer to imitate transmit–receive antenna
isolation of approximately 60 dB. Typically drone jammers,
and in fact the jammer used in these measurements, use
highly directional antennas. Therefore, taking into account the
recent research in transmit–receive antenna isolation [25], it
is plausible that such separation could be achieved. Passive
isolation is followed by an active analog SI canceller [26]
and, finally, the residual SI is suppressed digitally [27].

B. Remote Control Systems

Three different drone RC systems were used separately
to provide the signals-of-interest in the measurements. The
RCs were FrSky Taranis X9D Plus, DJI Phantom 2, and DJI
Phantom 3 Advanced. Each of these RC systems makes full
use of the 2.4GHz industrial, scientific, and medical (ISM)
band through frequency hopping. The remote controllers’
output powers adhere to the 20 dBm limit of the ISM band.
In order to emulate different remote controller signal strengths
(or link distances), a variable attenuator was used between
the remote controller and the receiving front-end. The remote
controller signal was attenuated in the range of −80 dB to
−110 dB with 5 dB steps.

The RC systems exhibited the following characteristics dur-
ing our experiments. FrSky Taranis X9D Plus hops among 47
frequency channels with 1.5MHz spacing between the center
frequencies of adjacent channels and has a dwell time of 9ms,
which is the time interval between each transmitted packet.
The packet transmission time itself is actually lesser, 4.75ms.
DJI Phantom 2 hops among 36 frequency channels with dwell
time of 7ms, packet transmission duration of 1.6ms, and
has a spacing of 2MHz between adjacent channels’ center
frequencies. DJI Phantom 3 Advanced uses DJI Lightbridge
protocol with 34 different channels, spacing of approximately
2MHz, dwell time of 14ms, and transmission duration of
2.15ms. In principle, the differences in these parameters and
modulation bandwidths is what enables the CNN model to
classify between the protocols based on the spectrograms.

IV. EXPERIMENTAL RESULTS

In this paper, we focus mainly on the classification results,
acknowledging that both analog and digital SI cancellation
stages contribute 40 dB to 45 dB of SI suppression [27]. The
classification of ‘Phantom 2’ RC signals is illustrated in Fig. 5.
Without any SI, the packets are easily detected by the model,
unlike when relying only on passive isolation as then the model
is completely blinded. After analog cancellation, the model is
already able to detect signals of interest in certain frequency
ranges because of the canceller’s frequency selectivity. After
digital cancellation, the RC signals are accurately detected
regardless of the used channel and the results resemble the
situation without SI.
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Fig. 5. Top–down: Example signal classification (a) without SI, (b) with SI
and only passive isolation, (c) after analog SI cancellation, and (d) after digital
SI cancellation. The bounding boxes indicate classification.
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Fig. 6. Remote controller signal detection probability without SI, with SI and
only passive isolation, after analog cancellation, and after digital cancellation.

Figure 6 illustrates the measured and reference simulated
signal detection probabilities Pd after each of the SI can-
cellation stages. The model is incapable of detecting any of
the RC signals without active SI cancellation. Depending on
the remote controller, the CNN is more or less successful in
classifying the RC signals after analog cancellation at good
signal-to-noise ratios (SNRs). However, digital interference
cancellation substantially improves the detection probability
and allows to detect the RC signals already at poor SNRs.
Nevertheless, when compared to the results without SI from
FD jamming, the probability of detection is slightly (2–5 dB)
hampered by FD operation.

In general, the simulated and measured results are fairly
similar, except for the analog cancellation stage. The simula-
tions were carried out using a frequency-swept signal so that
its power was constant and matched to the average measured
power of the SI at the respective stage. However, because the
analog canceller exhibits considerable frequency selectivity,
the residual SI after the analog cancellation stage does not
have constant power over the whole frequency band. Thus,
in frequency ranges with more effective SI cancellation, the
empirical probability of detection is better than in simulations
and vice versa. This results in the more gentle slope of
detection probability over the measured attenuation range.

The classification accuracy of the CNN model is tabulated
in Fig. 7. The confusion matrices are calculated using the
combined measurements that were carried out with attenuation
values of 80 dB to 90 dB in order to emphasize the effect
of residual SI rather than poor SNR. Similarly to the results
presented in Figs. 5 and 6, the cases without SI limit the
accuracy that can be achieved by using the FD operation mode.
However, the results in Fig. 7 also illustrate the robustness
of the CNN-based classification model. Regardless of the SI
level, the false alarm or incorrect classification rate remains
low. This is partly because the measurements were done in a
laboratory environment without the presence of other signals,
in addition to the residual SI, that could trigger false alarms.

V. CONCLUSION

In this work, we have demonstrated the feasibility of com-
bining simultaneous jamming and reconnaissance of drone
remote control (RC) signals using full-duplex (FD) radio tech-
nology and deep learning. We have proposed a convolutional
neural network (CNN) based signal classification method that
utilizes time–frequency domain data to classify drone RC
signals that typically hop in frequency over a wide bandwidth.
We have analyzed the impact of residual self-interference (SI)
at different stages of the FD radio on the performance of
the CNN model through measurements and simulations. Both
measured and simulated results indicate that residual SI de-
grades the classification accuracy and probability of detection
to some extent. Nevertheless, given that the classification in the
FD operation mode comes at almost no cost to the jamming
efficiency, the FD mode can be highly advantageous compared
to conventional half-duplex (HD) operation, where jamming
needs to be ceased during reconnaissance.
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AbstrAct
Electromagnetic spectrum is a scarce resource 

becoming increasingly congested as information 
technologies advance. This is particularly con-
cerning in the military domain, where frequencies 
are contested for by both CIS and EW systems. 
The success of NATO activities necessitates 
mission-critical communications with increasing 
throughput, hidden from enemy signals intel-
ligence, robust against electronic attacks, and 
compatible with host EW tasks. In response, the 
NATO STO IST-175 research task group is work-
ing on the disruptive concept of FD radio tech-
nology to address those challenges. Military FD 
radios promise to increase the spectral efficiency 
and robustness of CIS and improve the perfor-
mance of EW tasks through simultaneous opera-
tion and multifunctionality.

IntroductIon
Tactical communication and information systems
(CIS) utilize electromagnetic (EM) spectrum for 
sharing voice and data between battle units. At 
the same time, electronic warfare (EW) systems 
aim at achieving superiority in the use of the 
same EM spectrum. Inevitably, CIS and EW affect 
each other, and consequently, both disciplines 
of military operation can benefit from coordinat-
ed use. This is especially evident as bandwidth 
requirements for CIS grow hand in hand with 
other battlefield technological advancements and 
congestion of EM spectrum becomes increasingly 
problematic.

Consequently, military radios must use spec-
trum efficiently to fulfill the communication needs 
without compromising reliability requirements [1]. 
Thus, the outcome of future military operations 
will depend on information services being provid-
ed with increased data throughput, strict timing 
requirements, robustness against adversarial EW, 
and compatibility with host EW systems. How-
ever, in practice, compatibility between CIS and 
EW systems is often difficult to achieve because 
both may need to operate on the same frequen-
cy bands. This is, for instance, almost always true 
when considering compatibility between inter-
related EW tasks such as signals intelligence and 
jamming.

Similar to most radio technology, CIS and 
EW technology have evolved into their current 

state with the assumption that same-frequency 
simultaneous transmit and receive (SF-STAR) 
operation, also referred to as in-band full-duplex 
(FD) operation, is intractable. This technological 
limitation is a significant contributor to spectral 
congestion problems and ineffectiveness to carry 
out simultaneous CIS and EW tasks. However, 
recent research is forcing a paradigm shift as this 
assumption is being overturned by FD radios [2]. 

In the civilian domain, many challenges related 
to FD radios have already been solved, and the 
technology is seriously being considered for inclu-
sion in next generation wireless communication 
standards [3]. However, current solutions can-
not be directly adopted for the military domain 
because of significantly different operational 
conditions like lower carrier frequencies, higher 
transmit powers, and narrower bandwidths. Over-
coming these challenges and taking advantage 
of this paradigm shift in the military domain can 
result in technological superiority in the battlefield 
over conventional half-duplex (HD) radio technol-
ogy, as illustrated in Fig. 1.

As testament to that, the NATO Science and 
Technology Organization (STO) IST-175 research 
task group (RTG), which succeeds the IST-ET-101 
exploratory team [4], is working on introducing 
FD radio technology into the military domain in 
order to enhance both CIS and EW applications. 
The RTG’s aim is to first outline the specific appli-
cations and use cases for FD technology in the 
electronic battlefield and subsequently to solve 
some of the military-specific challenges related to 
implementing FD radios for those applications. In 
this article, we describe the scenarios focused on 
and capabilities developed within the RTG.

Full-duplex rAdIo technology
To date, most radio technology (civilian and 
military) is of HD type, meaning that simulta-
neous transmission and reception on the same 
frequency is impossible. This is because when a 
radio is transmitting a signal, it inevitably reaches 
the same radio’s receiver, as illustrated in Fig. 2, 
causing self-interference (SI) that drowns out any 
signals of interest transmitted by other distant radi-
os. Until recently, this limitation was considered 
too ambitious to overcome, and has therefore 
been circumvented and hidden from the user by 
employing either frequency-division duplex (FDD) 
or time-division duplex (TDD) operation in almost 
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Abstract—Electromagnetic spectrum is a scarce
resource becoming increasingly congested as in-
formation technologies advance. This is particu-
larly concerning in the military domain, where
frequencies are contested for by both CIS and
EW systems. The success of NATO activities
necessitate mission-critical communications with
increasing throughput, hidden from enemy sig-
nals intelligence, robust against electronic attacks,
and compatible with host EW tasks. In response,
the NATO STO IST-175 research task group is
working on the disruptive concept of FD radio
technology to address those challenges. Military
FD radios promise to increase the spectral effi-
ciency and robustness of CIS and improve the
performance of EW tasks through simultaneous
operation and multifunctionality.

INTRODUCTION
Tactical communication and information sys-

tems (CIS) utilize electromagnetic (EM) spec-
trum for sharing voice and data between battle
units. At the same time, electronic warfare
(EW) systems aim at achieving superiority in
use of the same EM spectrum. Inevitably, CIS
and EW affect each other, and consequently,
both disciplines of military operation can ben-
efit from coordinated use. This is especially
evident as bandwidth requirements for CIS
grow hand in hand with other battlefield tech-
nological advancements and congestion of EM
spectrum becomes increasingly problematic.

Consequently, military radios must use spec-
trum efficiently to fulfill the communication
needs without compromising reliability require-
ments [1]. Thus, the outcome of future military
operations will depend on information services
being provided with increased data throughput,
strict timing requirements, robustness against
adversarial EW, and compatibility with host
EW systems. However, in practice compati-
bility between CIS and EW systems is often
difficult to achieve because both may require
to operate on the same frequency bands. This
is, for instance, almost always true when con-
sidering compatibility between interrelated EW
tasks such as signals intelligence and jamming.

Karel Pärlin is with Rantelon; Taneli Riihonen is with
Tampere University; Vincent Le Nir is with the Belgian
Royal Military Academy; Mark Bowyer is with Airbus
Defence & Space; Thomas Ranström, Erik Axell, and
Börje Asp are with the Swedish Defence Research Agency
(FOI); Robert Ulman is with the US Army Research Office;
Matthias Tschauner and Marc Adrat are with Fraunhofer
FKIE.

Similarly to most radio technology, CIS and
EW technology have evolved into their current
state with the assumption that same-frequency
simultaneous transmit and receive (SF-STAR)
operation, also referred to as in-band full-
duplex (FD) operation, is intractable. This tech-
nological limitation is a significant contributor
to spectral congestion problems and ineffec-
tiveness to carry out simultaneous CIS and
EW tasks. However, recent research is forcing
a paradigm shift as this assumption is being
overturned by FD radios [2].

In the civilian domain, many challenges re-
lated to FD radios have already been solved
and the technology is seriously being consid-
ered for inclusion in next generation wireless
communication standards [3]. However, current
solutions cannot be directly adopted for the mil-
itary domain because of significantly different
operational conditions like lower carrier fre-
quencies, higher transmit powers, and narrower
bandwidths. Overcoming these challenges and
taking advantage of this paradigm shift in the
military domain can result in technological
superiority in the battlefield over conventional
half-duplex (HD) radio technology as illustrated
in Fig. 1.

As testament to that, the NATO Science
and Technology Organization (STO) IST-175
research task group (RTG), which succeeds
IST-ET-101 exploratory team [4], is working
on introducing FD radio technology into the
military domain, in order to enhance both CIS
and EW applications. The RTG’s aim is to first
outline the specific applications and use cases
for FD technology in the electronic battlefield
and subsequently to solve some of the military-
specific challenges related to implementing FD
radios for those applications. In this article, we
describe the scenarios focused on and capabil-
ities developed within the RTG.

FULL-DUPLEX RADIO TECHNOLOGY
To date, most radio technology (civilian and

military) is of HD type, meaning that simulta-
neous transmission and reception on the same
frequency is impossible. This is because when
a radio is transmitting a signal, it inevitably
reaches the same radio’s receiver, as illustrated
in Fig. 2, causing self-interference (SI) that
drowns out any signals-of-interest transmitted
by other distant radios. Until recently, this lim-
itation was considered too ambitious to over-
come, and has therefore been circumvented
and hidden from the user by employing ei-
ther frequency-division duplex (FDD) or time-
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Figure 1. Conceptual use of military FD radios in the battlefield for enhanced CIS and EW.

division duplex (TDD) operation in almost ev-
ery wireless application. Thus, different fre-
quencies or time slots are used for transmission
and reception.

The principal difference in FD radios com-
pared to HD radios is addition of SI can-
cellation methods, shown in Fig. 2, to sup-
press different types of SI that inevitably leak
into the receiver path. Ideally, SI would be
cancelled digitally, however, because of the
dynamic range limitations in analog-to-digital
conversion, digital cancellation needs to be ac-
companied by analog methods [3]. The analog
canceller typically needs to be designed for
a specific carrier frequency and it delays and
filters a copy of the transmitted signal so that
the copy is in opposite phase to the SI, thus
suppressing the SI. The digital canceller is
frequency agnostic and works under similar
principles as the analog canceller, addition-
ally modelling nonlinearities that affect the SI.
Altogether, both stages prevent powerful SI
from overpowering the typically weak received
signal-of-interest. Current state-of-the-art FD
radio prototypes, including those that have been
developed by RTG members, achieve SI can-
cellation in excess of 100 dB [4] and provide
reasonable communication conditions in non-
military wireless applications [3]. The most ob-
vious advantage of FD radios is to double the
capacity in a point-to-point communication
— which alone is a significant advantage over
FDD and TDD operating modes.

For large wireless networks, such as tactical
mobile ad hoc networks (MANETs) [5], the
advantages of FD operation can be equally
influential. Although FD operation inherently

increases interference within a network as
the number of simultaneous transmissions in-
creases, the overall throughput of an FD net-
work is improved compared to an HD network,
so long as sufficient SI cancellation is provided
and a medium access control protocol designed
for FD operation is used [6].

Throughput is not the only aspect improved
by FD operation in wireless networks. Tac-
tical MANETs are expected to provide com-
pletely self-forming, self-healing, and decen-
tralized platforms for tactical units to join
and leave swiftly; particularly in highly time-
varying topologies, typical where battlefield
infrastructure is lacking or inaccessible due
to rapid deployment [1]. Such MANETs face
numerous challenges, including cognitive spec-
trum usage, relaying, and hidden nodes, which
all can be addressed with FD operation.

When considering EW aspects, consequences
of FD radio technology can result in an equiv-
alent of a wireless superpower, especially as
FDD and TDD have severe limitations for many
EW tasks, such as detection and neutralisa-
tion [7]. The former, FDD, is almost never
considered for combined detection and neutral-
isation, because that would mean detecting and
neutralising on different frequencies. When sig-
nals of interest fall into either frequency range,
only one of two outcomes can arise — detection
without neutralisation or neutralisation without
detection, neither of which is desirable.

Therefore, TDD is typically used, forcing
a trade-off between situational awareness and
neutralisation efficiency. By dividing detection
and neutralisation operations in time, situational
awareness and neutralisation efficiency depend
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Figure 2. General architecture of FD radios, with passive, analog, and digital cancellation of SI. Digital-to-analog converter
is abbreviated as DAC and analog-to-digital converter as ADC.
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on the portion of time spent in either state.
This is where the FD radio technology excels
— it removes that trade-off and opens the
way for combining different EW tasks on the
same frequency simultaneously. Furthermore,
EW tasks can be combined with CIS, introduc-
ing EW capabilities to devices that are classi-
cally used only for communications. Thus, FD
radio technology is a key enabling technol-
ogy to develop multifunction military radios
combining CIS and EW functions, which has
long been coveted by defence forces [8].

One such case is jamming and signals in-
telligence, where by using HD radio technol-
ogy, it is impossible to simultaneously achieve
continuous jamming efficiency and situational
awareness. Thus, neutralising hostile wireless
communications is often approached in an all or
nothing way, through jamming the entire enemy
frequency band. This is a robust approach given
the limitations of modern HD radio technol-
ogy. However, it requires a lot of power to
cover large frequency bands and is also likely
to damage friendly communications within the
covered frequency bands.

Alternatively, with FD radios, jamming en-
ergy can be directed on demand to target only
the radio frequency (RF) communications used
by the enemy, hence making sure that collateral
damage is minimized. This is possible because
FD technology allows simultaneous jamming,
analysis of jamming effectiveness, and to sense
if the jammed signal changes its operation
mode. Consequently, jamming can be adapted
to be more effective and focus only on the
malicious RF systems. Not only do FD radios
give an advantage to defensive technologies,
they also benefit attack-minded applications,
which itself is motivation not to forgo this radio
superpower.

ENHANCED COMMUNICATION AND
INFORMATION SYSTEMS

Within the first of its two demonstrator
groups, the RTG is working towards apply-
ing the FD radio technology for augmenting
CIS. When enhancing tactical CIS, the aim
is similar to civilian FD applications. In both
cases the objective is, ideally, to double spectral
efficiency. This is a significant advantage over
conventional HD radio technology, especially
when considering how congested and limited
military spectrum allocations are.

The main differences between the military
and civilian domains arise in frequency bands
used and battlefield operating conditions. Many
military communication systems operate at ei-
ther high frequency (HF), very high frequency
(VHF), or low ultra high frequency (UHF)
band, with higher powers and narrower band-
widths than typical in high UHF band, where
the FD radio technology has so far mostly been
demonstrated to be feasible with lower powers
and comparatively wider bandwidths.

While 100 dB of SI cancellation is consid-
ered sufficient for many civilian applications, a
military FD radio needs to provide additional
50 dB or more of SI cancellation. Due to the

lower carrier frequency, the analog canceller
circuit needs delay lines in the order of meters
of electrical wavelength leading to challenges in
compact design. Furthermore, with respect to
typical tactical communication scenarios, fast
analog canceller tuning is needed. However,
due to the narrow signal bandwidth, the SI
estimation can only be provided at very low
rates, which subsequently leads to degraded SI
cancellation.

Aside from these challenges, the improve-
ment in wireless network throughput resulting
from FD operation may fall short of ideal due
to the typically asymmetrical data flow, imper-
fect SI cancellation, and increased inter-node
interference. Nevertheless, as discussed next,
FD radio technology has potential to improve
several other aspects of CIS networks, which
in turn can enhance situational awareness and
network security.

COGNITIVE RADIO NETWORKS

One of the most promising technologies
considered for coping with the limited nature
of RF spectrum is dynamic spectrum sharing
through cognitive radio (CR). The fundamental
idea behind CR is to opportunistically share
RF spectrum as opposed to operating within
predetermined frequency and time spaces. This
allows better use of spectral resources based
on operational needs. However, CR relies first
and foremost on having an overview of the
spectrum usage before deciding to use any
spectrum areas. It is also beneficial to retain
that overview during transmissions, in order
to continue learning from the environment and
keep adapting to it, e.g., to detect multi-access
collisions or adversarial intervention.

It has been shown that FD-enhanced CR
offers higher throughput, higher probability of
detection and reduced sensing time, all of which
empowers CIS [6], [9]. In tactical scenarios, CR
expands beyond just dynamic spectrum sharing
as CRs can work around adversarial electronic
attacks, especially when enhanced with FD
capabilities. For example, FD enables swift and
adaptive power control to lower the probability
of detection, or enables to detect a jamming
attack from an adversary, while simultaneously
transmitting tactical communications to an ally
on the same frequency channel [10]. Successful
detection of electronic attacks enables the radio
to take appropriate countermeasures against the
attacks, e.g., switching the channel frequency.
A combination of cognitive and FD capabilities
enables truly multifunctional military radios
capable of efficient fusion between CIS and EW
based on operational needs.

Moreover, cognition is often envisioned to
become a capability of the network, not just
being limited to the individual radio. As such,
a CR network can build local knowledge about
environment (spectral and topological) to reach
overall network goals. In military applications,
cognitive networking capabilities are especially
of interest as a mechanism for intelligently
adapting to the dynamics of the theater of war
and coping with the temporal nature of tactical
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networks [11]. Through cross-layer manage-
ment and information exchange between all
layers of the OSI protocol stack, the spectrum
information gathered by an FD-enhanced CR
could be propagated throughout the adaptive
tactical network to improve resilience, lower
probability of detection, and increase through-
put of tactical end-to-end communications.

RELAYING

Information flow from data sources to con-
sumers in the modern battlefield is crucial to the
success of military operations. However, in the
hostile environments where military networks
typically operate, provision of robust and de-
pendable connections is a significant challenge.
The entirety of CIS systems is often complex,
consisting of scattered networks across the bat-
tlefield from tactical edge networks (TENs) to
the theater of war. In order to tackle those
issues, self-organizing and information-centric
networking paradigms have been recently pro-
posed [12]. Further, integral to self-organizing
and information-centric networking is the use
of relays, sometimes referred to as gateways,
between the different scattered networks. Tradi-
tionally, using conventional HD radios, relaying
is achieved by TDD or FDD, where the relay
has receive and transmit time slots or frequency
channels.

Compared to HD relays, FD operation
promises to increase relaying channel capacity,
as a single frequency channel is used simulta-
neously for receiving and forwarding [6]. Addi-
tionally, FD radio technology enables relays to
seamlessly combine legacy CIS networks and
systems that are not designed to work with
relays specifically. That is because FD is a more
transparent option than HD, in the sense that
FD relaying does not introduce timing nor fre-
quency constraints imposed by the use of TDD
or FDD. As such, FD relays, including airborne
relays for beyond line-of-sight coverage [13],
could be used to extend the operational range of
CIS networks as illustrated in Fig. 3. However,
as with most FD applications, residual SI be-
comes the performance limiting factor and the
full extent of the advantages of using FD over
HD in relaying depend on the SI cancellation
performance.

SI
SI

Ground-based
FD relay

Airborne
FD relay

CIS network coverage
Extended CIS network coverage

Figure 3. Tactical FD relays can seamlessly extend the
coverage of CIS networks.

In hostile environments, FD relays can play
an important role in delivering robustness and
physical security. Instead of simultaneous re-
ception and transmission, tactical relays with
FD capabilities can monitor for adversarial in-
terference while at the same time transmitting
information to allies or receive information
from allies while simultaneously interfering
with its reception by adversarial intelligence.
In the first case, interference awareness can
aid self-organization within tactical networks.
In the second case, simultaneous reception and
jamming can create an FD radio shield over the
TEN and prevent adversaries from intercepting
the host forces’ communications or locating
units within the TEN. Should the operational
scenario require, FD relays can effortlessly
become amplify-and-forward eavesdropping re-
lays for carrying out signals intelligence on
approaching adversaries.

OUT-OF-BAND INTERFERENCE

As with in-band SI, radio systems that use
closely located frequencies may also, due to
out-of-band (OOB) emission, suffer from strong
interference when transmission and reception
occur simultaneously. This problem is partic-
ularly prevalent when radios are co-located
on the same platform and subject to limited
physical separation [8]. The lack of space due
to co-siting may equate to poor EM isolation
between radios, which results in appreciable
interference even when OOB emission require-
ments are met. This issue is especially promi-
nent in military applications, where it can have
a significant negative effect on robustness to
interference, communication range, as well as
frequency allocation.

When co-located radios are treated like an
FD transceiver, the transmitted signal can be
forwarded to receiving radios on the platform.
Each radio can then perform interference can-
cellation in their respective spectrum, reducing
OOB interference. Though additional hardware
is necessary, implementation of such OOB in-
terference cancellation can be done without
introducing complex scheduling, or requiring
additional time or frequency resources [14].
Consequently, removing OOB interference can
significantly boost both robustness of radios on
the same platform as well as enable functional
communications in situations where this was
previously not possible. Furthermore, cancella-
tion of OOB interference can enable integrating
multiple RF tasks simultaneously onto a single
platform, which is of significant interest in the
military domain and has been pursued through
programs such as the Advanced Multifunction
Radio Frequency Concept and Integrated Top-
side [8]. For example, radar, EW operations,
and communications could be integrated into a
multifunction radio with shared aperture.

NATO NARROWBAND WAVEFORM

In general, FD radio technology is waveform
agnostic, meaning that the type of waveform
used does not affect the capability to transmit
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and receive simultaneously on the same fre-
quency. Yet, some properties of a waveform
(e.g., bandwidth, crest factor, and frequency
hopping) do have an impact on the complexity
and performance of an FD radio. Furthermore,
in order to take advantage of FD radios in multi-
hop configuration, networking protocols need to
take FD capabilities into account [3]. As such,
the NATO Narrowband Waveform (NBWF) is
a prominent candidate to benefit from FD radio
technology. It is a modern combat-net radio
standard that includes both the waveform and
networking capabilities, with the aim to en-
hance interoperability among NATO forces in
multinational missions.

The standardization of NBWF covers the
three lowest layers of the OSI networking
model: physical, data link, and network layers.
On physical layer, the NBWF employs con-
tinuous phase modulation (CPM) for spectral
efficiency, where the constant envelope prop-
erty allows transmitter power amplifiers (PAs)
to operate near saturation, improving energy
efficiency. The same properties that make CPM
spectral and energy efficient are also expected
to result in efficient SI cancellation. On data
and network link layers, NBWF is designed
for limited link capacity and harsh interference
environments, employing crosslayer link met-
rics to manage interference and link quality
issues. Those characteristics and capabilities are
essential to managing residual SI and inter-node
interference in FD-capable radio networks.

The NBWF is essentially a single-channel
MANET, offering several transmission modes,
supporting occupied bandwidths of 25 kHz and
50 kHz, and providing data throughput from
20 kpbs up to 82 kbps. The design allows
radios to adapt waveform and power parameters
to achieve the desired quality-of-service with-
out wasting resources. Similarly to a general
MANET, a multi-hop NBWF network suffers
from the hidden node problem, degrading a
NBWF network’s throughput. Fortunately FD
operation is a promising candidate to solve the
hidden node challenge [3]. The RTG members
have been studying, implementing, and demon-
strating FD radio technology using the NBWF
as an example tactical waveform. The results
of RTG’s multinational demonstrator provide a
proof of concept for increasing spectral effi-
ciency of the NBWF through FD radio tech-
nology [4].

ENHANCED ELECTRONIC WARFARE
In parallel with CIS enhancement efforts,

the RTG is working towards applying FD ra-
dio technology for EW tasks. Specifically for
counter-drone purposes as drones pose an in-
creasingly large threat and RF-based counter-
drone methods are prominent [15]. In FD oper-
ation mode, a counter-drone node can simulta-
neously interfere with various RF systems used
by a drone and itself receive those signals unin-
terrupted. The interference creates an invisible
EM dome, a so called FD radio shield, around
the FD node as illustrated in Fig. 4. Interfering
could, in this case, mean either jamming or

spoofing, and the concept of FD radio shield
has already been shown feasible in a laboratory
environment by the RTG for, e.g., disabling
drone remote control (RC) links by jamming
while simultaneously detecting the same [10].

GROUND-BASED RADIO SHIELD

A ground-based FD radio shield (either mo-
bile or stationary) can be used to prevent:

• drones from communicating within the
swarm while at the same time monitor-
ing the swarms’ attempts to communi-
cate within itself — this allows simulta-
neously preventing the swarm (even an
autonomous swarm) from operating as a
coherent unit (as communications within
the swarm are essential for the functioning
thereof) and to track drones by their RF
fingerprints (classify and locate individual
drones).

• ground station from directing the drone
swarm while at the same time intercept-
ing command and control signals — this
means that within the radio shield, the
swarm is completely cut off from its op-
erator, but the FD node can still observe
(classify and locate) the ground control
station.

• drones inside the swarm from deter-
mining their geographical position us-
ing global navigation satellite systems
(GNSSs) while at the same time retaining
the FD node’s own access to GNSS —
the swarm can not determine its position
using GNSS but the FD node can, which
is essential in case of a mobile FD node.

• drones from positioning each other inside
the swarm using RF-based methods (two-
way ranging or radar-based positioning)
while at the same time detecting those
efforts — the ability to position each other
within the swarm is essential for the op-
eration of a swarm and without this, the
swarm becomes paralyzed, yet with FD
capabilities those positioning attempts can
still be detected.

On the other hand, a ground-based FD radio
shield also facilitates:

• locating drones while simultaneously jam-
ming their RC links and other RF systems
by using joint radar and jamming wave-
forms — FD radio technology can become

FD
radio shield

FD node

Figure 4. Defensive FD radio shield — simultaneously
restricting unauthorized drones access to the defended
airspace and monitoring the RF spectrum (detection, classi-
fication, and locating of drones and their control stations).
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a key enabler for multifunction military
radios and RF convergence that have for
long been coveted by armed forces [8].

• controlling an allied drone (or drone
swarm) from the ground station while at
the same time simultaneously sensing for
enemy drone’s RC signals and electronic
attacks within the same frequency band
that is used for allied drone RC.

AERIAL RADIO SHIELD

Another, more proactive, option is to use FD
radios for countering drones as illustrated in
Fig. 5. Instead of using a ground-based FD
radio shield, a drone itself could be equipped
with FD capabilities, allowing to

• interfere with the entire RF spectrum
(ground control, inter-drone communica-
tions, two-way-ranging, radar) used by a
malicious swarm, while itself retaining the
ability to communicate with its control
station — when the host drone operates
on the same frequency as the adversarial
drones, FD technology is needed so that
the host drone can transmit interference
and receive commands at the same time.

• transmit spoofed GNSS signals while itself
receiving the actual ones — this could be
used to direct the malicious swarm away
from its target, although successful GNSS
spoofing itself can be expected to be a
highly complicated task.

• jam from air, which can be much more en-
ergy efficient than jamming from ground,
especially if the drone can get close to the
swarm — this is a considerable advantage
of FD radio technology as this would si-
multaneously paralyze the swarm but also
complicate localization of allied forces on
the ground by the enemy (that is typically
a high priority).

• use the drone for scouting (e.g., transmit-
ting aerial video feed) while at the same
time detecting for frequency usage on the
same frequencies by adversarial drones.

FULL-DUPLEX ADVERSARIES

It is also relevant to consider, how FD ca-
pabilities in the hands of adversaries affect the

FD drone

Figure 5. Disruptive FD drone — simultaneously operating
on and jamming the same frequencies that are used by the
adversarial drones.

electronic battlefield. When facing two adver-
sarial HD nodes that utilize FDD for com-
munication, as is quite typical for drones, a
jammer needs to target both the uplink and
the downlink frequency channels to completely
cut the communication link. In the case of
two adversarial FD nodes, only one common
frequency channel needs to be targeted. On
the other hand, if the enemy is using FD link
between two nodes, e.g., for operating a drone,
then radiolocating the nodes or eavesdropping
on the communication link can be complicated
due to the mixed reception of the two signals.
As a result, adversarial FD communications
can become an easier target compared to HD
communications when intentionally interfering
but a tougher target when monitoring.

But of course the adversary is not limited
to applying FD only for communications. The
adversary can combine its communications with
EW operations or simply combine different EW
operations as proposed throughout this article
so far. In this case, when the host is limited
to HD capabilities, the FD benefits will simply
work for adversary’s advantage. When both
teams use FD capabilities, the playing field
becomes increasingly complex. For example,
when the adversary is using FD radios to
enhance physical layer security and prevent
the host from eavesdropping, the host could
counter-strike with simultaneous jamming and
eavesdropping to pressure the adversary into
increasing communication transmission powers.

COGNITIVE AND MULTIFUNCTIONAL
ELECTRONIC WARFARE SYSTEMS

The aspects considered in this section are
made possible by FD radios or FD radio tech-
nology significantly improves on the perfor-
mance that can be achieved when compared
to conventional HD radio technology. This is
one of the next steps in radio evolution that
will enable the growing list of requirements
that modern EW faces in congested spectrum
environments. However, the advantages to EW
applications extend beyond the counter-drone
context, which is the main focus of the RTG’s
second demonstrator group and was described
in detail above.

Much more widely, the importance of EW
as a whole is on the rise as EM spectrum is
recognised as a key operational environment.
Classically, all EW tasks have been separated
from CIS functions to large extent, so that
EW operations do not interfere with the host’s
CIS [8]. Similarly to the simultaneous combi-
nation of different counter-drone aspects, the
advent of FD radios enables that paradigm to
shift. As a result, and in the future, many of the
CIS tasks can be combined with EW tasks to
enhance both aspects. Broadly, these combina-
tions mean either simultaneous communication
and jamming, interception and communication,
or interception and jamming [7]. Such combina-
tions enhance CIS and EW with an added layer
of physical security or perception of spectral
environment.
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CONCLUSIONS
Research into FD radio technology has

progressed in strides over the recent decade
with mostly civilian/commercial applications in
mind. However, the technology is yet to make
its way into standardized networks and it is
evident that in order to take advantage of the
FD concept in CIS and EW systems, much
work still lays ahead. Specifically operating fre-
quency ranges and SI cancellation levels must
be extended to satisfy the wide requirements set
by military radio equipment.

The NATO STO IST-175 RTG is working on
overcoming these challenges to take advantage
of the FD concept and enhance both CIS and
EW systems. In this article, we have discussed
the military specific challenges of FD radios
and outlined the most promising applications
for FD enhancement in the defence domain. As
a result of FD operation, the spectral congestion
issue within CIS can be alleviated, compatibil-
ity with EW equipment improved, and robust-
ness against EW attacks enhanced. Moreover,
FD enables truly multifunctional military radios
that can simultaneously carry out both CIS and
EW functions.
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KAREL PÄRLIN (karel.parlin@rantelon.ee) received his
M.Sc. degree in electrical engineering from Tallinn Uni-
versity of Technology, Estonia, in 2017. He is an engineer
at Rantelon in Tallinn, Estonia.

TANELI RIIHONEN [S’06, M’14] (taneli.riihonen@tuni.fi)
received his D.Sc. degree in electrical engineering from
Aalto University, Finland, in 2014. He is a tenure-track
assistant professor at Tampere University, Finland.

VINCENT LE NIR (vincent.lenir@rma.ac.be) received his
Ph.D. degree in electronics from the National Institute of
Applied Sciences, France, in 2004. He is a senior researcher
at the Royal Military Academy in Brussels, Belgium.

MARK BOWYER (mark.bowyer@airbus.com) received his
Ph.D. in solid state electronics from the University of Kent,
United Kingdom, in 1993. He is a senior expert in secure
communications at Airbus Defence & Space in Portsmouth,
United Kingdom.
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Abstract—This article addresses the challenge of estimating and
tracking wireless channels under carrier and sampling frequency
offsets, which also incorporate phase noise and sampling time jitter.
We propose a novel adaptive filter that explicitly estimates the
channel impulse response, carrier frequency offset, and sampling
frequency offset by minimizing the mean-square error (MSE) and,
when the estimated parameters are time-varying, inherently per-
forms tracking. The proposed filter does not have any requirements
for the structure of the waveform, but the digital transmitted
waveform must be known to the receiver in advance. To aid prac-
tical implementation, we derive upper bounds for the filter’s step
sizes. We also derive expressions for the filter’s steady-state MSE
performance, by extending the well-known energy conservation
relation method to account for the self-induced nonstationarity
and coupling of update equations that are inherent in the proposed
filter. Theoretical findings are verified by comparison to simulated
results. Proof-of-concept measurement results are also provided,
which demonstrate that the proposed filter is able to estimate and
track a practical wireless channel under carrier and sampling
frequency offsets.

Index Terms—Adaptive filtering, frequency offset, mean-square
error, steady-state analysis.

I. INTRODUCTION

O SCILLATOR inaccuracies cause two common impair-
ments in wireless systems — mismatches between trans-

mitter and receiver carrier generators result in a carrier frequency
offset, while mismatches between sampling clocks result in a
sampling frequency offset. Both of those impairments are further
aggravated by the random fluctuations of oscillators and the
wireless propagation. The former causes the frequency offsets
to vary with time and the latter can have equivalent negative
consequences due to Doppler shift. In many cases, time-varying
frequency offsets can be damaging or destructive to the perfor-
mance of wireless systems [1], [2].
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As such, estimating and compensating frequency offsets in
those cases is essential. Although not the main focus of this
work, a popular example are orthogonal frequency division
multiplexing (OFDM) systems, where synchronization of the
carrier frequency at the receiver must be performed accurately
in order to avoid loss of orthogonality between the subcarriers.
Those systems can only tolerate carrier offsets that are a fraction
of the spacing between the subcarriers without large degradation
in performance [3], [4], [5]. The performance of OFDM systems
can also degrade due to sampling frequency offsets [4], [6],
although this is often less significant. Various methods for joint
carrier and sampling frequency offset estimation and compen-
sation in OFDM systems exist [7], [8], [9], [10], [11], [12], [13],
[14], not tomention abundant works on only either of the offsets.
However, those methods largely rely on the properties that are
strictly characteristic to OFDM and are not directly applicable
to other applications.

Carrier and sampling frequency offsets also pose a major
challenge in known-interference cancellation. The capability
to cancel known interference is a fundamental prerequisite
of physical layer security schemes that envision preventing
eavesdropping by superposing the signal of interest with some
interference that is known only to the legitimate receiver. Perfect
known-interference cancellation has been for long assumed
feasible in theoretical physical layer security works without
practical basis [15], [16]. However, lack of proper frequency
synchronization actually has a considerable negative effect on
the cancellation performance [16], [17]. This is leading to the
development of interference cancellation methods with built-in
frequency synchronization [18], [19].

Frequency synchronization, as well as time synchronization,
is also a key issue in interference alignment and distributed
beamforming. Interference alignment and distributed beam-
forming envision concurrent transmissions that result in a sub-
stantial increase in wireless network’s total capacity [20] or
an increase in range and energy efficiency [21]. In addition,
since distributed beamforming entails directing more power
in the desired direction, less is scattered in the undesired di-
rections, possibly increasing security [21]. However, again the
challenges in realizing the benefits of interference alignment and
distributed beamforming include coordinating the transmitters
for distributed information sharing plus carrier and sampling
synchronization, so that the transmissions combine as necessary
at the destination [22].

Bistatic radars are promising supplements to classical monos-
tatic systems, and they too face the challenge of synchronization.
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Abstract—This article addresses the challenge of estimating and
tracking wireless channels under carrier and sampling frequency
offsets, which also incorporate phase noise and sampling time jitter.
We propose a novel adaptive filter that explicitly estimates the
channel impulse response, carrier frequency offset, and sampling
frequency offset by minimizing the mean-square error (MSE) and,
when the estimated parameters are time-varying, inherently per-
forms tracking. The proposed filter does not have any requirements
for the structure of the waveform, but the digital transmitted
waveform must be known to the receiver in advance. To aid prac-
tical implementation, we derive upper bounds for the filter’s step
sizes. We also derive expressions for the filter’s steady-state MSE
performance, by extending the well-known energy conservation
relation method to account for the self-induced nonstationarity
and coupling of update equations that are inherent in the proposed
filter. Theoretical findings are verified by comparison to simulated
results. Proof-of-concept measurement results are also provided,
which demonstrate that the proposed filter is able to estimate and
track a practical wireless channel under carrier and sampling
frequency offsets.

Index Terms—Adaptive filtering, frequency offset, mean-square
error, steady-state analysis.

I. INTRODUCTION

O SCILLATOR inaccuracies cause two common impair-
ments in wireless systems — mismatches between trans-

mitter and receiver carrier generators result in a carrier frequency
offset, while mismatches between sampling clocks result in a
sampling frequency offset. Both of those impairments are further
aggravated by the random fluctuations of oscillators and the
wireless propagation. The former causes the frequency offsets
to vary with time and the latter can have equivalent negative
consequences due to Doppler shift. In many cases, time-varying
frequency offsets can be damaging or destructive to the perfor-
mance of wireless systems [1], [2].
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As such, estimating and compensating frequency offsets in
those cases is essential. Although not the main focus of this
work, a popular example are orthogonal frequency division
multiplexing (OFDM) systems, where synchronization of the
carrier frequency at the receiver must be performed accurately
in order to avoid loss of orthogonality between the subcarriers.
Those systems can only tolerate carrier offsets that are a fraction
of the spacing between the subcarriers without large degradation
in performance [3], [4], [5]. The performance of OFDM systems
can also degrade due to sampling frequency offsets [4], [6],
although this is often less significant. Various methods for joint
carrier and sampling frequency offset estimation and compen-
sation in OFDM systems exist [7], [8], [9], [10], [11], [12], [13],
[14], not tomention abundant works on only either of the offsets.
However, those methods largely rely on the properties that are
strictly characteristic to OFDM and are not directly applicable
to other applications.

Carrier and sampling frequency offsets also pose a major
challenge in known-interference cancellation. The capability
to cancel known interference is a fundamental prerequisite
of physical layer security schemes that envision preventing
eavesdropping by superposing the signal of interest with some
interference that is known only to the legitimate receiver. Perfect
known-interference cancellation has been for long assumed
feasible in theoretical physical layer security works without
practical basis [15], [16]. However, lack of proper frequency
synchronization actually has a considerable negative effect on
the cancellation performance [16], [17]. This is leading to the
development of interference cancellation methods with built-in
frequency synchronization [18], [19].

Frequency synchronization, as well as time synchronization,
is also a key issue in interference alignment and distributed
beamforming. Interference alignment and distributed beam-
forming envision concurrent transmissions that result in a sub-
stantial increase in wireless network’s total capacity [20] or
an increase in range and energy efficiency [21]. In addition,
since distributed beamforming entails directing more power
in the desired direction, less is scattered in the undesired di-
rections, possibly increasing security [21]. However, again the
challenges in realizing the benefits of interference alignment and
distributed beamforming include coordinating the transmitters
for distributed information sharing plus carrier and sampling
synchronization, so that the transmissions combine as necessary
at the destination [22].

Bistatic radars are promising supplements to classical monos-
tatic systems, and they too face the challenge of synchronization.
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Unlike a monostatic radar, a bistatic radar has a transmitter
and receiver on separate platforms which results in various
operational advantages like, e.g., additional information about
the scene, as the scattering characteristics of objects depend
strongly on the line-of-sight vectors to the transmitter and
receiver. Another advantage is the potential of cost reduction
by using one transmitter, or even illuminators of opportunity,
and several passive receivers [23]. However, separation of the
transmit and receive platforms necessitates time and frequency
synchronization for coherent signal processing and range mea-
surement [24], [25].

Similar challenges arise in the acoustic domain. For example,
in underwater acoustic communications the use of wideband
modulation and low velocity of acoustic waves mean that
Doppler shifts have a significantly larger impact than in the
electromagnetic domain and these shifts need to be compensated
for [2]. In acoustic echo control, the sampling frequency offsets
between separate devices, if not compensated for, can cause poor
echo cancellation performance [26], [27].
It is often so that adaptive filters are used in such nonstationary

environments and consequently frequency offsets compromise
the conventional filters’ performance [28]. To that end, various
extended adaptivefilters havebeenproposed that are able to track
certain nonstationarities or nonlinear impairments. For example,
least mean squares (LMS)-type gradient descent has been used
for explicit time-delay estimation [29] aswell as power amplifier
distortion [30] and IQ imbalance compensation [31]. An LMS-
type adaptive algorithm has been proposed for joint channel
estimation and explicit sampling rate correction in acoustic echo
control applications [27]. The adaptive notch filter proposed
in [32] is a simple algorithm capable of extracting a nonstation-
ary narrowband signal buried in noise, being essentially a carrier
frequency offset tracker. However, a single general algorithm for
tracking a channel under both carrier and sampling frequency
offsets, without specific requirements on the waveform, is still
missing.

The purpose of this article is to present an efficient adap-
tive algorithm for estimating and tracking a channel under
time-varying carrier and sampling frequency offsets when the
receiver knows the signal that is to be transmitted, or at least
a considerable part of it, in advance. The presented algorithm
aims to be waveform-agnostic and not strictly rely on the char-
acteristics of the underlying system. Hence, it is potentially
applicable to the aforementioned concepts and beyond. We
provide a thorough analysis on the optimal selection of the
algorithm parameters (viz. three step sizes) to facilitate rapid
convergence, and we carry out theoretical steady-state analysis
for the proposed algorithm by extending the well-known energy
conservation relation [33]. The extended relation introduces
nonstationary a priori errors for each update equation and de-
couples the errors of separate update equations to account for
the algorithm’s self-induced nonstationarity. Several supporting
simulations are provided, which verify the theoretical results
and demonstrate that the algorithm is able to track time-varying
frequency offsets. Furthermore, proof-of-concept measurement
results are presented, which illustrate that the algorithm is capa-
ble of explicitly estimating and tracking a wireless channel and

Fig. 1. General system model considered in this work, focusing on the carrier
and sampling frequency offsets together with the channel impulse response
between a transmitter and a receiver. In this work we assume that the digital
transmitted signal x(n) is known to the receiver.

frequency offsets between two radios. The proposed algorithm
is positionedwith regards to the existing works and comparisons
are made throughout.

The rest of this article is organized as follows. Section II
introduces a general system model and in Section III the novel
adaptive algorithm is presented for estimating and tracking the
parameters of the system model. Also, in Section III bounds for
the algorithm’s step sizes are derived. In Section IV, expressions
are derived for the steady-state mean-square error (MSE) of the
proposed algorithm, by introducing an energy conservation rela-
tion that accounts for the algorithm’s self-induced nonstationar-
ity. Section V provides a comparison of the theoretical MSE
results to simulations, proof-of-concept experimental results,
and a brief comparison. Finally, conclusions of the study are
given in Section VI.

Notation: Small boldface letters are used to denote vectors,
and capital boldface letters are used to denote matrices, e.g.,
w and R. Furthermore, the symbol ∗ denotes Hermitian con-
jugation for vectors and complex conjugation for scalars. The
identity matrix is denoted by I and a zero vector is denoted by
the boldface letter 0, both with dimensions compatible to each
context. The iteration index is placed as a subscript for vectors
and between parentheses for scalars, e.g., wn and v(n). All
vectors are column vectors, except for two vectors, namely, the
input data vector denoted by xn and its resampled counterpart
yn, which are taken to be row vectors for convenience of
notation. Lastly, E[·] is the statistical expectation operator.

II. SYSTEM MODEL

The system model considered in this work focuses on the
time-varying sampling and carrier frequency offsets between a
transmitter and a receiver along with the channel that separates
the two as illustrated in Fig. 1. The relative sampling fre-
quency offset between the two devices is denoted as ηo + β(n),
where ηo = ΔT/Tx represents the fundamental time-invariant
offset with ΔT = 1/fd − 1/fx being the difference between
the sampling periods at the receiver and transmitter, fd is the
sampling frequency at the receiver, fx is the sampling frequency
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at the transmitter, and β(n) is the time-varying offset, includ-
ing sampling jitter. The carrier frequency offset is denoted as
o + φ(n), where o denotes the fundamental time-invariant
offset o = ωd − ωx between the receiver and transmitter carrier
frequencies, ωd is the carrier frequency at the receiver, ωx is the
carrier frequency at the transmitter, and φ(n) is the time-varying
offset, including phase noise. Lastly,wedenote thefinite impulse
response of the complex-valued channel with orderM as wo.
The transmitter broadcasts a complex signal x(n) that, in its

discrete-time form, is known to the receiver. However, due to
noise, channel, andmismatches in carrier and sampling frequen-
cies at the transmitter and the receiver, the discrete-time signal
at the receiver becomes

d(n) = yo
nw

oej
∑n

i=1 o+φ(i) + v(n), (1)

where v(n) is the measurement noise, yo
n accounts for sampling

x(t) with sampling frequency offset ηo + β(n) so that

yo
n =

[
x

(
n−M+1∑

i=1

(1 + ηo + β(i))

)
, . . . ,

x

(
n∑

i=1

(1 + ηo + β(i))

)]
(2)

and the multiplicative term ej
∑n

i=1 o+φ(i) accounts for the
carrier frequency offset.

This is a general system model that is relevant, e.g., for
the following scenarios. Firstly, it holds in cases when known
training data is used to estimate the channel impulse response
and frequency offsets to improve subsequent information de-
modulation. Secondly, this general system model rather directly
applies to the bistatic or multistatic radar scenario, in which
case the receiver is familiar with the transmitted signal, but is
interested in tracking the channel and frequency offsets to esti-
mate range/velocity. Thirdly, in case of the known-interference
cancellation scenarios, the receivednoisev(n) canbe considered
to contain an unknown signal of interest, which is uncorrelated to
the known signal x(n) that is suppressed to facilitate processing
the signal of interest.

III. ADAPTIVE ESTIMATION AND TRACKING

In order to derive an algorithm for estimating and tracking
the parameters described in the system model, we first define
the instantaneous error of the estimation process as

e(n) = d(n)− ynwn−1e
j
∑n

i=1 (i−1), (3)

where wn−1, (n− 1), and η(n− 1) are respectively the esti-
mates of the channel’s impulse response wo, carrier frequency
offset o, and sampling frequency offset ηo at iteration n, and
yn is the result of resampling x(n) with η(n− 1), so that

yn =

[
x

(
n−M+1∑

i=1

(1 + η(i− 1))

)
, . . . ,

x

(
n∑

i=1

(1 + η(i− 1))

)]
. (4)

The instantaneous error e(n)will contain v(n) and excess noise
from the algorithm’s operation. In case of known-interference
cancellation, the instantaneous error e(n) would additionally
contain some unknown signal of interest.

The aim of the adaptive filter is to update iteratively the
system model parameter estimateswn, (n), and η(n) so that a
nonnegative cost function J(n) is reduced successively

J(n+ 1) ≤ J(n). (5)

This will generally ensure that after every iteration, the adaptive
filter improves its estimation of the parameters that we are trying
to model.

A. Mean-Square Error

We define the cost function as the mean-square value of the
estimation error, i.e., the MSE:

J(n) = E
[
|e(n)|2

]
= E [e(n)e∗(n)] . (6)

We opted for the MSE over other potential error measures,
e.g., weighted least squares, because of the simplicity of the
resulting algorithm. Note that in practical applications of adap-
tive filtering, the use of ensemble averaging is not feasible as
we are adapting the filter in an on-line manner, based on a
single realization of the estimation error, e(n), as it evolves
across iteration index n. Therefore, during the derivation of the
proposed algorithm, we proceed by ignoring the expectation
operation in the cost function (6) as is typical to the stochastic
gradient descent method [34].

We apply the method of stochastic gradient descent for a
sequential computation of the model parameters, using gradi-
ents of the performance surface in seeking its minimum. Even
though only one of the estimated parameters, namely the channel
impulse response wn, is complex-valued, then in the following
derivationwe also consider (n) and η(n) to be complex-valued,
as this will lay a clear consistent foundation for later carrying
out the steady-state analysis of the adaptive filter. In order
to accommodate for complex-valued (n) and η(n), we use
the real and imaginary part operators, {z} and {z}, where
appropriate.

We obtain the gradient vector at any point on the performance
surface by differentiating the cost function (6) with respect to
the model parameter estimates, resulting in

∇J(n) =

[
∂J(n)

∂wn−1
,

∂J(n)

∂(n− 1)
,

∂J(n)

∂η(n− 1)

]
, (7)

where

∂J(n)

∂wn−1
= −

[
yne

j
∑n

i=1 {(i−1)}
]∗

e(n), (8a)

∂J(n)

∂(n− 1)
= −

[
ynwn−1e

j
∑n

i=1 {(i−1)}j
]∗

e(n), (8b)

∂J(n)

∂η(n− 1)
= −

[
y
nwn−1e

j
∑n

i=1 {(i−1)}
]∗

e(n), (8c)

and y
n is the derivative of yn.
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Unlike a monostatic radar, a bistatic radar has a transmitter
and receiver on separate platforms which results in various
operational advantages like, e.g., additional information about
the scene, as the scattering characteristics of objects depend
strongly on the line-of-sight vectors to the transmitter and
receiver. Another advantage is the potential of cost reduction
by using one transmitter, or even illuminators of opportunity,
and several passive receivers [23]. However, separation of the
transmit and receive platforms necessitates time and frequency
synchronization for coherent signal processing and range mea-
surement [24], [25].

Similar challenges arise in the acoustic domain. For example,
in underwater acoustic communications the use of wideband
modulation and low velocity of acoustic waves mean that
Doppler shifts have a significantly larger impact than in the
electromagnetic domain and these shifts need to be compensated
for [2]. In acoustic echo control, the sampling frequency offsets
between separate devices, if not compensated for, can cause poor
echo cancellation performance [26], [27].

It is often so that adaptive filters are used in such nonstationary
environments and consequently frequency offsets compromise
the conventional filters’ performance [28]. To that end, various
extended adaptivefilters havebeenproposed that are able to track
certain nonstationarities or nonlinear impairments. For example,
least mean squares (LMS)-type gradient descent has been used
for explicit time-delay estimation [29] aswell as power amplifier
distortion [30] and IQ imbalance compensation [31]. An LMS-
type adaptive algorithm has been proposed for joint channel
estimation and explicit sampling rate correction in acoustic echo
control applications [27]. The adaptive notch filter proposed
in [32] is a simple algorithm capable of extracting a nonstation-
ary narrowband signal buried in noise, being essentially a carrier
frequency offset tracker. However, a single general algorithm for
tracking a channel under both carrier and sampling frequency
offsets, without specific requirements on the waveform, is still
missing.

The purpose of this article is to present an efficient adap-
tive algorithm for estimating and tracking a channel under
time-varying carrier and sampling frequency offsets when the
receiver knows the signal that is to be transmitted, or at least
a considerable part of it, in advance. The presented algorithm
aims to be waveform-agnostic and not strictly rely on the char-
acteristics of the underlying system. Hence, it is potentially
applicable to the aforementioned concepts and beyond. We
provide a thorough analysis on the optimal selection of the
algorithm parameters (viz. three step sizes) to facilitate rapid
convergence, and we carry out theoretical steady-state analysis
for the proposed algorithm by extending the well-known energy
conservation relation [33]. The extended relation introduces
nonstationary a priori errors for each update equation and de-
couples the errors of separate update equations to account for
the algorithm’s self-induced nonstationarity. Several supporting
simulations are provided, which verify the theoretical results
and demonstrate that the algorithm is able to track time-varying
frequency offsets. Furthermore, proof-of-concept measurement
results are presented, which illustrate that the algorithm is capa-
ble of explicitly estimating and tracking a wireless channel and

Fig. 1. General system model considered in this work, focusing on the carrier
and sampling frequency offsets together with the channel impulse response
between a transmitter and a receiver. In this work we assume that the digital
transmitted signal x(n) is known to the receiver.

frequency offsets between two radios. The proposed algorithm
is positionedwith regards to the existing works and comparisons
are made throughout.

The rest of this article is organized as follows. Section II
introduces a general system model and in Section III the novel
adaptive algorithm is presented for estimating and tracking the
parameters of the system model. Also, in Section III bounds for
the algorithm’s step sizes are derived. In Section IV, expressions
are derived for the steady-state mean-square error (MSE) of the
proposed algorithm, by introducing an energy conservation rela-
tion that accounts for the algorithm’s self-induced nonstationar-
ity. Section V provides a comparison of the theoretical MSE
results to simulations, proof-of-concept experimental results,
and a brief comparison. Finally, conclusions of the study are
given in Section VI.

Notation: Small boldface letters are used to denote vectors,
and capital boldface letters are used to denote matrices, e.g.,
w and R. Furthermore, the symbol ∗ denotes Hermitian con-
jugation for vectors and complex conjugation for scalars. The
identity matrix is denoted by I and a zero vector is denoted by
the boldface letter 0, both with dimensions compatible to each
context. The iteration index is placed as a subscript for vectors
and between parentheses for scalars, e.g., wn and v(n). All
vectors are column vectors, except for two vectors, namely, the
input data vector denoted by xn and its resampled counterpart
yn, which are taken to be row vectors for convenience of
notation. Lastly, E[·] is the statistical expectation operator.

II. SYSTEM MODEL

The system model considered in this work focuses on the
time-varying sampling and carrier frequency offsets between a
transmitter and a receiver along with the channel that separates
the two as illustrated in Fig. 1. The relative sampling fre-
quency offset between the two devices is denoted as ηo + β(n),
where ηo = ΔT/Tx represents the fundamental time-invariant
offset with ΔT = 1/fd − 1/fx being the difference between
the sampling periods at the receiver and transmitter, fd is the
sampling frequency at the receiver, fx is the sampling frequency
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at the transmitter, and β(n) is the time-varying offset, includ-
ing sampling jitter. The carrier frequency offset is denoted as
o + φ(n), where o denotes the fundamental time-invariant
offset o = ωd − ωx between the receiver and transmitter carrier
frequencies, ωd is the carrier frequency at the receiver, ωx is the
carrier frequency at the transmitter, and φ(n) is the time-varying
offset, including phase noise. Lastly,wedenote thefinite impulse
response of the complex-valued channel with orderM as wo.
The transmitter broadcasts a complex signal x(n) that, in its

discrete-time form, is known to the receiver. However, due to
noise, channel, andmismatches in carrier and sampling frequen-
cies at the transmitter and the receiver, the discrete-time signal
at the receiver becomes

d(n) = yo
nw

oej
∑n

i=1 o+φ(i) + v(n), (1)

where v(n) is the measurement noise, yo
n accounts for sampling

x(t) with sampling frequency offset ηo + β(n) so that

yo
n =

[
x

(
n−M+1∑

i=1

(1 + ηo + β(i))

)
, . . . ,

x

(
n∑

i=1

(1 + ηo + β(i))

)]
(2)

and the multiplicative term ej
∑n

i=1 o+φ(i) accounts for the
carrier frequency offset.

This is a general system model that is relevant, e.g., for
the following scenarios. Firstly, it holds in cases when known
training data is used to estimate the channel impulse response
and frequency offsets to improve subsequent information de-
modulation. Secondly, this general system model rather directly
applies to the bistatic or multistatic radar scenario, in which
case the receiver is familiar with the transmitted signal, but is
interested in tracking the channel and frequency offsets to esti-
mate range/velocity. Thirdly, in case of the known-interference
cancellation scenarios, the receivednoisev(n) canbe considered
to contain an unknown signal of interest, which is uncorrelated to
the known signal x(n) that is suppressed to facilitate processing
the signal of interest.

III. ADAPTIVE ESTIMATION AND TRACKING

In order to derive an algorithm for estimating and tracking
the parameters described in the system model, we first define
the instantaneous error of the estimation process as

e(n) = d(n)− ynwn−1e
j
∑n

i=1 (i−1), (3)

where wn−1, (n− 1), and η(n− 1) are respectively the esti-
mates of the channel’s impulse response wo, carrier frequency
offset o, and sampling frequency offset ηo at iteration n, and
yn is the result of resampling x(n) with η(n− 1), so that

yn =

[
x

(
n−M+1∑

i=1

(1 + η(i− 1))

)
, . . . ,

x

(
n∑

i=1

(1 + η(i− 1))

)]
. (4)

The instantaneous error e(n)will contain v(n) and excess noise
from the algorithm’s operation. In case of known-interference
cancellation, the instantaneous error e(n) would additionally
contain some unknown signal of interest.

The aim of the adaptive filter is to update iteratively the
system model parameter estimateswn, (n), and η(n) so that a
nonnegative cost function J(n) is reduced successively

J(n+ 1) ≤ J(n). (5)

This will generally ensure that after every iteration, the adaptive
filter improves its estimation of the parameters that we are trying
to model.

A. Mean-Square Error

We define the cost function as the mean-square value of the
estimation error, i.e., the MSE:

J(n) = E
[
|e(n)|2

]
= E [e(n)e∗(n)] . (6)

We opted for the MSE over other potential error measures,
e.g., weighted least squares, because of the simplicity of the
resulting algorithm. Note that in practical applications of adap-
tive filtering, the use of ensemble averaging is not feasible as
we are adapting the filter in an on-line manner, based on a
single realization of the estimation error, e(n), as it evolves
across iteration index n. Therefore, during the derivation of the
proposed algorithm, we proceed by ignoring the expectation
operation in the cost function (6) as is typical to the stochastic
gradient descent method [34].

We apply the method of stochastic gradient descent for a
sequential computation of the model parameters, using gradi-
ents of the performance surface in seeking its minimum. Even
though only one of the estimated parameters, namely the channel
impulse response wn, is complex-valued, then in the following
derivationwe also consider (n) and η(n) to be complex-valued,
as this will lay a clear consistent foundation for later carrying
out the steady-state analysis of the adaptive filter. In order
to accommodate for complex-valued (n) and η(n), we use
the real and imaginary part operators, {z} and {z}, where
appropriate.

We obtain the gradient vector at any point on the performance
surface by differentiating the cost function (6) with respect to
the model parameter estimates, resulting in

∇J(n) =

[
∂J(n)

∂wn−1
,

∂J(n)

∂(n− 1)
,

∂J(n)

∂η(n− 1)

]
, (7)

where

∂J(n)

∂wn−1
= −

[
yne

j
∑n

i=1 {(i−1)}
]∗

e(n), (8a)

∂J(n)

∂(n− 1)
= −

[
ynwn−1e

j
∑n

i=1 {(i−1)}j
]∗

e(n), (8b)

∂J(n)

∂η(n− 1)
= −

[
y
nwn−1e

j
∑n

i=1 {(i−1)}
]∗

e(n), (8c)

and y
n is the derivative of yn.
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When using (8b) and (8c) in practice, we are only interested in
the partial derivative of a complex function e(n) with respect to
the real part of the parameters (n) and η(n). Therefore, we can
simplify the partial derivatives relying on the Cauchy–Riemann
equations [35] and consider only the real parts of the partial
derivatives so that

∂J(n)

∂(n− 1)
= −

{[
ynwn−1e

j
∑n

i=1 (i−1)
]∗

e(n)
}
, (9b)

∂J(n)

∂η(n− 1)
= −

{[
y
nwn−1e

j
∑n

i=1 (i−1)
]∗

e(n)
}
. (9c)

B. Algorithm

We formulate the updating rules of the algorithm using the
stochastic gradient in (7) by moving in the opposite direction of
the gradient vector so that

wn = wn−1 − μw
∂J(n)

∂wn−1
, (10a)

(n) = (n− 1)− μ
∂J(n)

∂(n− 1)
, (10b)

η(n) = η(n− 1)− μη
∂J(n)

∂η(n− 1)
, (10c)

where w0, (0), and η(0) are initial guesses and μw, μ, and
μη are fixed positive step size parameters that allow to control
the convergence speed and steady-state performance of the
algorithm. For computing the gradient vector at every iteration
of the algorithm, (9b) and (9c) are to be used in (10b) and (10c).
However, for carrying out the steady-state analysis, we will rely
on the full complex-valued gradient and use (8b) and (8c) in
(10b) and (10c); while (8a) is always used in (10a).

We also acknowledge that the partial derivative (9c) with
regards to the sampling rate offset estimate η(n− 1) includes
a time derivative of the resampled signal vector. If the third
derivative of yn exists, then it is beneficial to use the centered
first-order divided difference, which has an approximation error
of order two [36, p. 172], so that

y
nwn−1 ≈ (yn+1 − yn−1)wn−1

2(1 + η(n))
. (11)

This is equivalent to considering wn−1 to be time-invariant
and taking the centered first-order difference of (ynwn−1)

.
Alternatively, the first-order backward divided difference

y
nwn−1 ≈ (yn − yn−1)wn−1

1 + η(n)
(12)

can be used, which does not require computation of yn+1 nor
the existence of the third derivative, but has an approximation
error of order one.

To produce yn, the sampling rate of the know signal xn needs
to be converted. Various methods exist for arbitrary sampling
rate conversion (SRC) [37], such as, e.g., the Lagrange interpola-
tor [38], but the used SRCmethod can be selected independently
of the proposed algorithm. If prior knowledge of the estimation
parameters is available, then this knowledge may be used to
speed up the start-up process of the algorithm. Otherwise, w0,

Fig. 2. System model with the proposed adaptive filter.

Algorithm 1: LMS-Type Frequency Offsets Tracking.
1: Procedure FO-LMS(x, d, μw, με, μη,M )
2: w0 ← 01,M

3: (0) ← 0, η(0) ← 0
4: φ(1) ← 0, t(1) ← 0
5: for n ← 1 to N do
6: yn ← [x(t(n)), x(t(n)− (1 + η(n− 1))), . . . ,

x(t(n)− (M + 1)(1 + η(n− 1)))]
7: e(n) ← d(n)− ynwn−1e

jφ(n)

8: wn ← wn−1 + μw[yne
jφ(n)]∗e(n)

9: (n) ← (n− 1) + μ{[ynwn−1e
jφ(n)]∗e(n)}

10: η(n) ← η(n− 1) + μη{[y
nwn−1e

jφ(n)]∗e(n)}
11: φ(n+ 1) ← φ(n) + (n)
12: t(n+ 1) ← t(n) + (1 + η(n))
13: end for
14: end procedure

(0), and η(0) can be initialized to zero. Conclusively, the adap-
tive algorithm for iteratively estimating and tracking a wireless
channel under carrier and sampling frequency offsets is listed
as Algorithm 1 and illustrated in Fig. 2. It should be noted
that in order for the algorithm to be able to handle sampling
frequency offsets, several filter taps should be allocated, i.e.,
M > 1, even if the channel itself can be modeled by a single
complex coefficient. Furthermore, in general there are several
equivalent formulations for complex-valued adaptive filters [39,
p. 69] and corresponding equivalent formulations exist also for
the proposed algorithm. An open-source implementation of the
algorithm is available as part of an adaptive filters toolkit.1

C. Computational Cost

A useful property of the proposed algorithm, mainly due to
the chosen cost function, is its computational simplicity —

1https://github.com/karel/gr-adapt
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each iteration of the algorithm requires only a limited num-
ber of straightforward calculations. Evaluation of the proposed
algorithm requires 12M + 26 real-valued multiplications and
14M + 13 real-valued additions at each iteration. There can be
various ways to perform specific calculations, but the resulting
overall filter complexity will be of the same order of magnitude.
However, these numbers do not include the arbitrary SRC,which
can be implemented in several ways with varying complexity
and accuracy. For example, Lagrange interpolation can be im-
plementedwith computational complexity growing linearlywith
the interpolation order [40].

D. Convergence Properties

For a given systemwith a fixed set of parameters, the choice of
step sizes μw, μ, and μη is effectively the only way to affect the
performance of the algorithm. For example, in order to speed
up the initial adaptation process, it might be desirable to use
large step sizes, which minimize the instantaneous error at every
iteration as much as possible, yet do not cause the algorithm to
diverge. An approximate way of finding the upper bounds for the
step sizes of an adaptive filter is by expanding the instantaneous
output error by a Taylor series expansion [41], [39, p. 86], which
in this case gives

e(n+ 1) = e(n) +
∂e(n)

∂wn−1
Δwn−1 +

∂e(n)

∂(n− 1)
Δ(n− 1)

+
∂e(n)

∂η(n− 1)
Δη(n− 1) + h.o.t., (13)

where Δwn−1, Δ(n− 1), and Δη(n− 1) are the estimate
updates and h.o.t. denotes the truncated higher-order terms of
the expansion. From (10a), (10b), and (10c), by considering the
full complex-valued gradient vector, we get

Δwn−1 = μwe(n)
[
yne

j
∑n

i=1 {(i−1)}
]∗

, (14a)

Δ(n− 1) = μe(n)
[
ynwn−1e

j
∑n

i=1 {(i−1)}j
]∗

, (14b)

Δη(n− 1) = μηe(n)
[
y
nwn−1e

j
∑n

i=1 {(i−1)}
]∗

, (14c)

respectively. For sufficiently small Δwn, Δ(n), and Δη(n),
the values of the higher-order terms in (13) can be neglected
and, therefore, in the following analysis we approximate the
expansion without them. Thus, evaluating the partial derivatives
in (13) and substituting in (14a), (14b), and (14c) yields after
direct simplification

e(n+ 1) ≈ e(n) ·
(
1− μwyn2

−μ|ynwn−1|2 − μη|y
nwn−1|2

)
. (15)

In order to ensure convergence, it is essential that the norm of
the left hand side is not greater than that of the right hand side
so that

|e(n+ 1)| ≤ |e(n)| ·
∣∣∣1− μwyn2

− μ|ynwn−1|2 − μη|y
nwn−1|2

∣∣∣. (16)

The goal in (16) is reached if the following relation holds:

|1− μwyn2 − μ|ynwn−1|2 − μη|y
nwn−1|2| ≤ 1, (17)

which in turn implies the following bounds on the choice of the
step sizes μw, μ, and μη:

0 < μw ≤ 2− μ|ynwn−1|2 − μη|y
nwn−1|2

yn2
,

0 < μ ≤
2− μwyn2 − μη|y

nwn−1|2
|ynwn−1|2

,

0 < μη ≤ 2− μwyn2 − μ|ynwn−1|2
|y

nwn−1|2
.

(18a)

(18b)

(18c)

However, the expressions above are merely necessary condi-
tions for the stability of the proposed algorithm. The actual
values of the step sizes to achieve stability are slightly smaller
than the derived bounds due to the used approximation, i.e.,
discarding the higher-order terms in the error expansion.

We see that all quantities in (18) are positive, so the con-
vergence properties depend on the slope but not on the sign
of the gradient vector, and that the upper bounds are coupled,
so the step sizes are to be selected collectively. That is, upper
bound for each step size depends on the other two step sizes
and convergence can be reached only if the relation in (17) is
satisfied. The preceding analysis on the Taylor series expansion
of the instantaneous error provides two results. Firstly, the step
size bounds that are necessary but not sufficient conditions for
the algorithm to converge and, secondly, these bounds can poten-
tially be used to derive a normalized variant of the algorithm. As
is, the adaptive filter assumes fixed step sizes, but an approach
could also be developed that varies the step sizes to optimize
convergence speed and subsequent steady-state performance.

E. Comparison

The application-specific methods for estimating a wireless
channel and frequency offsets typically require the waveform to
have a certain structure. The most general of those techniques
aims to suppress known interference so as to provide physical
layer security and relies on thewaveform being cyclic with some
period L [19]. Evaluation of that method for one cyclic block
with length L requires 25L+ 9 real-valued multiplications,
18L− 1 real-valued additions, L+ 1 real-valued divisions,
evaluating atan2() L+ 1 times, and calculating the L-point
discrete Fourier transform at least once. This puts the referenced
and proposed methods roughly on par in terms of computa-
tional complexity for a single data point. However, due to its
block-based nature, the reference method can take advantage of
parallel processing. Also, methods that rely on features built
into the waveform generally require fewer samples than the
proposed algorithm to provide accurate parameter estimates.
Then again, the repetitive waveform structure required by the
reference method could be a vulnerability in physical layer
security applications.
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When using (8b) and (8c) in practice, we are only interested in
the partial derivative of a complex function e(n) with respect to
the real part of the parameters (n) and η(n). Therefore, we can
simplify the partial derivatives relying on the Cauchy–Riemann
equations [35] and consider only the real parts of the partial
derivatives so that

∂J(n)

∂(n− 1)
= −

{[
ynwn−1e

j
∑n

i=1 (i−1)
]∗

e(n)
}
, (9b)

∂J(n)

∂η(n− 1)
= −

{[
y
nwn−1e

j
∑n

i=1 (i−1)
]∗

e(n)
}
. (9c)

B. Algorithm

We formulate the updating rules of the algorithm using the
stochastic gradient in (7) by moving in the opposite direction of
the gradient vector so that

wn = wn−1 − μw
∂J(n)

∂wn−1
, (10a)

(n) = (n− 1)− μ
∂J(n)

∂(n− 1)
, (10b)

η(n) = η(n− 1)− μη
∂J(n)

∂η(n− 1)
, (10c)

where w0, (0), and η(0) are initial guesses and μw, μ, and
μη are fixed positive step size parameters that allow to control
the convergence speed and steady-state performance of the
algorithm. For computing the gradient vector at every iteration
of the algorithm, (9b) and (9c) are to be used in (10b) and (10c).
However, for carrying out the steady-state analysis, we will rely
on the full complex-valued gradient and use (8b) and (8c) in
(10b) and (10c); while (8a) is always used in (10a).

We also acknowledge that the partial derivative (9c) with
regards to the sampling rate offset estimate η(n− 1) includes
a time derivative of the resampled signal vector. If the third
derivative of yn exists, then it is beneficial to use the centered
first-order divided difference, which has an approximation error
of order two [36, p. 172], so that

y
nwn−1 ≈ (yn+1 − yn−1)wn−1

2(1 + η(n))
. (11)

This is equivalent to considering wn−1 to be time-invariant
and taking the centered first-order difference of (ynwn−1)

.
Alternatively, the first-order backward divided difference

y
nwn−1 ≈ (yn − yn−1)wn−1

1 + η(n)
(12)

can be used, which does not require computation of yn+1 nor
the existence of the third derivative, but has an approximation
error of order one.

To produce yn, the sampling rate of the know signal xn needs
to be converted. Various methods exist for arbitrary sampling
rate conversion (SRC) [37], such as, e.g., the Lagrange interpola-
tor [38], but the used SRCmethod can be selected independently
of the proposed algorithm. If prior knowledge of the estimation
parameters is available, then this knowledge may be used to
speed up the start-up process of the algorithm. Otherwise, w0,

Fig. 2. System model with the proposed adaptive filter.

Algorithm 1: LMS-Type Frequency Offsets Tracking.
1: Procedure FO-LMS(x, d, μw, με, μη,M )
2: w0 ← 01,M

3: (0) ← 0, η(0) ← 0
4: φ(1) ← 0, t(1) ← 0
5: for n ← 1 to N do
6: yn ← [x(t(n)), x(t(n)− (1 + η(n− 1))), . . . ,

x(t(n)− (M + 1)(1 + η(n− 1)))]
7: e(n) ← d(n)− ynwn−1e

jφ(n)

8: wn ← wn−1 + μw[yne
jφ(n)]∗e(n)

9: (n) ← (n− 1) + μ{[ynwn−1e
jφ(n)]∗e(n)}

10: η(n) ← η(n− 1) + μη{[y
nwn−1e

jφ(n)]∗e(n)}
11: φ(n+ 1) ← φ(n) + (n)
12: t(n+ 1) ← t(n) + (1 + η(n))
13: end for
14: end procedure

(0), and η(0) can be initialized to zero. Conclusively, the adap-
tive algorithm for iteratively estimating and tracking a wireless
channel under carrier and sampling frequency offsets is listed
as Algorithm 1 and illustrated in Fig. 2. It should be noted
that in order for the algorithm to be able to handle sampling
frequency offsets, several filter taps should be allocated, i.e.,
M > 1, even if the channel itself can be modeled by a single
complex coefficient. Furthermore, in general there are several
equivalent formulations for complex-valued adaptive filters [39,
p. 69] and corresponding equivalent formulations exist also for
the proposed algorithm. An open-source implementation of the
algorithm is available as part of an adaptive filters toolkit.1

C. Computational Cost

A useful property of the proposed algorithm, mainly due to
the chosen cost function, is its computational simplicity —

1https://github.com/karel/gr-adapt
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each iteration of the algorithm requires only a limited num-
ber of straightforward calculations. Evaluation of the proposed
algorithm requires 12M + 26 real-valued multiplications and
14M + 13 real-valued additions at each iteration. There can be
various ways to perform specific calculations, but the resulting
overall filter complexity will be of the same order of magnitude.
However, these numbers do not include the arbitrary SRC,which
can be implemented in several ways with varying complexity
and accuracy. For example, Lagrange interpolation can be im-
plementedwith computational complexity growing linearlywith
the interpolation order [40].

D. Convergence Properties

For a given systemwith a fixed set of parameters, the choice of
step sizes μw, μ, and μη is effectively the only way to affect the
performance of the algorithm. For example, in order to speed
up the initial adaptation process, it might be desirable to use
large step sizes, which minimize the instantaneous error at every
iteration as much as possible, yet do not cause the algorithm to
diverge. An approximate way of finding the upper bounds for the
step sizes of an adaptive filter is by expanding the instantaneous
output error by a Taylor series expansion [41], [39, p. 86], which
in this case gives

e(n+ 1) = e(n) +
∂e(n)

∂wn−1
Δwn−1 +

∂e(n)

∂(n− 1)
Δ(n− 1)

+
∂e(n)

∂η(n− 1)
Δη(n− 1) + h.o.t., (13)

where Δwn−1, Δ(n− 1), and Δη(n− 1) are the estimate
updates and h.o.t. denotes the truncated higher-order terms of
the expansion. From (10a), (10b), and (10c), by considering the
full complex-valued gradient vector, we get

Δwn−1 = μwe(n)
[
yne

j
∑n

i=1 {(i−1)}
]∗

, (14a)

Δ(n− 1) = μe(n)
[
ynwn−1e

j
∑n

i=1 {(i−1)}j
]∗

, (14b)

Δη(n− 1) = μηe(n)
[
y
nwn−1e

j
∑n

i=1 {(i−1)}
]∗

, (14c)

respectively. For sufficiently small Δwn, Δ(n), and Δη(n),
the values of the higher-order terms in (13) can be neglected
and, therefore, in the following analysis we approximate the
expansion without them. Thus, evaluating the partial derivatives
in (13) and substituting in (14a), (14b), and (14c) yields after
direct simplification

e(n+ 1) ≈ e(n) ·
(
1− μwyn2

−μ|ynwn−1|2 − μη|y
nwn−1|2

)
. (15)

In order to ensure convergence, it is essential that the norm of
the left hand side is not greater than that of the right hand side
so that

|e(n+ 1)| ≤ |e(n)| ·
∣∣∣1− μwyn2

− μ|ynwn−1|2 − μη|y
nwn−1|2

∣∣∣. (16)

The goal in (16) is reached if the following relation holds:

|1− μwyn2 − μ|ynwn−1|2 − μη|y
nwn−1|2| ≤ 1, (17)

which in turn implies the following bounds on the choice of the
step sizes μw, μ, and μη:

0 < μw ≤ 2− μ|ynwn−1|2 − μη|y
nwn−1|2

yn2
,

0 < μ ≤
2− μwyn2 − μη|y

nwn−1|2
|ynwn−1|2

,

0 < μη ≤ 2− μwyn2 − μ|ynwn−1|2
|y

nwn−1|2
.

(18a)

(18b)

(18c)

However, the expressions above are merely necessary condi-
tions for the stability of the proposed algorithm. The actual
values of the step sizes to achieve stability are slightly smaller
than the derived bounds due to the used approximation, i.e.,
discarding the higher-order terms in the error expansion.

We see that all quantities in (18) are positive, so the con-
vergence properties depend on the slope but not on the sign
of the gradient vector, and that the upper bounds are coupled,
so the step sizes are to be selected collectively. That is, upper
bound for each step size depends on the other two step sizes
and convergence can be reached only if the relation in (17) is
satisfied. The preceding analysis on the Taylor series expansion
of the instantaneous error provides two results. Firstly, the step
size bounds that are necessary but not sufficient conditions for
the algorithm to converge and, secondly, these bounds can poten-
tially be used to derive a normalized variant of the algorithm. As
is, the adaptive filter assumes fixed step sizes, but an approach
could also be developed that varies the step sizes to optimize
convergence speed and subsequent steady-state performance.

E. Comparison

The application-specific methods for estimating a wireless
channel and frequency offsets typically require the waveform to
have a certain structure. The most general of those techniques
aims to suppress known interference so as to provide physical
layer security and relies on thewaveform being cyclic with some
period L [19]. Evaluation of that method for one cyclic block
with length L requires 25L+ 9 real-valued multiplications,
18L− 1 real-valued additions, L+ 1 real-valued divisions,
evaluating atan2() L+ 1 times, and calculating the L-point
discrete Fourier transform at least once. This puts the referenced
and proposed methods roughly on par in terms of computa-
tional complexity for a single data point. However, due to its
block-based nature, the reference method can take advantage of
parallel processing. Also, methods that rely on features built
into the waveform generally require fewer samples than the
proposed algorithm to provide accurate parameter estimates.
Then again, the repetitive waveform structure required by the
reference method could be a vulnerability in physical layer
security applications.
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IV. STEADY-STATE ANALYSIS

An important performance measure of an adaptive filter,
which is typically used in the literature, is its steady-state ex-
cess mean-square error (EMSE) [35]. In this section, we will
carry out the derivation to express the total EMSE in terms of
three EMSEs, each related to an update equation in (10). The
analysis developed in this section relies on energy conservation
arguments [33] and on decoupling the errors of separate update
equations by solving a system of linear equations [42]. In or-
der to accommodate the errors accumulated by the frequency
offset update equations, we extend the existing methodology to
account for what we will refer to as the self-induced nonstation-
arity. Furthermore, to make the analysis tractable, we omit the
time-varying terms φ(n) and β(n) of the system model here.
That is, the focus is on steady-state analysis rather than tracking
analysis, considering a quasi-static channel.

A. Self-Induced Nonstationarity

In practice, the frequency offset estimates (n) and η(n) are
bound to differ from the actual parameters o and ηo, resulting in
estimation errors ̃(n) = o − (n) and η̃(n) = ηo − η(n). This
is especially so during the start-up phase of the algorithmbut also
during the steady state, as gradient noise affects the estimates
at each iteration. Therefore, the accumulating estimation errors∑n

i=1 ̃(i− 1) and
∑n

i=1 η̃(i− 1) inevitably cause a phase shift
and fractional time delay, or self-induced nonstationarity, which
the channel estimate wn will then try to compensate for. In
order to proceed with the steady-state analysis, we first need a
way to express how those accumulated estimation errors affect
the channel update equation (10a).
Based on (3), we define the total a priori error as

ea(n) = yo
nw

oej
∑n

i=1 o − ynwn−1e
j
∑n

i=1 (i−1), (19)

which is simply the error between the received signal and
the estimated signal but discarding the noise term v(n). By
shifting both sides of the a priori error equation in phase by
−∑n

i=1 (i− 1) and in time by −∑n
i=1 η(i− 1), we get

esa(n) = xnTnw
oej

∑n
i=1 ̃(i−1) − xnwn−1, (20)

where, for notational simplicity, we have denoted the phase and
time shifted a priori error as

esa(n) � ea

(
n−

n∑

i=1

η(i− 1)

)
e−j

∑n
i=1 (i−1) (21)

and Tn is an arbitrary time-shift matrix of size M ×M
that, when multiplying with xn, delays the signal xn by∑n

i=1 η̃(i− 1). From (20), we can define wo
n as

wo
n � Tnw

oej
∑n

i=1 ̃(i−1). (22)

In order to proceed, we call on the following assumption.
A.1:At the steady state, as n → ∞, the instantaneous estima-

tion errors ̃(n) and η̃(n) satisfy the conditions

̃(n)  1 and η̃(n)  1

fmax
,

where fmax is the maximum frequency component of xn.

This is a reasonable assumption because in steady state we
expect the estimation errors to vary around zero. Relying on
A.1, we can use linear approximation [43] to write (20) as

esa(n) ≈ [xnTn−1 + (x
nTn−1) ◦ η̃n−1]w

o

·
[
ej

∑n−1
i=1 ̃(i−1) + ej

∑n−1
i=1 ̃(i−1)j̃(n− 1)

]
− xnwn−1,

(23)

where ◦ denotes the Hadamard product, i.e., element-wise mul-
tiplication, and η̃n is the row vector

η̃n = [η̃(n−M + 1), . . . , η̃(n− 1)] .

By expanding (23), and ignoring the cross-terms that include
both ̃(n− 1) and η̃(n− 1), as they are very small under A.1,
(23) can be rewritten as

esa(n) ≈ xnTn−1w
oej

∑n−1
i=1 ̃(i−1)

+ xnTn−1w
oej

∑n−1
i=1 ̃(i−1)j̃(n− 1)

+ x
nTn−1w

oej
∑n−1

i=1 ̃(i−1)η̃(n− 1)− xnwn−1,
(24)

which, by substituting in (22) for index n− 1, is simply

esa(n) ≈ xnw
o
n−1 + xnw

o
n−1j̃(n− 1)

+ x
nw

o
n−1η̃(n− 1)− xnwn−1. (25)

Finally, taking w̃n = wo
n −wn to be the estimation error of the

channel and reversing the phase and time shift introduced in
(20), the a priori error can be expressed as

ena(n) ≈ ynw̃n−1e
j
∑n

i=1 (i−1)

+ ynw
o
n−1j̃(n− 1)ej

∑n
i=1 (i−1)

+ y
nw

o
n−1η̃(n− 1)ej

∑n
i=1 (i−1) (26)

and we denote the three terms on the right-hand side as the a
priori errors of the three update equations so that

enw,a(n) = ynw̃n−1e
j
∑n

i=1 (i−1), (27a)

en,a(n) = ynw
o
n−1j̃(n− 1)ej

∑n
i=1 (i−1), (27b)

enη,a(n) = y
nw

o
n−1η̃(n− 1)ej

∑n
i=1 (i−1), (27c)

where the superscript n denotes this first set of definitions for
the a priori errors.

B. Mean-Square Performance

Following the well-known energy conservation relation
method [28], we also define the following second set of a priori
errors

ew,a(n) = yn(w
o
n −wn−1)e

j
∑n

i=1 (i−1), (28a)

e,a(n) = ynwn−1̃(n− 1)ej
∑n

i=1 (i−1), (28b)

eη,a(n) = y
nwn−1η̃(n− 1)ej

∑n
i=1 (i−1), (28c)

so that the total error e(n) is the sum of the a priori errors and
the measurement noise

e(n) = ew,a(n) + e,a(n) + eη,a(n) + v(n). (29)
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Similarly, we define the a posteriori errors

ew,p(n) = ynw̃ne
j
∑n

i=1 (i−1), (30a)

e,p(n) = ynwñ(n)e
j
∑n

i=1 (i−1), (30b)

eη,p(n) = y
nwnη̃(n)e

j
∑n

i=1 (i−1). (30c)

A.2: The noise sequence v(n) is stationary, with variance
σ2
v , and statistically independent of the a priori errors ew,a(n),

e,a(n), and eη,a(n).
Under the above justifiable assumption, we find that the MSE

is equivalently given by

MSE = ζ + σ2
v = ζw + ζ + ζη + σ2

v , (31)

where

ζw = lim
n→∞

E
[
|ew,a(n)|2

]
, (32a)

ζ = lim
n→∞

E
[
|e,a(n)|2

]
, (32b)

ζη = lim
n→∞

E
[
|eη,a(n)|2

]
. (32c)

Employing the energy conservation relation method and rely-
ing on the two sets of a priori errors, it is shown in the Appendix
that the following equations hold:

μwE
[
yn2|ew,a(n)|2

]
+ μwE

[
yn2|e,a(n)|2

]

+ μwE
[
yn2|eη,a(n)|2

]
+ μwE

[
yn2|v(n)|2

]

+ E

[
M

μwyn2
|en,a(n)|2

]
+ E

[
M

μwyn2
|enη,a(n)|2

]

= 2E
[
|ew,a(n)|2

]
, (33a)

μE
[
|ynwn−1|2|ew,a(n)|2

]
+ μE

[
|ynwn−1|2|e,a(n)|2

]

+μE
[
|ynwn−1|2|eη,a(n)|2

]
+μE

[
|ynwn−1|2|v(n)|2

]

= 2E
[
|e,a(n)|2

]
, (33b)

μηE
[
|y

nwn−1|2|ew,a(n)|2
]
+ μηE

[
|y

nwn−1|2|e,a(n)|2
]

+μηE
[
|y

nwn−1|2|eη,a(n)|2
]
+μηE

[
|y

nwn−1|2|v(n)|2
]

= 2E
[
|eη,a(n)|2

]
. (33c)

This system of equations can now be solved for the EMSEs ζw,
ζ, and ζη . To do so, we consider the following two cases.
1) Using Separation Principle: One way to solve the equa-

tions in (33) is by imposing the following assumption.
A.3: In steady state, yn2, |ynwn−1|2, and |y

nwn−1|2 are
statistically independent of |ew,a|2, |e,a(n)|2, and |eη,a(n)|2.

This assumption is reasonable at the steady state since the
behavior of the a priori errors is less likely to be sensitive to the
input data. It is similar to the separation principle assumption
made in, e.g., [33], [42], and allows us to write

E
[
yn2|ew,a(n)|2

]
= E

[
yn2

]
E
[
|ew,a(n)|2

]
,

E
[
|ynwn−1|2|e,a(n)|2

]
= E

[
|ynwn−1|2

]
E
[
|e,a(n)|2

]
,

E
[
|y

nwn−1|2|eη,a(n)|2
]
= E

[
|y

nwn−1|2
]
E
[
|eη,a(n)|2

]
.

Furthermore, we make the following assumptions.

A.4: In steady state for a static channel, asn → ∞, the channel
estimate is close to the actual channelwn−1 → wo.

A.5: In steady state, for sufficiently small ηo, the following
equalities hold: yn2 = xn2, |ynwn−1|2 = |xnw

o|2 and
|y

nwn−1|2 = |x
nw

o|2.
A.6: In steady state, the two sets of a priori errors

are equivalent, i.e.,E|enw,a(n)|2 = E|ew,a(n)|2,E|en,a(n)|2 =
E|e,a(n)|2, E|enη,a(n)|2 = E|eη,a(n)|2.

Using the assumptions A.3 through A.6, and solving (33)
for ζw, ζ, and ζη , we obtain the following expressions for the
EMSEs of the proposed algorithm:

ζw =
2μw Tr (R)σ2

v

γ

+
M μ Tr (RQ)

μw Tr (R) σ
2
v +M

μη Tr (PQ)
μw Tr (R) σ

2
v

γ
,

ζ =
2μ Tr (RQ)σ2

v

γ
,

ζη =
2μη Tr (PQ)σ2

v

γ
,

(35a)

(35b)

(35c)

where the denominator γ is

γ = 4− 2μw Tr (R)− 2μ Tr (RQ)− 2μη Tr (PQ)

−M
μ Tr (RQ)

μw Tr (R)
−M

μη Tr (PQ)

μw Tr (R)
(36)

and R is the covariance matrix R = E[x∗
nxn], P is the covari-

ance matrix P = E[(x
n)

∗x
n], and Q = wo(wo)∗.

Note that, in order for the algorithm to remain stable, the
denominator of the EMSEs needs to be positive. If we consider
an approximation of the denominator without the self-induced
nonstationarity terms, i.e., the last two terms in (36), then this
result has an equivalent implication to that of the simple approxi-
mation (18), which we derived using the Taylor series expansion
of the instantaneous error.

2) Assuming Gaussian White Input Signals: For Gaussian
white input signals (with R = σ2

xI), relying on A.4 and A.5,
(33) can be more accurately solved by resorting to the following
independence assumption.

A.7:At steady state, the estimation errors w̃n, ̃(n), and η̃(n)
are all statistically independent of xn, xnw

o, and x
nw

o.
This is an extension of the assumption, which is widely used

for analysing the performance of adaptive filters [33]. Relying
on the independence assumption A.7 and following the same
reasoning that is used for analysing the steady-state performance
of the LMS adaptive filter [35, p. 296], it can be verified that

E
[
xn2|ek,a(n)|2

]
= (M + 1)σ2

xζ
k, (37a)

E
[
|xnw

o|2|ek,a(n)|2
]
=

(
1 +

1

M

)
σ2
xwo2ζk, (37b)

E
[
|x

nw
o|2|ek,a(n)|2

]
≈

(
2 +

2

M

)
σ2
xwo2ζk, (37c)
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IV. STEADY-STATE ANALYSIS

An important performance measure of an adaptive filter,
which is typically used in the literature, is its steady-state ex-
cess mean-square error (EMSE) [35]. In this section, we will
carry out the derivation to express the total EMSE in terms of
three EMSEs, each related to an update equation in (10). The
analysis developed in this section relies on energy conservation
arguments [33] and on decoupling the errors of separate update
equations by solving a system of linear equations [42]. In or-
der to accommodate the errors accumulated by the frequency
offset update equations, we extend the existing methodology to
account for what we will refer to as the self-induced nonstation-
arity. Furthermore, to make the analysis tractable, we omit the
time-varying terms φ(n) and β(n) of the system model here.
That is, the focus is on steady-state analysis rather than tracking
analysis, considering a quasi-static channel.

A. Self-Induced Nonstationarity

In practice, the frequency offset estimates (n) and η(n) are
bound to differ from the actual parameters o and ηo, resulting in
estimation errors ̃(n) = o − (n) and η̃(n) = ηo − η(n). This
is especially so during the start-up phase of the algorithmbut also
during the steady state, as gradient noise affects the estimates
at each iteration. Therefore, the accumulating estimation errors∑n

i=1 ̃(i− 1) and
∑n

i=1 η̃(i− 1) inevitably cause a phase shift
and fractional time delay, or self-induced nonstationarity, which
the channel estimate wn will then try to compensate for. In
order to proceed with the steady-state analysis, we first need a
way to express how those accumulated estimation errors affect
the channel update equation (10a).

Based on (3), we define the total a priori error as

ea(n) = yo
nw

oej
∑n

i=1 o − ynwn−1e
j
∑n

i=1 (i−1), (19)

which is simply the error between the received signal and
the estimated signal but discarding the noise term v(n). By
shifting both sides of the a priori error equation in phase by
−∑n

i=1 (i− 1) and in time by −∑n
i=1 η(i− 1), we get

esa(n) = xnTnw
oej

∑n
i=1 ̃(i−1) − xnwn−1, (20)

where, for notational simplicity, we have denoted the phase and
time shifted a priori error as

esa(n) � ea

(
n−

n∑

i=1

η(i− 1)

)
e−j

∑n
i=1 (i−1) (21)

and Tn is an arbitrary time-shift matrix of size M ×M
that, when multiplying with xn, delays the signal xn by∑n

i=1 η̃(i− 1). From (20), we can define wo
n as

wo
n � Tnw

oej
∑n

i=1 ̃(i−1). (22)

In order to proceed, we call on the following assumption.
A.1:At the steady state, as n → ∞, the instantaneous estima-

tion errors ̃(n) and η̃(n) satisfy the conditions

̃(n)  1 and η̃(n)  1

fmax
,

where fmax is the maximum frequency component of xn.

This is a reasonable assumption because in steady state we
expect the estimation errors to vary around zero. Relying on
A.1, we can use linear approximation [43] to write (20) as

esa(n) ≈ [xnTn−1 + (x
nTn−1) ◦ η̃n−1]w

o

·
[
ej

∑n−1
i=1 ̃(i−1) + ej

∑n−1
i=1 ̃(i−1)j̃(n− 1)

]
− xnwn−1,

(23)

where ◦ denotes the Hadamard product, i.e., element-wise mul-
tiplication, and η̃n is the row vector

η̃n = [η̃(n−M + 1), . . . , η̃(n− 1)] .

By expanding (23), and ignoring the cross-terms that include
both ̃(n− 1) and η̃(n− 1), as they are very small under A.1,
(23) can be rewritten as

esa(n) ≈ xnTn−1w
oej

∑n−1
i=1 ̃(i−1)

+ xnTn−1w
oej

∑n−1
i=1 ̃(i−1)j̃(n− 1)

+ x
nTn−1w

oej
∑n−1

i=1 ̃(i−1)η̃(n− 1)− xnwn−1,
(24)

which, by substituting in (22) for index n− 1, is simply

esa(n) ≈ xnw
o
n−1 + xnw

o
n−1j̃(n− 1)

+ x
nw

o
n−1η̃(n− 1)− xnwn−1. (25)

Finally, taking w̃n = wo
n −wn to be the estimation error of the

channel and reversing the phase and time shift introduced in
(20), the a priori error can be expressed as

ena(n) ≈ ynw̃n−1e
j
∑n

i=1 (i−1)

+ ynw
o
n−1j̃(n− 1)ej

∑n
i=1 (i−1)

+ y
nw

o
n−1η̃(n− 1)ej

∑n
i=1 (i−1) (26)

and we denote the three terms on the right-hand side as the a
priori errors of the three update equations so that

enw,a(n) = ynw̃n−1e
j
∑n

i=1 (i−1), (27a)

en,a(n) = ynw
o
n−1j̃(n− 1)ej

∑n
i=1 (i−1), (27b)

enη,a(n) = y
nw

o
n−1η̃(n− 1)ej

∑n
i=1 (i−1), (27c)

where the superscript n denotes this first set of definitions for
the a priori errors.

B. Mean-Square Performance

Following the well-known energy conservation relation
method [28], we also define the following second set of a priori
errors

ew,a(n) = yn(w
o
n −wn−1)e

j
∑n

i=1 (i−1), (28a)

e,a(n) = ynwn−1̃(n− 1)ej
∑n

i=1 (i−1), (28b)

eη,a(n) = y
nwn−1η̃(n− 1)ej

∑n
i=1 (i−1), (28c)

so that the total error e(n) is the sum of the a priori errors and
the measurement noise

e(n) = ew,a(n) + e,a(n) + eη,a(n) + v(n). (29)
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Similarly, we define the a posteriori errors

ew,p(n) = ynw̃ne
j
∑n

i=1 (i−1), (30a)

e,p(n) = ynwñ(n)e
j
∑n

i=1 (i−1), (30b)

eη,p(n) = y
nwnη̃(n)e

j
∑n

i=1 (i−1). (30c)

A.2: The noise sequence v(n) is stationary, with variance
σ2
v , and statistically independent of the a priori errors ew,a(n),

e,a(n), and eη,a(n).
Under the above justifiable assumption, we find that the MSE

is equivalently given by

MSE = ζ + σ2
v = ζw + ζ + ζη + σ2

v , (31)

where

ζw = lim
n→∞

E
[
|ew,a(n)|2

]
, (32a)

ζ = lim
n→∞

E
[
|e,a(n)|2

]
, (32b)

ζη = lim
n→∞

E
[
|eη,a(n)|2

]
. (32c)

Employing the energy conservation relation method and rely-
ing on the two sets of a priori errors, it is shown in the Appendix
that the following equations hold:

μwE
[
yn2|ew,a(n)|2

]
+ μwE

[
yn2|e,a(n)|2

]

+ μwE
[
yn2|eη,a(n)|2

]
+ μwE

[
yn2|v(n)|2

]

+ E

[
M

μwyn2
|en,a(n)|2

]
+ E

[
M

μwyn2
|enη,a(n)|2

]

= 2E
[
|ew,a(n)|2

]
, (33a)

μE
[
|ynwn−1|2|ew,a(n)|2

]
+ μE

[
|ynwn−1|2|e,a(n)|2

]

+μE
[
|ynwn−1|2|eη,a(n)|2

]
+μE

[
|ynwn−1|2|v(n)|2

]

= 2E
[
|e,a(n)|2

]
, (33b)

μηE
[
|y

nwn−1|2|ew,a(n)|2
]
+ μηE

[
|y

nwn−1|2|e,a(n)|2
]

+μηE
[
|y

nwn−1|2|eη,a(n)|2
]
+μηE

[
|y

nwn−1|2|v(n)|2
]

= 2E
[
|eη,a(n)|2

]
. (33c)

This system of equations can now be solved for the EMSEs ζw,
ζ, and ζη . To do so, we consider the following two cases.
1) Using Separation Principle: One way to solve the equa-

tions in (33) is by imposing the following assumption.
A.3: In steady state, yn2, |ynwn−1|2, and |y

nwn−1|2 are
statistically independent of |ew,a|2, |e,a(n)|2, and |eη,a(n)|2.
This assumption is reasonable at the steady state since the

behavior of the a priori errors is less likely to be sensitive to the
input data. It is similar to the separation principle assumption
made in, e.g., [33], [42], and allows us to write

E
[
yn2|ew,a(n)|2

]
= E

[
yn2

]
E
[
|ew,a(n)|2

]
,

E
[
|ynwn−1|2|e,a(n)|2

]
= E

[
|ynwn−1|2

]
E
[
|e,a(n)|2

]
,

E
[
|y

nwn−1|2|eη,a(n)|2
]
= E

[
|y

nwn−1|2
]
E
[
|eη,a(n)|2

]
.

Furthermore, we make the following assumptions.

A.4: In steady state for a static channel, asn → ∞, the channel
estimate is close to the actual channelwn−1 → wo.

A.5: In steady state, for sufficiently small ηo, the following
equalities hold: yn2 = xn2, |ynwn−1|2 = |xnw

o|2 and
|y

nwn−1|2 = |x
nw

o|2.
A.6: In steady state, the two sets of a priori errors

are equivalent, i.e.,E|enw,a(n)|2 = E|ew,a(n)|2,E|en,a(n)|2 =
E|e,a(n)|2, E|enη,a(n)|2 = E|eη,a(n)|2.

Using the assumptions A.3 through A.6, and solving (33)
for ζw, ζ, and ζη , we obtain the following expressions for the
EMSEs of the proposed algorithm:

ζw =
2μw Tr (R)σ2

v

γ

+
M μ Tr (RQ)

μw Tr (R) σ
2
v +M

μη Tr (PQ)
μw Tr (R) σ

2
v

γ
,

ζ =
2μ Tr (RQ)σ2

v

γ
,

ζη =
2μη Tr (PQ)σ2

v

γ
,

(35a)

(35b)

(35c)

where the denominator γ is

γ = 4− 2μw Tr (R)− 2μ Tr (RQ)− 2μη Tr (PQ)

−M
μ Tr (RQ)

μw Tr (R)
−M

μη Tr (PQ)

μw Tr (R)
(36)

and R is the covariance matrix R = E[x∗
nxn], P is the covari-

ance matrix P = E[(x
n)

∗x
n], and Q = wo(wo)∗.

Note that, in order for the algorithm to remain stable, the
denominator of the EMSEs needs to be positive. If we consider
an approximation of the denominator without the self-induced
nonstationarity terms, i.e., the last two terms in (36), then this
result has an equivalent implication to that of the simple approxi-
mation (18), which we derived using the Taylor series expansion
of the instantaneous error.

2) Assuming Gaussian White Input Signals: For Gaussian
white input signals (with R = σ2

xI), relying on A.4 and A.5,
(33) can be more accurately solved by resorting to the following
independence assumption.

A.7:At steady state, the estimation errors w̃n, ̃(n), and η̃(n)
are all statistically independent of xn, xnw

o, and x
nw

o.
This is an extension of the assumption, which is widely used

for analysing the performance of adaptive filters [33]. Relying
on the independence assumption A.7 and following the same
reasoning that is used for analysing the steady-state performance
of the LMS adaptive filter [35, p. 296], it can be verified that

E
[
xn2|ek,a(n)|2

]
= (M + 1)σ2

xζ
k, (37a)

E
[
|xnw

o|2|ek,a(n)|2
]
=

(
1 +

1

M

)
σ2
xwo2ζk, (37b)

E
[
|x

nw
o|2|ek,a(n)|2

]
≈

(
2 +

2

M

)
σ2
xwo2ζk, (37c)
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where k is either w, , or η, and we have used that

σ2
x =

σ2
x(n) + σ2

x(n−1)

(Δn)2
= 2σ2

x,

where we are first relying on the independence of successive
samples of x(n) and consequently on the samples being identi-
cally distributed as well. The last equation in (37) does not hold
precisely but is an approximation, because the derivative itself is
not identically and independently distributed. Still, for a channel
wo with a relatively flat frequency response, this approximation
can be practical, as will be seen in the results section. Using A.4,
A.5, A.7, and solving (33) for ζw, ζ, and ζη , we obtain

ζw =
2μwMσ2

xσ
2
v

γ

+

μ

μwM wo2σ2
v +

μη

μwM 2wo2σ2
v

γ
,

ζ =
2μσ

2
xwo2σ2

v

γ
,

ζη =
4μησ

2
xwo2σ2

v

γ
,

(38a)

(38b)

(38c)

where the denominator γ is the same for all equations:

γ = 4− 2μw(M + 1)σ2
x

− 2μ

(
1 +

1

M

)
σ2
xwo2 − μ

μw

(
1 +

1

M

)
wo2

− 4μη

(
1 +

1

M

)
σ2
xwo2 − 2

μη

μw

(
1 +

1

M

)
wo2.

(39)

V. NUMERICAL RESULTS

In order to verify the theoretical steady-state MSE expres-
sions and evaluate the performance of the proposed algorithm,
the theoretical results are herein first compared to steady-state
simulations, where the channel and frequency offsets are as-
sumed to be known to the algorithm and time-varying terms
are omitted, and then time-varying simulations together with
proof-of-concept RF measurements are presented.

A. Steady-State Results

In Fig. 3, the steady-state theoretical MSEs obtained from
expressions (35) and (38) are compared with the MSE observed
in simulations. The simulations are run with different channel
weight vectors wo, each of length M = 3 with a rather flat
frequency response. The input signalxn is Gaussian of unit vari-
ance and the noise v(n) is Gaussian with variance σ2

v = 10−3.
From here on out, in order to make the results relatable, we refer
to the sampling frequency offset as Δf = fd − fx instead of
ηo. The simulated frequency offsets are o = 6kHz and Δf =
5Hz, which, considering a carrier frequency of 2.4GHz and
sampling frequency of 2MHz, is equivalent to a 2.5 ppm oscil-
lator inaccuracy. Note that the MSE expressions do not depend

Fig. 3. Simulated and theoretical MSE curves relying on the separation
principle and Gaussian input versus μ for μw = 0.0025 and μη = 0 on the
left and versus μη for μw = 0.005 and μ = 0 on the right.

on the frequency offset values, since the offsets themselves
inherently do not affect the energy conservation relation. This is
in alignment with our extensive simulation results for practical
ranges of o andΔf (that are not shown herein), as steady-state
MSE is indifferent w.r.t. the offset values. Thus, the simulated
results are only plotted for these two example frequency offsets.

Each simulation result is the steady-state statistical average
of 1024 runs, with 5000 iterations in each run. The average
of the last 2500 entries of the ensemble-average curve is then
used as the simulated MSE value. Oversampling is used to
prevent interpolation errors from skewing the simulation results.
In Fig. 3, the analysis focuses separately on either frequency
offset estimation combined with the channel estimation. The
comparison shows that both expressions are in good match with
simulation results at small values of μ and μη . However, (38)
gives a better match with the simulation results for larger μ and
μη values, which supports the use of A.7.
Figs. 4 and 5 compare the theoreticalMSE obtained from (38)

with the simulatedMSE for various μw over a range of μ or μη .
Again, the results show a good match between theoretical and
simulated results, especially at smaller step size values, when
the steady-state assumptions are better justified. However, in
general the sampling frequency offset update equation is not
well suited for operating with disproportionally selected step
sizes — carrier frequency offset can usually be recovered, but if
the signals become unaligned in time because of persisting large
estimation errors in sampling frequency offset, then this can be
difficult to recover from.

Furthermore, Figs. 4 and 5 also illustrate the relevance of
the the step sizes’ upper bound (18). For visual clarity, only
a single upper bound is calculated and plotted by taking the
two step sizes, which are varied, to be equal in (18). As the
step sizes approach the upper bound, performance of the filter
deteriorates, and, since thefilter leaves the steady state, thematch
between theoretical and simulated MSE results also declines.
Finally, Fig. 6 presents a comparison of the theoretical and
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Fig. 4. Simulated (only markers) and theoretical (solid lines) MSE curves at
various μw versus μ for μη = 0. The dashed vertical line indicates the upper
bound for the two step sizes when μw = μ.

Fig. 5. Simulated (only markers) and theoretical (solid lines) MSE curves at
various μw versus μη for μ = 0. The dashed vertical line indicates the upper
bound for the two step sizes when μw = μη .

simulated MSEs of the proposed algorithm when all of the
system parameters are simultaneously estimated. As shown by
all the foregoing numerical results in Figs. 3–6, the theoretical
results match very well with the simulations.

B. Time-Varying Results

In this subsection, using simulations, we analyze the perfor-
mance of the proposed filter when the frequency offsets are
time-varying, i.e., we focus on the effect of φ(n) and β(n)
on the algorithm’s performance. Fig. 7 illustrates the filter’s
ability to track long-term changes in the time-varying terms.
The simulations are started with perfect knowledge about the
initial state of the channel and with zero frequency offsets. Then
both frequency offsets are varied over time either gradually

Fig. 6. Simulated (only markers) and theoretical (solid lines) MSE curves at
various μ versus μη for μw = 10−3.

Fig. 7. Simulated results illustrating the filter’s ability to track time-varying
frequency offsets at step sizes μw = 10−3, μ = 10−6, and μη = 10−6.

or abruptly as shown in Fig. 7 with the dashed lines. Other
simulation parameters are kept the same as previously, including
the ensemble averaging. The simulation results indicate that
the adaptive filter is able to track those changes, regardless of
whether the parameters change gradually or abruptly.As a result,
the MSE is stable over time, except for a brief readjustment
period during the abrupt frequency offset changes, which is
expected.

In contrast, Fig. 8 demonstrates the filter’s tracking perfor-
mance under short-term changes, i.e., phase noise and sampling
time jitter. Both are modelled as first-order autoregressive pro-
cesses with the process parameters αφ and αβ close to one and
the variances being σ2

φ and σ2
β (the exact values of which are

given in Fig. 8). The algorithm is run for 106 iterations and,
again, the simulations are started with perfect knowledge of
the initial state of the channel, yet without knowledge about
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where k is either w, , or η, and we have used that

σ2
x =

σ2
x(n) + σ2

x(n−1)

(Δn)2
= 2σ2

x,

where we are first relying on the independence of successive
samples of x(n) and consequently on the samples being identi-
cally distributed as well. The last equation in (37) does not hold
precisely but is an approximation, because the derivative itself is
not identically and independently distributed. Still, for a channel
wo with a relatively flat frequency response, this approximation
can be practical, as will be seen in the results section. Using A.4,
A.5, A.7, and solving (33) for ζw, ζ, and ζη , we obtain
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where the denominator γ is the same for all equations:
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V. NUMERICAL RESULTS

In order to verify the theoretical steady-state MSE expres-
sions and evaluate the performance of the proposed algorithm,
the theoretical results are herein first compared to steady-state
simulations, where the channel and frequency offsets are as-
sumed to be known to the algorithm and time-varying terms
are omitted, and then time-varying simulations together with
proof-of-concept RF measurements are presented.

A. Steady-State Results

In Fig. 3, the steady-state theoretical MSEs obtained from
expressions (35) and (38) are compared with the MSE observed
in simulations. The simulations are run with different channel
weight vectors wo, each of length M = 3 with a rather flat
frequency response. The input signalxn is Gaussian of unit vari-
ance and the noise v(n) is Gaussian with variance σ2

v = 10−3.
From here on out, in order to make the results relatable, we refer
to the sampling frequency offset as Δf = fd − fx instead of
ηo. The simulated frequency offsets are o = 6kHz and Δf =
5Hz, which, considering a carrier frequency of 2.4GHz and
sampling frequency of 2MHz, is equivalent to a 2.5 ppm oscil-
lator inaccuracy. Note that the MSE expressions do not depend

Fig. 3. Simulated and theoretical MSE curves relying on the separation
principle and Gaussian input versus μ for μw = 0.0025 and μη = 0 on the
left and versus μη for μw = 0.005 and μ = 0 on the right.

on the frequency offset values, since the offsets themselves
inherently do not affect the energy conservation relation. This is
in alignment with our extensive simulation results for practical
ranges of o andΔf (that are not shown herein), as steady-state
MSE is indifferent w.r.t. the offset values. Thus, the simulated
results are only plotted for these two example frequency offsets.

Each simulation result is the steady-state statistical average
of 1024 runs, with 5000 iterations in each run. The average
of the last 2500 entries of the ensemble-average curve is then
used as the simulated MSE value. Oversampling is used to
prevent interpolation errors from skewing the simulation results.
In Fig. 3, the analysis focuses separately on either frequency
offset estimation combined with the channel estimation. The
comparison shows that both expressions are in good match with
simulation results at small values of μ and μη . However, (38)
gives a better match with the simulation results for larger μ and
μη values, which supports the use of A.7.
Figs. 4 and 5 compare the theoreticalMSE obtained from (38)

with the simulatedMSE for various μw over a range of μ or μη .
Again, the results show a good match between theoretical and
simulated results, especially at smaller step size values, when
the steady-state assumptions are better justified. However, in
general the sampling frequency offset update equation is not
well suited for operating with disproportionally selected step
sizes — carrier frequency offset can usually be recovered, but if
the signals become unaligned in time because of persisting large
estimation errors in sampling frequency offset, then this can be
difficult to recover from.

Furthermore, Figs. 4 and 5 also illustrate the relevance of
the the step sizes’ upper bound (18). For visual clarity, only
a single upper bound is calculated and plotted by taking the
two step sizes, which are varied, to be equal in (18). As the
step sizes approach the upper bound, performance of the filter
deteriorates, and, since thefilter leaves the steady state, thematch
between theoretical and simulated MSE results also declines.
Finally, Fig. 6 presents a comparison of the theoretical and
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Fig. 4. Simulated (only markers) and theoretical (solid lines) MSE curves at
various μw versus μ for μη = 0. The dashed vertical line indicates the upper
bound for the two step sizes when μw = μ.

Fig. 5. Simulated (only markers) and theoretical (solid lines) MSE curves at
various μw versus μη for μ = 0. The dashed vertical line indicates the upper
bound for the two step sizes when μw = μη .

simulated MSEs of the proposed algorithm when all of the
system parameters are simultaneously estimated. As shown by
all the foregoing numerical results in Figs. 3–6, the theoretical
results match very well with the simulations.

B. Time-Varying Results

In this subsection, using simulations, we analyze the perfor-
mance of the proposed filter when the frequency offsets are
time-varying, i.e., we focus on the effect of φ(n) and β(n)
on the algorithm’s performance. Fig. 7 illustrates the filter’s
ability to track long-term changes in the time-varying terms.
The simulations are started with perfect knowledge about the
initial state of the channel and with zero frequency offsets. Then
both frequency offsets are varied over time either gradually

Fig. 6. Simulated (only markers) and theoretical (solid lines) MSE curves at
various μ versus μη for μw = 10−3.

Fig. 7. Simulated results illustrating the filter’s ability to track time-varying
frequency offsets at step sizes μw = 10−3, μ = 10−6, and μη = 10−6.

or abruptly as shown in Fig. 7 with the dashed lines. Other
simulation parameters are kept the same as previously, including
the ensemble averaging. The simulation results indicate that
the adaptive filter is able to track those changes, regardless of
whether the parameters change gradually or abruptly.As a result,
the MSE is stable over time, except for a brief readjustment
period during the abrupt frequency offset changes, which is
expected.

In contrast, Fig. 8 demonstrates the filter’s tracking perfor-
mance under short-term changes, i.e., phase noise and sampling
time jitter. Both are modelled as first-order autoregressive pro-
cesses with the process parameters αφ and αβ close to one and
the variances being σ2

φ and σ2
β (the exact values of which are

given in Fig. 8). The algorithm is run for 106 iterations and,
again, the simulations are started with perfect knowledge of
the initial state of the channel, yet without knowledge about
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Fig. 8. Simulated performance for various sampling jitter and phase noise
variances when o = 0 and ηo = 0 at step sizes μw = 0, μ = 0, and μη =

0 (dashed lines), μw = 10−3, μ = 0, and μη = 0 (dash dotted lines), and
μw = 10−3, μ = 10−5, and μη = 10−5 (solid lines).

Fig. 9. Experiment setup in an office room with two USRP-2900s.

the noise processes. The simulations illustrate three cases: no
adaptation at all, adaptation of only the channel estimate wn,
and adaptation of all the parameters. The casewithout adaptation
serves as a baseline for the MSE performance in the given noisy
circumstances, while the other cases illustrate the benefits of
adapting the channel and frequency offset estimates. The results
show that, even though excessive phase noise and sampling
jitter can degrade the algorithm’s performance, adapting all the
parameters still has a clear benefit compared to limited or no
adaptation.

C. Experimental Results

The experiment is carried out indoors using two USRP-2900
software-defined radios with dipole antennas. The radios have
internal temperature-compensated crystal oscillators with fre-
quency accuracy of couple parts per million, presenting a fair
scenario for analyzing the algorithm. The radios are positioned
in the opposite corners of an office room with about five meters
line-of-sight distance between them as shown in Fig. 9. As such,
the experimental setup is static, with only the inherent oscillator
drifts contributing a slowly time-varying component. The mea-
surements are done in a relatively quiet section of the 2.4GHz
ISM frequency band, so that signals from other wireless devices

Fig. 10. Power spectral densities of the transmitted, received, and residual
signals along with the noise floor at the receiver in steady state, i.e., discarding
the start-up phase of the algorithm.

do not affect the measurements, and using a sampling rate
of 2MHz. The transmitter broadcasts a bandlimited Gaussian
noise signal, which is known to the receiver entirely. As such,
the experiment illustrates the known-interference cancellation
scenario, where the residual error signal could contain a signal
of interest. Two signals bandwidths, 1MHz and 0.5MHz, are
used with transmit powers −60 dBm/Hz or −90 dBm/Hz. The
receiving node receives the bandlimited noise signal over the air
and records it. The algorithm is then runoffline on the recordings.

Length of the estimated channel vector wn is taken to be
M = 9, which is more than sufficient for this scenario, and
all of the estimated parameters are initialized to zero. For the
algorithm to converge, it is required that the known and received
signal streams be coarsely aligned in time (i.e., the difference in
the two streams’ starts may not exceed M − 1 samples). That
coarse alignment is provided by onset detection — comparing
the received signal’s energy to a threshold. Fig. 10 shows the
measured signal spectra at different stages of the system model.
It can be observed that suppression of the known interference is
not significantly affected by its bandwidth. Furthermore, when
the received known interference is substantially above the noise
floor then the MSE, i.e., the residual signal, is much higher than
themeasurement noise floor. This is caused by the nonlinearities
induced in the USRP-2900 RF front-ends, which the algorithm
does not account for. When the received known interference is
not so powerful, those nonlinearities do not affect cancellation.
Based on measurements at other received known-interference
power levels that are omitted for brevity, in this scenario the
algorithm requires that the signal be at least 4 dB above the
noise floor in order to provide stable parameter estimates.

Finally, Fig. 11 demonstrates the algorithm’s performance
for the purpose of known-interference cancellation while es-
timating and tracking the channel together with the frequency
offsets (Residual 2 and 3) as opposed to estimating and tracking
the channel without compensating for the frequency offsets
(Residual 1). It is evident that explicit adaptation of frequency
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Fig. 11. Proposed algorithm’s MSE progression in time for the 0.5 MHz
−60 dBm/Hz signal. Residual 1 is without frequency offset compensation
(μ = 0 and μη = 0); Residual 2 uses larger step sizes for frequency offset
updates (μ = 5 · 10−5 & μη = 5 · 10−5) and Residual 3 uses smaller step
sizes (μ = 2 · 10−6 & μη = 2 · 10−6); Residual 4 and 5 supplement cases
2 and 3, as the frequency offset estimations are stopped after 10 s. Residual 6
illustrates the situation without sampling frequency offset compensation.

offsets gives better short-term and long-term performance. The
results also show how continuous frequency offsets tracking
is necessary in practice (Residual 4, 5 and 6), due to their
time-varying nature. Again, it is clear that the experimentalMSE
does not reach the noise floor, as excessive phase noise, sampling
time jitter, and nonlinear distortions degrade the performance of
the algorithm. Nevertheless, the experimental results demon-
strate the efficiency of the proposed algorithm in estimating and
compensating for time-varying carrier and sampling frequency
offsets of an unknown channel.

We compared the proposed algorithm to the method in [19]
using a separate set of measurements with a cyclic bandlimited
Gaussian noise waveform having period L. The two algorithms
achieved a similar level of MSE eventually as long as the period
L was chosen so that the carrier frequency offset remained
within the reference algorithm’s estimation range. As such, only
the proposed algorithm’s results are presented in the figures
for brevity. The reference algorithm does have an advantage
over the proposed algorithm in that it provides estimates of the
channel and frequency offsets quicker. However, this advantage

of the reference method relies on the assumptions that the used
waveform is cyclic with period L and the combination of period
L and sampling rate is appropriate for the frequency offsets. The
latter of which significantly limits the acceptable range ofL. The
proposed algorithm, however, is not limited to cyclic waveforms
and, as such, is also free from the related estimation range and
accuracy limitations.

VI. CONCLUSION

This article proposed an adaptive filter for jointly and explic-
itly estimating the channel impulse response, carrier frequency
offset, and sampling frequency offset between a transmitter and
receiver pair. The proposed algorithm relies on the stochastic
gradient descent method minimizing the mean-square error and
is therefore computationally simple, yet effective. Compared to
existingmethods, the proposed adaptive filter facilitates estimat-
ing the channel and frequency offsets without requirements on
the used waveform. Stability and convergence of the algorithm
depend on the proper selection of step sizes in relation to the
other system parameters. Hence, upper bounds for the step sizes
were derived and presented. Furthermore, this article also pro-
vides a theoretical steady-state analysis of the proposed adaptive
filter. Novel expressions for the excess mean-square error were
derived by extending the energy conservation relation to account
for the self-induced nonstationarity inherent in the proposed
adaptive filter. Validity of the theoretical expressions was cor-
roborated through comparison to simulations. Also, simulation
results were presented for time-varying and noisy frequency
offsets. Finally, the algorithm was validated on measurement
data.

APPENDIX

The following analysis extends the energy conservation rela-
tion [33], which is established by expressing the update equa-
tions in (10) in terms of the estimation errors w̃n, ̃(n), and
η̃(n). Subtracting both sides of (10a) from wo

n, both sides of
(10b) from o, and both sides of (10c) from ηo, we get
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Furthermore, by multiplying both sides of equation (40a) with
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i=1 (i−1), we see that the a priori
(28) and a posteriori (30) estimation errors are related via

ew,p(n) = ew,a(n)− μwyn2e(n), (41a)

e,p(n) = e,a(n)− μ|ynwn−1|2j∗e(n), (41b)

eη,p(n) = eη,a(n)− μη|y
nwn−1|2e(n). (41c)
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Fig. 8. Simulated performance for various sampling jitter and phase noise
variances when o = 0 and ηo = 0 at step sizes μw = 0, μ = 0, and μη =

0 (dashed lines), μw = 10−3, μ = 0, and μη = 0 (dash dotted lines), and
μw = 10−3, μ = 10−5, and μη = 10−5 (solid lines).

Fig. 9. Experiment setup in an office room with two USRP-2900s.

the noise processes. The simulations illustrate three cases: no
adaptation at all, adaptation of only the channel estimate wn,
and adaptation of all the parameters. The casewithout adaptation
serves as a baseline for the MSE performance in the given noisy
circumstances, while the other cases illustrate the benefits of
adapting the channel and frequency offset estimates. The results
show that, even though excessive phase noise and sampling
jitter can degrade the algorithm’s performance, adapting all the
parameters still has a clear benefit compared to limited or no
adaptation.

C. Experimental Results

The experiment is carried out indoors using two USRP-2900
software-defined radios with dipole antennas. The radios have
internal temperature-compensated crystal oscillators with fre-
quency accuracy of couple parts per million, presenting a fair
scenario for analyzing the algorithm. The radios are positioned
in the opposite corners of an office room with about five meters
line-of-sight distance between them as shown in Fig. 9. As such,
the experimental setup is static, with only the inherent oscillator
drifts contributing a slowly time-varying component. The mea-
surements are done in a relatively quiet section of the 2.4GHz
ISM frequency band, so that signals from other wireless devices

Fig. 10. Power spectral densities of the transmitted, received, and residual
signals along with the noise floor at the receiver in steady state, i.e., discarding
the start-up phase of the algorithm.

do not affect the measurements, and using a sampling rate
of 2MHz. The transmitter broadcasts a bandlimited Gaussian
noise signal, which is known to the receiver entirely. As such,
the experiment illustrates the known-interference cancellation
scenario, where the residual error signal could contain a signal
of interest. Two signals bandwidths, 1MHz and 0.5MHz, are
used with transmit powers −60 dBm/Hz or −90 dBm/Hz. The
receiving node receives the bandlimited noise signal over the air
and records it. The algorithm is then runoffline on the recordings.

Length of the estimated channel vector wn is taken to be
M = 9, which is more than sufficient for this scenario, and
all of the estimated parameters are initialized to zero. For the
algorithm to converge, it is required that the known and received
signal streams be coarsely aligned in time (i.e., the difference in
the two streams’ starts may not exceed M − 1 samples). That
coarse alignment is provided by onset detection — comparing
the received signal’s energy to a threshold. Fig. 10 shows the
measured signal spectra at different stages of the system model.
It can be observed that suppression of the known interference is
not significantly affected by its bandwidth. Furthermore, when
the received known interference is substantially above the noise
floor then the MSE, i.e., the residual signal, is much higher than
themeasurement noise floor. This is caused by the nonlinearities
induced in the USRP-2900 RF front-ends, which the algorithm
does not account for. When the received known interference is
not so powerful, those nonlinearities do not affect cancellation.
Based on measurements at other received known-interference
power levels that are omitted for brevity, in this scenario the
algorithm requires that the signal be at least 4 dB above the
noise floor in order to provide stable parameter estimates.

Finally, Fig. 11 demonstrates the algorithm’s performance
for the purpose of known-interference cancellation while es-
timating and tracking the channel together with the frequency
offsets (Residual 2 and 3) as opposed to estimating and tracking
the channel without compensating for the frequency offsets
(Residual 1). It is evident that explicit adaptation of frequency
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Fig. 11. Proposed algorithm’s MSE progression in time for the 0.5 MHz
−60 dBm/Hz signal. Residual 1 is without frequency offset compensation
(μ = 0 and μη = 0); Residual 2 uses larger step sizes for frequency offset
updates (μ = 5 · 10−5 & μη = 5 · 10−5) and Residual 3 uses smaller step
sizes (μ = 2 · 10−6 & μη = 2 · 10−6); Residual 4 and 5 supplement cases
2 and 3, as the frequency offset estimations are stopped after 10 s. Residual 6
illustrates the situation without sampling frequency offset compensation.

offsets gives better short-term and long-term performance. The
results also show how continuous frequency offsets tracking
is necessary in practice (Residual 4, 5 and 6), due to their
time-varying nature. Again, it is clear that the experimentalMSE
does not reach the noise floor, as excessive phase noise, sampling
time jitter, and nonlinear distortions degrade the performance of
the algorithm. Nevertheless, the experimental results demon-
strate the efficiency of the proposed algorithm in estimating and
compensating for time-varying carrier and sampling frequency
offsets of an unknown channel.

We compared the proposed algorithm to the method in [19]
using a separate set of measurements with a cyclic bandlimited
Gaussian noise waveform having period L. The two algorithms
achieved a similar level of MSE eventually as long as the period
L was chosen so that the carrier frequency offset remained
within the reference algorithm’s estimation range. As such, only
the proposed algorithm’s results are presented in the figures
for brevity. The reference algorithm does have an advantage
over the proposed algorithm in that it provides estimates of the
channel and frequency offsets quicker. However, this advantage

of the reference method relies on the assumptions that the used
waveform is cyclic with period L and the combination of period
L and sampling rate is appropriate for the frequency offsets. The
latter of which significantly limits the acceptable range ofL. The
proposed algorithm, however, is not limited to cyclic waveforms
and, as such, is also free from the related estimation range and
accuracy limitations.

VI. CONCLUSION

This article proposed an adaptive filter for jointly and explic-
itly estimating the channel impulse response, carrier frequency
offset, and sampling frequency offset between a transmitter and
receiver pair. The proposed algorithm relies on the stochastic
gradient descent method minimizing the mean-square error and
is therefore computationally simple, yet effective. Compared to
existingmethods, the proposed adaptive filter facilitates estimat-
ing the channel and frequency offsets without requirements on
the used waveform. Stability and convergence of the algorithm
depend on the proper selection of step sizes in relation to the
other system parameters. Hence, upper bounds for the step sizes
were derived and presented. Furthermore, this article also pro-
vides a theoretical steady-state analysis of the proposed adaptive
filter. Novel expressions for the excess mean-square error were
derived by extending the energy conservation relation to account
for the self-induced nonstationarity inherent in the proposed
adaptive filter. Validity of the theoretical expressions was cor-
roborated through comparison to simulations. Also, simulation
results were presented for time-varying and noisy frequency
offsets. Finally, the algorithm was validated on measurement
data.

APPENDIX

The following analysis extends the energy conservation rela-
tion [33], which is established by expressing the update equa-
tions in (10) in terms of the estimation errors w̃n, ̃(n), and
η̃(n). Subtracting both sides of (10a) from wo
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Equations (40) and (41) provide an alternative representation
of the adaptive filter in terms of the error quantities. This is
useful, as it will allow relating the steady-state behavior of
these errors. So, rearranging (41a), (41b), and (41c) allows us to
express the total error e(n) separately in terms of the three sets
of a priori and a posteriori errors:

e(n) =
1

μwyn2
[ew,a(n)− ew,p(n)] , (42a)

e(n) =
1

μ|ynwn−1|2
[e,a(n)− e,p(n)] , (42b)

e(n) =
1

μη|y
nwn−1|2

[eη,a(n)− eη,p(n)] . (42c)

Substituting the right-hand sides of the above into (40a), (40b),
and (40c), gives respectively

w̃n = wo
n −wn−1 −

y∗
n

yn2
[ew,a(n)− ew,p(n)] , (43a)

̃(n) = ̃(n− 1)− (ynwn−1)
∗

|ynwn−1|2
[e,a(n)− e,p(n)] , (43b)

η̃(n) = η̃(n− 1)− (y
nwn−1)

∗

|y
nwn−1|2

[eη,a(n)− eη,p(n)] , (43c)

where on each side those identities, we have a combination of a
priori and a posteriori errors, while the step sizes cancel out. By
evaluating the energies of both sides, we find that the following
energy equalities hold:

w̃n2 +
|ew,a(n)|2
yn2

= wo
n −wn−12 +

|ew,p(n)|2
yn2

, (44a)
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|y
nwn−1|2
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Comparing (44a) with (44b) and (44c), we see that the main
difference concerns the interpretation of the termswo

n −wn and
wo

n −wn−1. While the term on the left-hand side of (44a) can
be recognized as w̃n, just like the terms on the left-hand sides
of (44b) and (44c), the second difference is not w̃n−1 since, due
to the self-induced nonstationarity, w̃n−1 is defined as w̃n−1 =
wo

n−1 −wn−1 in terms of wo
n−1 and not wo

n.
In order to explain the relevance of the energy relation equa-

tions to the steady-state analysis of the adaptive filter, we first
need to relate wo

n −wn−12 to w̃n−12. To do so, we can
write
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Recall that the first three terms on the right-hand side within the
squared norm constitute wo

n by means of linear approximation

as in the derivation of (26). Based on (45), we get

wo
n −wn−12 = w̃n−12 +

∥∥wo
n−1j̃(n− 1)

∥∥2

+

∥∥∥∥
y∗
n

yn2
y
nw

o
n−1η̃(n− 1)

∥∥∥∥
2

. (46)

The last two terms on the right-hand side of which can be related
to |en,a(n)|2 and |enη,a(n)|2 by writing

wo
n −wn−12 = w̃n−12 +

M |en,a(n)|2

yn2
+

M |enη,a(n)|2

yn2
.

(47)
Substituting (47) into (44a), taking the expectation

of both sides of (44a), (44b), and (44c), using that
Ew̃n2 = Ew̃n−12, E|̃(n)|2 = E|̃(n− 1)|2, and
E|η̃(n)|2 = E|η̃(n− 1)|2 in steady state as n → ∞, gives
the following fundamental variance relations:

E

[ |ew,a(n)|2
yn2

]
= E

[
M |en,a(n)|2

yn2

]

+ E

[
M |enη,a(n)|2

yn2

]
+ E

[ |ew,p(n)|2
yn2

]
, (48a)

E

[ |e,a(n)|2
|ynwn−1|2

]
= E

[ |e,p(n)|2
|ynwn−1|2

]
, (48b)

E

[ |eη,a(n)|2
|y

nwn−1|2
]
= E

[ |eη,p(n)|2
|y

nwn−1|2
]
. (48c)

These equalities are given in terms of the a priori and a posteriori
errors.However,we know from (41) how those errors are related.
Therefore, using (41) the above collapse to the following error
variance relations in terms of the a priori errors and noise only:

E

[ |ew,a(n)|2
yn2

]
= E

[
M |en,a(n)|2

yn2

]
+ E

[
M |enη,a(n)|2

yn2

]

+ E

[
1

yn2
|ew,a(n)− μwyn2e(n)|2

]
, (49a)

E

[ |e,a(n)|2
|ynwn−1|2

]
= E

[ |e,a(n)− μ|ynwn−1|2j∗e(n)|2
|ynwn−1|2

]
,

(49b)

E

[ |eη,a(n)|2
|y

nwn−1|2
]
= E

[ |eη,a(n)− μη|y
nwn−1|2e(n)|2

|y
nwn−1|2

]
.

(49c)

Expanding the above, rearranging, and dividing by μw, μ, and
μη respectively, we get

μwE
[
yn2|e(n)|2

]
+ E

[
M |en,a(n)|2
μwyn2

]

+ E

[
M |enη,a(n)|2
μwyn2

]
= 2

{
E
[
e∗w,a(n)e(n)

]}
, (50a)

μE
[
|ynwn−1|2|e(n)|2

]
= 2

{
E
[
e∗,a(n)e(n)

]}
, (50b)

μηE
[
|y

nwn−1|2|e(n)|2
]
= 2

{
E
[
e∗η,a(n)e(n)

]}
. (50c)

Finally, substituting (29) into the equations in (50) while also
relying on A.2, we arrive at the equations in (33).
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Equations (40) and (41) provide an alternative representation
of the adaptive filter in terms of the error quantities. This is
useful, as it will allow relating the steady-state behavior of
these errors. So, rearranging (41a), (41b), and (41c) allows us to
express the total error e(n) separately in terms of the three sets
of a priori and a posteriori errors:

e(n) =
1

μwyn2
[ew,a(n)− ew,p(n)] , (42a)

e(n) =
1

μ|ynwn−1|2
[e,a(n)− e,p(n)] , (42b)

e(n) =
1

μη|y
nwn−1|2

[eη,a(n)− eη,p(n)] . (42c)

Substituting the right-hand sides of the above into (40a), (40b),
and (40c), gives respectively

w̃n = wo
n −wn−1 −

y∗
n

yn2
[ew,a(n)− ew,p(n)] , (43a)

̃(n) = ̃(n− 1)− (ynwn−1)
∗

|ynwn−1|2
[e,a(n)− e,p(n)] , (43b)

η̃(n) = η̃(n− 1)− (y
nwn−1)

∗

|y
nwn−1|2

[eη,a(n)− eη,p(n)] , (43c)

where on each side those identities, we have a combination of a
priori and a posteriori errors, while the step sizes cancel out. By
evaluating the energies of both sides, we find that the following
energy equalities hold:

w̃n2 +
|ew,a(n)|2
yn2

= wo
n −wn−12 +

|ew,p(n)|2
yn2

, (44a)

|̃(n)|2 + |e,a(n)|2
|ynwn−1|2

= |̃(n− 1)|2 + |e,p(n)|2
|ynwn−1|2

, (44b)

|η̃(n)|2 + |eη,a(n)|2
|y

nwn−1|2
= |η̃(n− 1)|2 + |eη,p(n)|2

|y
nwn−1|2

. (44c)

Comparing (44a) with (44b) and (44c), we see that the main
difference concerns the interpretation of the termswo

n −wn and
wo

n −wn−1. While the term on the left-hand side of (44a) can
be recognized as w̃n, just like the terms on the left-hand sides
of (44b) and (44c), the second difference is not w̃n−1 since, due
to the self-induced nonstationarity, w̃n−1 is defined as w̃n−1 =
wo

n−1 −wn−1 in terms of wo
n−1 and not wo

n.
In order to explain the relevance of the energy relation equa-

tions to the steady-state analysis of the adaptive filter, we first
need to relate wo

n −wn−12 to w̃n−12. To do so, we can
write

wo
n −wn−12 =

∥∥∥∥wo
n−1 +wo

n−1j̃(n− 1)

+
y∗
n

yn2
y
nw

o
n−1η̃(n− 1)−wn−1

∥∥∥∥
2

.

(45)

Recall that the first three terms on the right-hand side within the
squared norm constitute wo

n by means of linear approximation

as in the derivation of (26). Based on (45), we get

wo
n −wn−12 = w̃n−12 +

∥∥wo
n−1j̃(n− 1)

∥∥2

+

∥∥∥∥
y∗
n

yn2
y
nw

o
n−1η̃(n− 1)

∥∥∥∥
2

. (46)

The last two terms on the right-hand side of which can be related
to |en,a(n)|2 and |enη,a(n)|2 by writing

wo
n −wn−12 = w̃n−12 +

M |en,a(n)|2

yn2
+

M |enη,a(n)|2

yn2
.

(47)
Substituting (47) into (44a), taking the expectation

of both sides of (44a), (44b), and (44c), using that
Ew̃n2 = Ew̃n−12, E|̃(n)|2 = E|̃(n− 1)|2, and
E|η̃(n)|2 = E|η̃(n− 1)|2 in steady state as n → ∞, gives
the following fundamental variance relations:

E

[ |ew,a(n)|2
yn2

]
= E

[
M |en,a(n)|2

yn2

]

+ E

[
M |enη,a(n)|2

yn2

]
+ E

[ |ew,p(n)|2
yn2

]
, (48a)

E

[ |e,a(n)|2
|ynwn−1|2

]
= E

[ |e,p(n)|2
|ynwn−1|2

]
, (48b)

E

[ |eη,a(n)|2
|y

nwn−1|2
]
= E

[ |eη,p(n)|2
|y

nwn−1|2
]
. (48c)

These equalities are given in terms of the a priori and a posteriori
errors.However,we know from (41) how those errors are related.
Therefore, using (41) the above collapse to the following error
variance relations in terms of the a priori errors and noise only:

E

[ |ew,a(n)|2
yn2

]
= E

[
M |en,a(n)|2

yn2

]
+ E

[
M |enη,a(n)|2

yn2

]

+ E

[
1

yn2
|ew,a(n)− μwyn2e(n)|2

]
, (49a)

E

[ |e,a(n)|2
|ynwn−1|2

]
= E

[ |e,a(n)− μ|ynwn−1|2j∗e(n)|2
|ynwn−1|2

]
,

(49b)

E

[ |eη,a(n)|2
|y

nwn−1|2
]
= E

[ |eη,a(n)− μη|y
nwn−1|2e(n)|2

|y
nwn−1|2

]
.

(49c)

Expanding the above, rearranging, and dividing by μw, μ, and
μη respectively, we get

μwE
[
yn2|e(n)|2

]
+ E

[
M |en,a(n)|2
μwyn2

]

+ E

[
M |enη,a(n)|2
μwyn2

]
= 2

{
E
[
e∗w,a(n)e(n)

]}
, (50a)

μE
[
|ynwn−1|2|e(n)|2

]
= 2

{
E
[
e∗,a(n)e(n)

]}
, (50b)

μηE
[
|y

nwn−1|2|e(n)|2
]
= 2

{
E
[
e∗η,a(n)e(n)

]}
. (50c)

Finally, substituting (29) into the equations in (50) while also
relying on A.2, we arrive at the equations in (33).
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Physical-Layer Reliability of Drones and Their
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Abstract—In this article, we study the advantages and disad-
vantages that full-duplex (FD) radio technology brings to remote-
controlled drone and counter-drone systems in comparison to
classical half-duplex (HD) radio technology. We consider espe-
cially the physical-layer reliability perspective that has not yet
been comprehensively studied. For establishing a solid analytical
background, we first derive original closed-form expressions to
evaluate demodulation and detection performance of frequency-
hopped and frequency-shift keyed drone remote control signals
under external or self-inflicted interference. The developed an-
alytical tools are verified by comparison to simulated results
and then used to study the impact that the operation mode
has on the operable area of drones and effectiveness of counter-
drone systems in different scenarios, linking the physical layer
performance to practical safety. Analysis of the scenarios shows
that FD operation compared to HD can improve the effectiveness
of a counter-drone system and that in FD mode a drone can
detect the attacks from the counter-drone system from a greater
distance than in HD mode. However, two-way communication
between the remote controller and drone in FD mode compared
to HD significantly reduces the drone’s operable area when
targeted by a smart counter-drone system.

Index Terms—Reliability, drone, UAV, counter-drone, half-
duplex, full-duplex, jamming, energy detection.

I. INTRODUCTION

RELIABILITY is a critical issue in wireless communi-
cations, since malicious users may, due to the broad-

cast nature of wireless transmissions, rather easily interfere
with the reception of the transmitted signals at the intended
receiver. There are some reliability-enhancing methods that
can be used on the upper layers of a two-point wireless
communications link to mitigate the effect of interference. For
example, channel coding can help overcome interference at
the cost of redundancy in the communication. However, the
physical-layer implementation (i.e., the modulation technique
and rate along with the use of spread spectrum techniques) of
a wireless system lays the foundation for the communication’s
overall reliability, similarly to how the physical-layer imple-
mentation of an electronic counter-measure system determines
its respective performance.
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One recent development that has the potential to enhance
both wireless communication and electronic counter-measure
systems is full-duplex (FD) radio technology. Advances in the
self-interference (SI) cancellation research are facilitating FD
operation [1] that potentially allows to simultaneously combine
wireless communications and electronic warfare functions.
This entails, e.g., simultaneous signals reception and jam-
ming, to prevent eavesdropping and increase the security
of wireless systems, or simultaneous surveillance and jam-
ming, to increase the efficiency of electronic counter-measure
systems [2]. As such, FD radio technology is a promising
candidate for improving the reliability and also security of
wireless systems. Several practical works demonstrating the
feasibility of applying FD technology for such combinations
have already been published [3]–[5] in addition to the informa-
tion theoretic physical-layer secrecy studies [6]–[9]. However,
practical gains of such combinations with regards to physical-
layer reliability have not yet been comprehensively studied.

Reliability is essential in any wireless application and it is
becoming increasingly relevant as the number of connected
devices grows. However, in order to relate this work to the
safety of practical and timely systems, we focus here on
drone and counter-drone systems only. We consider drones
as the central theme of this work because the proliferation of
consumer drones poses a significant challenge in protecting
various airspaces [10] and, as the application of drones in
all aspects of life increases, their reliability and security is
becoming more and more important for the safety of the
applications in which they are used [11], [12]. There is also
significant overlap in FD and drone research as FD-enhanced
drones have been shown to outperform their terrestrial and
strictly half-duplex (HD) counterparts as base stations [13]
and relaying systems [14].

Countering malicious drones and improving the reliability
and security of remote-controlled drones has received signif-
icant interest as the availability of drones has increased. The
existing counter-measures have been thoroughly studied and
various aspects of counter-drone operations are progressively
enhanced [15], [16]. Likewise, robustness and privacy of the
wireless communications links of legitimate drone applications
have been carefully considered against various threats and
improvements are being suggested [17], [18]. Furthermore,
it has been recognized that the management of intentional
interference in satellite navigation on board of drones is
of significant importance [19]. However, all of these works
emphasize that, in order to promote safe, secure, and privacy-
respecting drone operations, there is still a need for innova-
tive technologies to neutralize malicious drones and improve
resilience of legitimate drone applications.



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 1

Physical-Layer Reliability of Drones and Their
Counter-Measures: Full vs. Half Duplex
Karel Pärlin, Taneli Riihonen, Senior Member, IEEE, Vincent Le Nir, and Marc Adrat

Abstract—In this article, we study the advantages and disad-
vantages that full-duplex (FD) radio technology brings to remote-
controlled drone and counter-drone systems in comparison to
classical half-duplex (HD) radio technology. We consider espe-
cially the physical-layer reliability perspective that has not yet
been comprehensively studied. For establishing a solid analytical
background, we first derive original closed-form expressions to
evaluate demodulation and detection performance of frequency-
hopped and frequency-shift keyed drone remote control signals
under external or self-inflicted interference. The developed an-
alytical tools are verified by comparison to simulated results
and then used to study the impact that the operation mode
has on the operable area of drones and effectiveness of counter-
drone systems in different scenarios, linking the physical layer
performance to practical safety. Analysis of the scenarios shows
that FD operation compared to HD can improve the effectiveness
of a counter-drone system and that in FD mode a drone can
detect the attacks from the counter-drone system from a greater
distance than in HD mode. However, two-way communication
between the remote controller and drone in FD mode compared
to HD significantly reduces the drone’s operable area when
targeted by a smart counter-drone system.

Index Terms—Reliability, drone, UAV, counter-drone, half-
duplex, full-duplex, jamming, energy detection.

I. INTRODUCTION

RELIABILITY is a critical issue in wireless communi-
cations, since malicious users may, due to the broad-

cast nature of wireless transmissions, rather easily interfere
with the reception of the transmitted signals at the intended
receiver. There are some reliability-enhancing methods that
can be used on the upper layers of a two-point wireless
communications link to mitigate the effect of interference. For
example, channel coding can help overcome interference at
the cost of redundancy in the communication. However, the
physical-layer implementation (i.e., the modulation technique
and rate along with the use of spread spectrum techniques) of
a wireless system lays the foundation for the communication’s
overall reliability, similarly to how the physical-layer imple-
mentation of an electronic counter-measure system determines
its respective performance.

Manuscript received 25 March 2023; revised 17 May 2023 and 9 June
2023; accepted 23 June 2023. The associate editor coordinating the review of
this paper and approving it for publication was Prof. J. Choi.
K. Pärlin and T. Riihonen are with Tampere University, Faculty of Informa-

tion Technology and Communication Sciences, Korkeakoulunkatu 1, 33720
Tampere, Finland (e-mail: karel.parlin@tuni.fi).
V. Le Nir is with Royal Military Academy, Signal and Image Center,

Avenue de la Renaissance 30, B-1000 Brussels, Belgium.
M. Adrat is with Fraunhofer Institute for Communication, Information

Processing and Ergonomics (FKIE), Fraunhofer Straße 20, 53343 Wachtberg,
Germany.
This research work was supported by the Academy of Finland and the

Finnish Scientific Advisory Board for Defence.
Digital Object Identifier 10.1109/TWC.2023.3290257

One recent development that has the potential to enhance
both wireless communication and electronic counter-measure
systems is full-duplex (FD) radio technology. Advances in the
self-interference (SI) cancellation research are facilitating FD
operation [1] that potentially allows to simultaneously combine
wireless communications and electronic warfare functions.
This entails, e.g., simultaneous signals reception and jam-
ming, to prevent eavesdropping and increase the security
of wireless systems, or simultaneous surveillance and jam-
ming, to increase the efficiency of electronic counter-measure
systems [2]. As such, FD radio technology is a promising
candidate for improving the reliability and also security of
wireless systems. Several practical works demonstrating the
feasibility of applying FD technology for such combinations
have already been published [3]–[5] in addition to the informa-
tion theoretic physical-layer secrecy studies [6]–[9]. However,
practical gains of such combinations with regards to physical-
layer reliability have not yet been comprehensively studied.
Reliability is essential in any wireless application and it is

becoming increasingly relevant as the number of connected
devices grows. However, in order to relate this work to the
safety of practical and timely systems, we focus here on
drone and counter-drone systems only. We consider drones
as the central theme of this work because the proliferation of
consumer drones poses a significant challenge in protecting
various airspaces [10] and, as the application of drones in
all aspects of life increases, their reliability and security is
becoming more and more important for the safety of the
applications in which they are used [11], [12]. There is also
significant overlap in FD and drone research as FD-enhanced
drones have been shown to outperform their terrestrial and
strictly half-duplex (HD) counterparts as base stations [13]
and relaying systems [14].
Countering malicious drones and improving the reliability

and security of remote-controlled drones has received signif-
icant interest as the availability of drones has increased. The
existing counter-measures have been thoroughly studied and
various aspects of counter-drone operations are progressively
enhanced [15], [16]. Likewise, robustness and privacy of the
wireless communications links of legitimate drone applications
have been carefully considered against various threats and
improvements are being suggested [17], [18]. Furthermore,
it has been recognized that the management of intentional
interference in satellite navigation on board of drones is
of significant importance [19]. However, all of these works
emphasize that, in order to promote safe, secure, and privacy-
respecting drone operations, there is still a need for innova-
tive technologies to neutralize malicious drones and improve
resilience of legitimate drone applications.
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In the context of wireless networks, it has been proposed
that jointly optimizing the trajectory and output power [20] or
beamforming [21] can be used to improve the physical-layer
security of drones. However, these methods rely on the channel
state information being available to drones and this is difficult
to acquire in practice, especially when dealing with non-
cooperative nodes. Another solution, which has been studied
under the term covert communications, is hiding wireless
transmissions [22]. Interference-generating FD receivers have
great potential of hiding wireless transmissions from eaves-
droppers [23], but this assumes that the interference-generating
node is ever-present at the eavesdroppers location [23] or that
the eavesdropper is uncertain about the noise parameters at
its receiver [24]. In practice it is difficult to justify these
assumptions within the context of counter-drone scenarios.

In this work, we examine how enhancing remote-controlled
drones and counter-drone systems with FD capabilities af-
fects their reliability. In order to provide a comprehensive
and practically relevant analysis, we consider counter-drone
systems with varying levels of sophistication. The goal of
this study is to characterize the performance of practical
remote-controlled drone and counter-drone systems for all
of the relevant configurations of HD and FD capabilities on
either side, giving detailed insight into the achievable physical-
layer reliability, which translates into the safety of practical
environments where drones are used, for good or bad.

Similar reliability analysis has not been carried out before
and, therefore, this work complements the existing research
from a new, practical perspective. Unlike the drone physical-
layer security works [20], [21], this work does not assume
known channel states nor optimizes the output power and
trajectory, but studies if FD is beneficial over HD at practical
output powers and operation-imposed trajectories. Compared
to FD physical-layer security works [6], [7], this work does
not analyse the information theoretical security of communi-
cations, but their physical-layer reliability under interference.
Furthermore, this work does not focus on the spectrum ef-
ficiency of FD communications [13], [14], but the physical
safety, which stems from the remote control link reliability.
Unlike existing counter-drone [15], [16] and counter counter-
drone works [17], [18] that consider aspects such as machine
learning, e.g., this work studies the duplexing modes.

In order to facilitate the analysis, we first derive analytical
methods for evaluating the detection and demodulation prob-
abilities of frequency-hopped binary frequency-shift keying
(BFSK) signals under interference. We then use that func-
tionality within three scenarios that illustrate the duplexing
mode trade-offs in improving the reliability and security of
remotely controlled drones as following. Firstly, the analysis
shows that operating a counter-drone system in FD mode
can be expected to improve its effectiveness compared to
that in HD mode. Secondly, operating the drone and remote
controller in FD two-way communication mode makes the
drone an easier target than in HD mode and, hence, reduces
the operable area. Thirdly, a FD-enhanced drone has superior
interference detection performance compared to a HD-limited
drone, possibly allowing the FD-enhanced drone to avoid
areas where it would be rendered inoperable by jamming.

All three scenarios also show the performance difference of
counter-drone systems with different complexities. Finally, we
study the energy efficiencies of the jamming strategies and
demonstrate the hard truth that elevating the counter-drone
system can be a more significant improvement than any of the
strategies or operation modes.

The rest of this article is organized as follows. To begin
with, Section II introduces in detail the system model consid-
ered in this work. Then, Section III develops the techniques
necessary for analysing all the possible configurations of the
presented system model. In Section IV, the developed analysis
techniques are, firstly, verified by comparison to simulations
and, secondly, used in three practical scenarios to study the
performance of HD and FD operation mode therein. Finally,
conclusions of the study are given in Section V.

II. SYSTEM MODEL

In this work we consider a system of three nodes as
illustrated in Fig. 1, consisting of a remote controller, a remote-
controlled drone, and a counter-drone system. We assume
that the remote controller and the drone use a two-way slow
frequency-hopped BFSK radio-frequency (RF) remote control
link, such as is used in many practical remote-controlled
drones [10]. The counter-drone system aims to detect that RF
link and neutralize the remote-controlled drone by interfering
with that RF link. Each of the nodes operates in either
HD or FD mode, with the FD mode enabling simultaneous
transmission and reception on the same frequency to combine
a selection of wireless communications, signals reconnais-
sance, and signals interference functions. We assume that the
channels between the three nodes are frequency flat, affected
only by the path loss, and can be modeled by complex
coefficients hRD, hRJ, and hDJ as shown in Fig. 1. We make
the same assumptions for the self-interference channels hRR,
hDD, and hJJ with the addition that these also potentially
include the effect of self-interference cancellation. The specific
capabilities and objectives of the three nodes are as follows.

Remote
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feed
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Fig. 1. Three-node system model, consisting of a remote controller, a remote-
controlled drone, and a counter-drone system. This system model is a simple,
yet realistic representation of counter-drone scenarios.
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A. Remote Controller

The main task of the remote controller is to transmit control
signals to the drone for directing its movements. The basic
elements of the transmitter at the remote controller are shown
in Fig. 2. The input binary data has a rate Rb [bits/s] and
it is error-correction encoded at a code rate r, so that the
encoded data has a rate Rc = Rb/r [bits/s]. The encoded data
is converted to BFSK symbols, and, since binary modulation is
considered, the symbol rate is equal to the encoded data rate
Rs = Rc. Finally, the symbols are mixed with a frequency
hopping tone of frequency ωm that changes with hop rate Rh.
As a result, the drone’s remote controller transmits a sequence
of slow frequency-hopped BFSK signal

xR
m,l(t) =

√
PR
x exp (i (ωm + lω∆) t+ iθx) (1)

with fixed signal power PR
x , frequency-hopped channel center

frequency ωm, channel number m, symbol l either 1 or −1
depending on the encoded data, frequency deviation ω∆, and
random initial phase θx. The superscript R in (1) denotes
the remote controller, while the superscript D will be used
to denote the drone’s signal and output power. The usual
definition of slow frequency hopping is that Rs > Rh, so that
several symbols are transmitted during a single hop, which
is also the case here. The total bandwidth W is divided into
M consecutive frequency hopping channels with bandwidths
W/M , as is typical for commercial drones in order to provide
a robust control link in noisy radio environments [10].

Data
SourceEncoder

Frequency
Synthesizer

PN
Generator

Hopping
Synthesizer

eiωmt

eilω∆t

l

m

x
{R,D}
m,l

(t)

Fig. 2. Block diagram of a slow frequency-hopped binary frequency-shift
keying transmitter at the remote controller or drone as indicated with the use
of curly brackets in x

{R,D}
m,l .

Additionally, in HD mode the remote controller is capable
of receiving signals on any of the channels that it is not
simultaneously transmitting on, while in FD mode the remote
controller is capable of receiving signals on any of the channels
at any time, subject to disturbance from residual SI on the
channel that it is simultaneously transmitting on. Residual SI
refers to the interference that the transmitting node causes to
itself, which due to insufficient cancellation interferes with the
desired signal being received by that node [1]. The received
signals can be either feedback from the drone, interference
from the counter-drone system, or both feedback and in-
terference superposed. The remote controller is assumed to
be fitted with a feedback receiver, which corresponds to the
noncoherent demodulator described in the next subsection.

B. Remote-Controlled Drone

For the purpose of this system model, the main task of the
drone is to receive the remote control signals without errors
from the operator. The structure of the receiver at the drone is
illustrated in Fig. 3. It is assumed that the remote controller and
drone have in advance agreed on a frequency hopping pattern
and that the dehopping synthesizer is perfectly aligned with the
hopping synthesizer in time and frequency. After dehopping,
the received complex baseband signal for channel m at the
drone receiver is

yDm(t) =
[
hRDx

R
m,l(t) + hDJjm(t) + n(t)

]
e−iωmt, (2)

where jm(t) is the interference transmitted by the counter-
drone system on frequency channel m, and n(t) denotes
complex lowpass additive white Gaussian noise with variance
E{n2(t)} � σ2

n. In order to demodulate the signal, the
noncoherent demodulator decides between the two hypotheses

H0 : yDm(t) =[
hRDx

R
m,−1(t) + hDJjm(t) + n(t)

]
e−iωmt,

(3)

H1 : yDm(t) =[
hRDx

R
m,+1(t) + hDJjm(t) + n(t)

]
e−iωmt,

(4)

where the signal-of-interest, xR
m,l(t), has been transmitted

with either l = −1 or l = +1 deviation. The noncoherent
demodulator passes the dehopped signal through two matched
filters, see Fig. 3(b), the output of which are sampled at rate Rc

and which result in two test statistics Yl =
∫ Tc

0
vl(t)y

D
m(t)dt,

where vl = exp (ilω∆t) is the complex basis function and Tc

the coded bit time duration. To decide between the hypotheses,
the two values, Y−1 and Y+1, are compared and the largest
chosen. This provides an estimate l̂ of the transmitted symbol.

Finally, decoding aims to correct any errors. We assume that
block coding is used, allowing to approximate the information-
bit error rate (BER) based on the channel-BER as

Pib ≈ d

n

d∑

i=t+1

(
n

i

)
P i
e (1− Pe)

n−i

+
1

n

n∑

i=d+1

i

(
n

i

)
P i
e (1− Pe)

n−i
, (5)

where Pe is the channel-BER, d is the minimum distance
between codewords, t = ⌊(d− 1)/2⌋, and n is the length of
the codewords [25].

Furthermore, in HD mode the drone is capable of transmit-
ting signals on any of the channels that its not simultaneously
receiving on, while in FD mode the drone is capable of
transmitting signals on any of the channels at any time,
although impacting the receiving performance due to residual
SI. The transmitted signals can be either feedback to the
remote controller or interference targeting the counter-drone
system, if the drone chooses to apply some electronic counter-
countermeasures. For transmitting feedback signals, the drone
is assumed to be fitted with the same transmitter as described
in the previous subsection. We consider that the drone is in its
operable area when the channel-BER in both ways is below a
certain threshold PT; that is, max{PD

e , PR
e } < PT.
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transmissions [22]. Interference-generating FD receivers have
great potential of hiding wireless transmissions from eaves-
droppers [23], but this assumes that the interference-generating
node is ever-present at the eavesdroppers location [23] or that
the eavesdropper is uncertain about the noise parameters at
its receiver [24]. In practice it is difficult to justify these
assumptions within the context of counter-drone scenarios.

In this work, we examine how enhancing remote-controlled
drones and counter-drone systems with FD capabilities af-
fects their reliability. In order to provide a comprehensive
and practically relevant analysis, we consider counter-drone
systems with varying levels of sophistication. The goal of
this study is to characterize the performance of practical
remote-controlled drone and counter-drone systems for all
of the relevant configurations of HD and FD capabilities on
either side, giving detailed insight into the achievable physical-
layer reliability, which translates into the safety of practical
environments where drones are used, for good or bad.

Similar reliability analysis has not been carried out before
and, therefore, this work complements the existing research
from a new, practical perspective. Unlike the drone physical-
layer security works [20], [21], this work does not assume
known channel states nor optimizes the output power and
trajectory, but studies if FD is beneficial over HD at practical
output powers and operation-imposed trajectories. Compared
to FD physical-layer security works [6], [7], this work does
not analyse the information theoretical security of communi-
cations, but their physical-layer reliability under interference.
Furthermore, this work does not focus on the spectrum ef-
ficiency of FD communications [13], [14], but the physical
safety, which stems from the remote control link reliability.
Unlike existing counter-drone [15], [16] and counter counter-
drone works [17], [18] that consider aspects such as machine
learning, e.g., this work studies the duplexing modes.

In order to facilitate the analysis, we first derive analytical
methods for evaluating the detection and demodulation prob-
abilities of frequency-hopped binary frequency-shift keying
(BFSK) signals under interference. We then use that func-
tionality within three scenarios that illustrate the duplexing
mode trade-offs in improving the reliability and security of
remotely controlled drones as following. Firstly, the analysis
shows that operating a counter-drone system in FD mode
can be expected to improve its effectiveness compared to
that in HD mode. Secondly, operating the drone and remote
controller in FD two-way communication mode makes the
drone an easier target than in HD mode and, hence, reduces
the operable area. Thirdly, a FD-enhanced drone has superior
interference detection performance compared to a HD-limited
drone, possibly allowing the FD-enhanced drone to avoid
areas where it would be rendered inoperable by jamming.

All three scenarios also show the performance difference of
counter-drone systems with different complexities. Finally, we
study the energy efficiencies of the jamming strategies and
demonstrate the hard truth that elevating the counter-drone
system can be a more significant improvement than any of the
strategies or operation modes.

The rest of this article is organized as follows. To begin
with, Section II introduces in detail the system model consid-
ered in this work. Then, Section III develops the techniques
necessary for analysing all the possible configurations of the
presented system model. In Section IV, the developed analysis
techniques are, firstly, verified by comparison to simulations
and, secondly, used in three practical scenarios to study the
performance of HD and FD operation mode therein. Finally,
conclusions of the study are given in Section V.

II. SYSTEM MODEL

In this work we consider a system of three nodes as
illustrated in Fig. 1, consisting of a remote controller, a remote-
controlled drone, and a counter-drone system. We assume
that the remote controller and the drone use a two-way slow
frequency-hopped BFSK radio-frequency (RF) remote control
link, such as is used in many practical remote-controlled
drones [10]. The counter-drone system aims to detect that RF
link and neutralize the remote-controlled drone by interfering
with that RF link. Each of the nodes operates in either
HD or FD mode, with the FD mode enabling simultaneous
transmission and reception on the same frequency to combine
a selection of wireless communications, signals reconnais-
sance, and signals interference functions. We assume that the
channels between the three nodes are frequency flat, affected
only by the path loss, and can be modeled by complex
coefficients hRD, hRJ, and hDJ as shown in Fig. 1. We make
the same assumptions for the self-interference channels hRR,
hDD, and hJJ with the addition that these also potentially
include the effect of self-interference cancellation. The specific
capabilities and objectives of the three nodes are as follows.
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Fig. 1. Three-node system model, consisting of a remote controller, a remote-
controlled drone, and a counter-drone system. This system model is a simple,
yet realistic representation of counter-drone scenarios.
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A. Remote Controller

The main task of the remote controller is to transmit control
signals to the drone for directing its movements. The basic
elements of the transmitter at the remote controller are shown
in Fig. 2. The input binary data has a rate Rb [bits/s] and
it is error-correction encoded at a code rate r, so that the
encoded data has a rate Rc = Rb/r [bits/s]. The encoded data
is converted to BFSK symbols, and, since binary modulation is
considered, the symbol rate is equal to the encoded data rate
Rs = Rc. Finally, the symbols are mixed with a frequency
hopping tone of frequency ωm that changes with hop rate Rh.
As a result, the drone’s remote controller transmits a sequence
of slow frequency-hopped BFSK signal

xR
m,l(t) =

√
PR
x exp (i (ωm + lω∆) t+ iθx) (1)

with fixed signal power PR
x , frequency-hopped channel center

frequency ωm, channel number m, symbol l either 1 or −1
depending on the encoded data, frequency deviation ω∆, and
random initial phase θx. The superscript R in (1) denotes
the remote controller, while the superscript D will be used
to denote the drone’s signal and output power. The usual
definition of slow frequency hopping is that Rs > Rh, so that
several symbols are transmitted during a single hop, which
is also the case here. The total bandwidth W is divided into
M consecutive frequency hopping channels with bandwidths
W/M , as is typical for commercial drones in order to provide
a robust control link in noisy radio environments [10].

Data
SourceEncoder

Frequency
Synthesizer

PN
Generator

Hopping
Synthesizer

eiωmt

eilω∆t

l

m

x
{R,D}
m,l

(t)

Fig. 2. Block diagram of a slow frequency-hopped binary frequency-shift
keying transmitter at the remote controller or drone as indicated with the use
of curly brackets in x

{R,D}
m,l .

Additionally, in HD mode the remote controller is capable
of receiving signals on any of the channels that it is not
simultaneously transmitting on, while in FD mode the remote
controller is capable of receiving signals on any of the channels
at any time, subject to disturbance from residual SI on the
channel that it is simultaneously transmitting on. Residual SI
refers to the interference that the transmitting node causes to
itself, which due to insufficient cancellation interferes with the
desired signal being received by that node [1]. The received
signals can be either feedback from the drone, interference
from the counter-drone system, or both feedback and in-
terference superposed. The remote controller is assumed to
be fitted with a feedback receiver, which corresponds to the
noncoherent demodulator described in the next subsection.

B. Remote-Controlled Drone

For the purpose of this system model, the main task of the
drone is to receive the remote control signals without errors
from the operator. The structure of the receiver at the drone is
illustrated in Fig. 3. It is assumed that the remote controller and
drone have in advance agreed on a frequency hopping pattern
and that the dehopping synthesizer is perfectly aligned with the
hopping synthesizer in time and frequency. After dehopping,
the received complex baseband signal for channel m at the
drone receiver is

yDm(t) =
[
hRDx

R
m,l(t) + hDJjm(t) + n(t)

]
e−iωmt, (2)

where jm(t) is the interference transmitted by the counter-
drone system on frequency channel m, and n(t) denotes
complex lowpass additive white Gaussian noise with variance
E{n2(t)} � σ2

n. In order to demodulate the signal, the
noncoherent demodulator decides between the two hypotheses

H0 : yDm(t) =[
hRDx

R
m,−1(t) + hDJjm(t) + n(t)

]
e−iωmt,

(3)

H1 : yDm(t) =[
hRDx

R
m,+1(t) + hDJjm(t) + n(t)

]
e−iωmt,

(4)

where the signal-of-interest, xR
m,l(t), has been transmitted

with either l = −1 or l = +1 deviation. The noncoherent
demodulator passes the dehopped signal through two matched
filters, see Fig. 3(b), the output of which are sampled at rate Rc

and which result in two test statistics Yl =
∫ Tc

0
vl(t)y

D
m(t)dt,

where vl = exp (ilω∆t) is the complex basis function and Tc

the coded bit time duration. To decide between the hypotheses,
the two values, Y−1 and Y+1, are compared and the largest
chosen. This provides an estimate l̂ of the transmitted symbol.
Finally, decoding aims to correct any errors. We assume that

block coding is used, allowing to approximate the information-
bit error rate (BER) based on the channel-BER as

Pib ≈ d

n

d∑

i=t+1

(
n

i

)
P i
e (1− Pe)

n−i

+
1

n

n∑

i=d+1

i

(
n

i

)
P i
e (1− Pe)

n−i
, (5)

where Pe is the channel-BER, d is the minimum distance
between codewords, t = ⌊(d− 1)/2⌋, and n is the length of
the codewords [25].
Furthermore, in HD mode the drone is capable of transmit-

ting signals on any of the channels that its not simultaneously
receiving on, while in FD mode the drone is capable of
transmitting signals on any of the channels at any time,
although impacting the receiving performance due to residual
SI. The transmitted signals can be either feedback to the
remote controller or interference targeting the counter-drone
system, if the drone chooses to apply some electronic counter-
countermeasures. For transmitting feedback signals, the drone
is assumed to be fitted with the same transmitter as described
in the previous subsection. We consider that the drone is in its
operable area when the channel-BER in both ways is below a
certain threshold PT; that is, max{PD

e , PR
e } < PT.
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Fig. 3. Block diagram of a slow frequency-hopped binary noncoherent
frequency-shift keying receiver at the remote controller (R) or drone (D) as
indicated with the use of curly brackets in y

{R,D}
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C. Counter-Drone System

The counter-drone system is composed of detection and
jamming subsystems and we analyze the entire system with
various levels of sophistication that are typical for electronic
counter-measure systems [26]. For detecting the signals, the
counter-drone system relies on a channelized energy detector
(illustrated in Fig. 4), which gives a single binary detection
result together with an index m̂ of the channel that decidedly
contains the signal. It is assumed that the energy detector
has M channels that are perfectly matched with the channel
frequencies and bandwidths used by the drone (for analytical
purposes). The task of each of the individual energy detector
channels is to decide between the two hypotheses

H0 : yJm(t) = hJJjm(t) + n(t), (6)

H1 : yJm(t) = h{RJ,DJ}x
{R,D}
m,l (t) + hJJjm(t) + n(t), (7)

where the signal-of-interest from remote controller or drone (R
or D) x{R,D}

m,l is absent or present, could even be superposition
of both signals (e.g., if the drone and remote controller are
operating in FD mode), and the superscript J denotes the
counter-drone system. In order to decide, the energy detector
filters, squares, and integrates the received signal over a period
Td, which results in a test statistic zm = 1/Td

∫ Td

0

∣∣yJm(t)
∣∣2 dt

that is compared to an energy threshold VT to select between
the two hypotheses [27]. As it is impractical to assume
that the counter-drone system would have information about
the channels hRJ or hDJ, the counter-drone system chooses

numerically the detection threshold VT based on the detection
time Td and noise variance σ2

n to produce some acceptable
constant false alarm rate (CFAR).
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Fig. 4. Block diagram of a channelized energy detector.

We consider that the counter-drone system has the described
signal detection capability and then it applies either constant,
reactive, or follower jamming principles, which are illustrated
in Fig. 5 and altogether cover the bulk of the modern jamming
strategies. Conversely to the operable area of a drone, we
consider that the effective area of a counter-drone system is
the area in which the counter-drone system forces the channel-
BER over a certain threshold in either direction of the remote
control link; that is, the counter-drone system is effective when
max{PD

e , PR
e } ≥ PT.

1) Constant: In the simplest case, the counter-drone system
completely avoids the chance of it not detecting the remote
control signals, the system does not try to conserve energy,
nor does it try to hide the jamming signals. As such, it con-
tinuously jams the total bandwidth W using either noise with
fixed signal power Pj or linearly frequency-swept interference

j(t) =
√

Pj exp (i (ct/2 + ωj) t+ iθj) (8)

with sweep rate c, arbitrary phase offset θj, and fixed signal
power Pj. As such, the counter-drone system is strictly limited
to jamming if it operates in HD mode. However, in FD
mode, the counter-drone system still has the possibility to
detect the remote control signals, as long as the signal-
to-interference-plus-noise ratio (SINR) allows, even though
constant jamming itself does not have any use for this kind
of signals intelligence. Still, the information can be useful
in a broader perspective within an operational scenario. For
example, to notify the counter-drone system operator of an
advancing threat or perhaps to change the jamming strategy.

2) Reactive: In the more complicated case, the counter-
drone system does rely on the channelized radiometer to detect
the targeted signal, but does not take into account the detected
channel, instead considering the detection result for the whole
band using logical-OR combining, i.e., selecting the individual
energy detector corresponding to the channel m̂ with highest
test statistic, so that zm̂ ≥ zm ∀ m, and comparing that test
statistic to the threshold, resulting in

detection =

{
true, if zm̂ ≥ VT

false, otherwise.
(9)
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This may be desirable if the counter-drone system is interested
in interfering also with fast frequency-hopped communications
where the reaction time might be insufficient, the propagation
delays cause problems, or if in reality the counter-drone system
does not have the channel information or capability to process
the full bandwidth in a channelized manner [28]. Then, to
neutralize the connection between the remote controller and
drone, the jamming subsystem of the counter-drone system
transmits either noise with total bandwidth W and signal
power Pj or linearly frequency-swept interference as in (8)
but for time duration Tj. In HD mode, after Tj, the counter-
drone system stops jamming and returns to detection mode,
while in FD mode, the counter-drone system then continues
jamming throughout the next detection stage.

3) Follower: In the most sophisticated and potentially most
efficient case, the counter-drone system relies on the complete
information produced by the channelized radiometer to follow
the targeted signal in the frequency domain [29]. As such,
the follower jammer transmits noise with bandwidth W/M
and signal power Pj in a single channel with most received
energy above the threshold VT. For the follower jammer, we
discard the frequency-swept interference, since the idea behind
frequency sweeping is to spread the interference impact across
many channels, when the exact channel is unknown. In HD
mode, the counter-drone system applying follower jamming
is limited to detecting the remote control signals when it is
not simultaneously jamming, while in FD mode, the counter-
drone system is able to simultaneously jam and detect on all
of the channels, subject to SI on the jammed channel. This is
a reasonable presumption as we will rely on powerful jammer
output powers, for which receiving even on adjacent channels
simultaneously to transmitting is challenging in HD mode.

III. ANALYSIS TECHNIQUES

In this section, we present methods for evaluating the
detection and demodulation probabilities of frequency-hopped
BFSK signal under interference, self-inflicted or otherwise.
These methods will allow us to analyse how the drone and
counter-drone system will perform depending on operation
modes and strategies. The methods are presented in terms of

Nd — number of samples per channel,
Pr — received signal power,
Psi — received self-interference power,
Pi — received interference power,
σ2
n — noise variance per channel,

c — sweep rate,
VT — detection threshold, and
M — number of channels.

Subscripts C, R and F distinguish probabilities pertaining to
constant, reactive and follower jammer, MJ refers to missed
jamming opportunity, while MD and FA indicate missed
detection and false alarm. In Section IV, the methods will
be used for studying the operable area of remote-controlled
drones and the effectiveness of counter-drone systems. Note
that if the remote controller and drone are communicating in
FD mode, then the received signal power Pr at the counter-
drone system is the power of the superposition of these two
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Fig. 5. Conceptual diagram of frequency-hopped communications and differ-
ent jamming techniques. The wideband interference can be either wideband
noise or frequency-swept narrowband signal. For reactive and follower jam-
ming strategies, the FD operation mode allows to affect a larger portion of
the targeted signal frame than HD operation mode.

signals. Assuming negligible frequency offsets and that on
average the phase difference between those two signals is
uniformly distributed, the total received signal power can be
taken to be the sum of the powers of both received signals.

A. Detection

Since we consider a counter-drone system that operates in
HD or FD mode and uses any of the specified strategies,
we present novel probability expressions for the following
separate cases that altogether cover the counter-drone system
capabilities described in the system model.

Proposition 1. The steady-state probability of a half-duplex
counter-drone system missing a jamming opportunity (i.e., not
deciding to jam due to missed detection or not being able to
jam while in detection mode) is

PHD
MJ,F

(
Nd, Pr, σ

2
n, VT,M

)
=

1/
(
2− PMD,F

(
Nd, Pr, σ

2
n, VT,M

))
(10)

where the probability of missed detection for a channelized
energy detector without self-interference is

PMD,F

(
Nd, Pr, σ

2
n, VT,M

)
=

1− 1

2

∫ ∞

VT

(x
λ

)Nd−1

2

(
γ
(
Nd,

x
2

)

Γ (Nd)

)M−1

· exp
(−λ− x

2

)
INd−1

(√
λx

)
dx, (11)



4 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

Decision
Device Decoder

Data
Sink

PN
Generator

Dehopping
Synthesizer

+ω∆−ω∆

e−iωmt

l̂

m

y
{R,D}
m (t)

Matched
Filters

Sampling

(a) Receiver

∑

sin lω∆t

cos lω∆t

( )2

( )2

∫ t

t−Tc
dt

∫ t

t−Tc
dt

(b) Matched filter

Fig. 3. Block diagram of a slow frequency-hopped binary noncoherent
frequency-shift keying receiver at the remote controller (R) or drone (D) as
indicated with the use of curly brackets in y

{R,D}
m .

C. Counter-Drone System

The counter-drone system is composed of detection and
jamming subsystems and we analyze the entire system with
various levels of sophistication that are typical for electronic
counter-measure systems [26]. For detecting the signals, the
counter-drone system relies on a channelized energy detector
(illustrated in Fig. 4), which gives a single binary detection
result together with an index m̂ of the channel that decidedly
contains the signal. It is assumed that the energy detector
has M channels that are perfectly matched with the channel
frequencies and bandwidths used by the drone (for analytical
purposes). The task of each of the individual energy detector
channels is to decide between the two hypotheses

H0 : yJm(t) = hJJjm(t) + n(t), (6)

H1 : yJm(t) = h{RJ,DJ}x
{R,D}
m,l (t) + hJJjm(t) + n(t), (7)

where the signal-of-interest from remote controller or drone (R
or D) x{R,D}

m,l is absent or present, could even be superposition
of both signals (e.g., if the drone and remote controller are
operating in FD mode), and the superscript J denotes the
counter-drone system. In order to decide, the energy detector
filters, squares, and integrates the received signal over a period
Td, which results in a test statistic zm = 1/Td

∫ Td

0

∣∣yJm(t)
∣∣2 dt

that is compared to an energy threshold VT to select between
the two hypotheses [27]. As it is impractical to assume
that the counter-drone system would have information about
the channels hRJ or hDJ, the counter-drone system chooses

numerically the detection threshold VT based on the detection
time Td and noise variance σ2

n to produce some acceptable
constant false alarm rate (CFAR).
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We consider that the counter-drone system has the described
signal detection capability and then it applies either constant,
reactive, or follower jamming principles, which are illustrated
in Fig. 5 and altogether cover the bulk of the modern jamming
strategies. Conversely to the operable area of a drone, we
consider that the effective area of a counter-drone system is
the area in which the counter-drone system forces the channel-
BER over a certain threshold in either direction of the remote
control link; that is, the counter-drone system is effective when
max{PD

e , PR
e } ≥ PT.

1) Constant: In the simplest case, the counter-drone system
completely avoids the chance of it not detecting the remote
control signals, the system does not try to conserve energy,
nor does it try to hide the jamming signals. As such, it con-
tinuously jams the total bandwidth W using either noise with
fixed signal power Pj or linearly frequency-swept interference

j(t) =
√

Pj exp (i (ct/2 + ωj) t+ iθj) (8)

with sweep rate c, arbitrary phase offset θj, and fixed signal
power Pj. As such, the counter-drone system is strictly limited
to jamming if it operates in HD mode. However, in FD
mode, the counter-drone system still has the possibility to
detect the remote control signals, as long as the signal-
to-interference-plus-noise ratio (SINR) allows, even though
constant jamming itself does not have any use for this kind
of signals intelligence. Still, the information can be useful
in a broader perspective within an operational scenario. For
example, to notify the counter-drone system operator of an
advancing threat or perhaps to change the jamming strategy.

2) Reactive: In the more complicated case, the counter-
drone system does rely on the channelized radiometer to detect
the targeted signal, but does not take into account the detected
channel, instead considering the detection result for the whole
band using logical-OR combining, i.e., selecting the individual
energy detector corresponding to the channel m̂ with highest
test statistic, so that zm̂ ≥ zm ∀ m, and comparing that test
statistic to the threshold, resulting in

detection =

{
true, if zm̂ ≥ VT

false, otherwise.
(9)
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This may be desirable if the counter-drone system is interested
in interfering also with fast frequency-hopped communications
where the reaction time might be insufficient, the propagation
delays cause problems, or if in reality the counter-drone system
does not have the channel information or capability to process
the full bandwidth in a channelized manner [28]. Then, to
neutralize the connection between the remote controller and
drone, the jamming subsystem of the counter-drone system
transmits either noise with total bandwidth W and signal
power Pj or linearly frequency-swept interference as in (8)
but for time duration Tj. In HD mode, after Tj, the counter-
drone system stops jamming and returns to detection mode,
while in FD mode, the counter-drone system then continues
jamming throughout the next detection stage.

3) Follower: In the most sophisticated and potentially most
efficient case, the counter-drone system relies on the complete
information produced by the channelized radiometer to follow
the targeted signal in the frequency domain [29]. As such,
the follower jammer transmits noise with bandwidth W/M
and signal power Pj in a single channel with most received
energy above the threshold VT. For the follower jammer, we
discard the frequency-swept interference, since the idea behind
frequency sweeping is to spread the interference impact across
many channels, when the exact channel is unknown. In HD
mode, the counter-drone system applying follower jamming
is limited to detecting the remote control signals when it is
not simultaneously jamming, while in FD mode, the counter-
drone system is able to simultaneously jam and detect on all
of the channels, subject to SI on the jammed channel. This is
a reasonable presumption as we will rely on powerful jammer
output powers, for which receiving even on adjacent channels
simultaneously to transmitting is challenging in HD mode.

III. ANALYSIS TECHNIQUES

In this section, we present methods for evaluating the
detection and demodulation probabilities of frequency-hopped
BFSK signal under interference, self-inflicted or otherwise.
These methods will allow us to analyse how the drone and
counter-drone system will perform depending on operation
modes and strategies. The methods are presented in terms of

Nd — number of samples per channel,
Pr — received signal power,
Psi — received self-interference power,
Pi — received interference power,
σ2
n — noise variance per channel,

c — sweep rate,
VT — detection threshold, and
M — number of channels.

Subscripts C, R and F distinguish probabilities pertaining to
constant, reactive and follower jammer, MJ refers to missed
jamming opportunity, while MD and FA indicate missed
detection and false alarm. In Section IV, the methods will
be used for studying the operable area of remote-controlled
drones and the effectiveness of counter-drone systems. Note
that if the remote controller and drone are communicating in
FD mode, then the received signal power Pr at the counter-
drone system is the power of the superposition of these two
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signals. Assuming negligible frequency offsets and that on
average the phase difference between those two signals is
uniformly distributed, the total received signal power can be
taken to be the sum of the powers of both received signals.

A. Detection

Since we consider a counter-drone system that operates in
HD or FD mode and uses any of the specified strategies,
we present novel probability expressions for the following
separate cases that altogether cover the counter-drone system
capabilities described in the system model.

Proposition 1. The steady-state probability of a half-duplex
counter-drone system missing a jamming opportunity (i.e., not
deciding to jam due to missed detection or not being able to
jam while in detection mode) is

PHD
MJ,F

(
Nd, Pr, σ

2
n, VT,M

)
=

1/
(
2− PMD,F

(
Nd, Pr, σ

2
n, VT,M

))
(10)

where the probability of missed detection for a channelized
energy detector without self-interference is

PMD,F

(
Nd, Pr, σ

2
n, VT,M

)
=

1− 1

2

∫ ∞

VT

(x
λ

)Nd−1

2

(
γ
(
Nd,

x
2

)

Γ (Nd)

)M−1

· exp
(−λ− x

2

)
INd−1

(√
λx

)
dx, (11)
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where λ = 2NdPr/σ
2
n is the noncentrality parameter, γ(a, x)

is the lower incomplete gamma function [30, eq. 6.5.2], Γ(z)
denotes the gamma function [30, eq. 6.1.1], and Iv(z) is the
modified Bessel function of the first kind [30, eq. 9.6.3].

Proof. Given zk, the test statistic for the channel that contains
the signals of interest, and that zm are statistically independent
for all m, the probability of the test statistic zk being larger
than any of the other test statistics is

Pr (zm < zk, all m  = k | zk) =
M∏

m=1,m  =k

Pr (zm < zk | zk) , (12)

where the probability on the right-hand side can be expressed
through the cumulative distribution function of a chi-squared
distributed random variable so that

Pr (zm < zk | zk) =
γ
(
Nd,

zk
2

)

Γ (Nd)
. (13)

Since zk contains the signal-of-interest, it has a noncentral
chi-squared probability density function (PDF) given by

pχ2 (x;Nd, λ) =

1

2

(x
λ

)Nd−1

2

exp

(−λ− x

2

)
INd−1

(√
λx

)
(14)

and the probability of correct detection is (12) averaged over
zk from VT to ∞, where zk has the PDF given in (14).
Therefore, the single-shot probability of missed detection
for a channelized energy detector without self-interference
results in the integral given in (11). Considering that the HD
counter-drone system is always required to go into detection
state after jamming or after a missed detection, which can
be considered the two distinct states of a two-state Markov
chain [31]. The transition probability of going into detec-
tion mode after jamming is ν = 1 and the probability
of transitioning into jamming mode after detection is µ =
1 − PMD,F

(
Nd, Pr, σ

2
n, VT,M

)
. The steady-state probability

of a HD counter-drone system missing a jamming opportunity
is, therefore, ν

ν+µ that results in (10) and characterises the
steady-state probability of such Markov chain.

Proposition 2. The steady-state probability of a half-duplex
counter-drone system with logical-OR energy detector missing
a jamming opportunity (i.e., not deciding to jam due to missed
detection or not being able to jam while in detection mode) is

PHD
MJ,R

(
Nd, Pr, σ

2
n, VT,M

)
=

1/
(
2− PMD,R

(
Nd, Pr, σ

2
n, VT,M

))
(15)

where the probability of missed detection for a channelized
energy detector using logical-OR without self-interference is

PMD,R

(
Nd, Pr, σ

2
n, VT,M

)
=

PMD(Nd, Pr, σ
2
n, VT) · (1− PFA(Nd, σ

2
n, VT))

M−1, (16)

where

PFA(Nd, σ
2
n, VT) =

Γ(Nd,
VT

σ2
n
)

Γ(Nd)
(17)

and

PMD(Nd, Pr, σ
2
n, VT) =

1−QNd

(√
2NdPr/σ2

n,
√

2VT/σ2
n

)
, (18)

with Qv(α, β) being the generalized Marcum Q-function [32,
eq. A.16].

Proof. When relying on logical-OR combining at the output
of the channelized energy detector, the overall probability of
missed detection can be expressed in terms of the probabil-
ities of false alarm PFA(Nd, σ

2
n, VT) and missed detection

PMD(Nd, Pr, σ
2
n, VT) for an individual energy detector chan-

nel. The probabilities of false alarm and missed detection for
an individual energy detector channel without interference are
characterized by the noncentral χ2 distribution as given in (17)
and (18) respectively [33]. The probability of missed detection
for a channelized energy detector using logical-OR combining
is the probability that the detection is missed for the channel
that actually contains the signal and that the other channels,
which do not contain the signal-of-interest, do not cause a false
alarm. The probability of those independent events occurring
together can be estimated using the result in (16). And again,
the steady-state probability of a HD counter-drone system
missing a jamming opportunity is given by (15) by considering
jamming and detection to be two distinct states of a two-state
Markov chain.

Propositions 1 and 2 provide the main tools for analyz-
ing the counter-drone system’s performance in detecting the
remote control signals without SI. With SI, the estimation
is further complicated due to the non-uniform noise floor
for follower jamming and frequency-swept interference for
reactive jamming.

Proposition 3. The steady-state probability of a full-duplex
counter-drone system missing a jamming opportunity (i.e., not
deciding to jam due to missed detection) is

PFD
MJ,F

(
Nd, Pr, Psi, σ

2
n, VT,M

)
=

PMD,F

(
Nd, Prσ

2
n/

(
Psi + σ2

n

)
, σ2

n, VT,M
)

/
(
PMD,F

(
Nd, Prσ

2
n/

(
Psi + σ2

n

)
, σ2

n, VT,M
)

+ 1− PMD,F

(
Nd, Pr, σ

2
n, VT,M

) )
. (19)

Proof. We assume that the energy detector knows the residual
SI power and normalizes the energy in the affected channel
to have the same distribution as the channels without SI. This
is equivalent to defining separate detection thresholds for the
channels with and without SI based on a desired CFAR. In ei-
ther case, the detector-jammer then has two states — firstly, the
SI is occupying a different channel as the signal-of-interest or
there being no SI at all due to previous missed detection and,
secondly, the SI is occupying the same channel as the signal-
of-interest. In the first case, the probability of missed detec-
tion is simply given by (11) as PMD,F

(
Nd, Pr, σ

2
n, VT,M

)
,

whereas in the second case the probability of missed detection
due to the normalization of the integrated energy is given
by (11) as PMD,F

(
Nd, Prσ

2
n/

(
Psi + σ2

n

)
, σ2

n, VT,M
)
. Again,
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these probabilities give us the transition probabilities of a two-
state Markov chain as in the proof of Proposition 1 and the
steady-state distribution, or the overall probability of a missed
jamming opportunity, becomes (19).

Proposition 4. The steady-state probability of a full-duplex
counter-drone system with logical-OR energy detector missing
a jamming opportunity (i.e., not deciding to jam due to missed
detection) under wideband noise-like self-interference is

PFD
MJ,R

(
Nd, Pr, Psi, σ

2
n, VT,M

)
=

PMD,R

(
Nd, Prσ

2
n/

(
Psi + σ2

n

)
, σ2

n, VT,M
)

/
(
PMD,R

(
Nd, Prσ

2
n/

(
Psi + σ2

n

)
, σ2

n, VT,M
)

+ 1− PMD,R

(
Nd, Pr, σ

2
n, VT,M

) )
. (20)

Proof. Similarly to the proof of Proposition 3, we assume
that the energy detector knows the residual SI power and
normalizes the integrated energy in all of the channels to have
the same distribution as the channels would without the SI.
This is equivalent to defining a separate detection thresholds
for detection with and without SI based on a desired CFAR.
In either case, the detector-jammer then has two states —
firstly, there is no SI due to previous missed detection or,
secondly, the SI is hampering the detection of the signal-
of-interest. In the first case, the probability of missed detec-
tion is simply given by (16) as PMD,R

(
Nd, Pr, σ

2
n, VT,M

)
,

whereas in the second case the probability of missed detection
due to the normalization of the integrated energy is given
by (16) as PMD,R

(
Nd, Prσ

2
n/

(
Psi + σ2

n

)
, σ2

n, VT,M
)
. These

probabilities give us the transition probabilities of a two-state
Markov chain. The steady-state distribution, or the overall
missed detection probability, becomes (20).

From (18), it directly follows that the false alarm probabil-
ity under deterministic interference for an individual energy
detector is

P SI
FA(Nd, Psi, σ

2
n, VT) =

QNd

(√
2NdPsi/σ2

n,
√

2VT/σ2
n

)
. (21)

In order to calculate the probability of missed detection under
deterministic interference for an individual energy detector, the
signal-and-interference to noise ratio must be considered in-
stead of the signal-to-noise ratio (SNR). So that (18) becomes

P SI
MD(Nd, Pr, Psi, σ

2
n, VT, ρl) =

1−QNd

(√
2γ,

√
2VT/σ2

n

)
, (22)

and where γ is the signal-and-interference to noise ratio of the
superposed signal-of-interest and interference signals as

γ =
Pr + Psi +

√
PrPsiℜ{ρl}

σ2
n

, (23)

where ℜ{} denotes the real part of a complex-valued variable
and ρl is the correlation coefficient between the signal-of-
interest xm,l and interference jm that for frequency-swept
interference can be estimated using Proposition 5.

The probability of missed detection using logical-OR with-
out interference is given by the probability of independent

events that the signal-of-interest is missed in the channel where
it exists and a false alarm does not occur in any other channels
as in (16). When a deterministic interference and signal-of-
interest are in the same channel this probability becomes

P SI,1
MD,R(Nd, Pr, Psi, σ

2
n, VT,M, ρl) =

P SI
MD(Nd, Pr, Psi, σ

2
n, VT, ρl)

· (1− PFA(Nd, σ
2
n, VT))

M−1. (24)

If both occupy different channels, the probability becomes

P SI,2
MD,R(Nd, Pr, Psi, σ

2
n, VT,M) =

PMD(Nd, Pr, σ
2
n, VT) · (1− P SI

FA(Nd, Psi, σ
2
n, VT))

· (1− PFA(Nd, σ
2
n, VT))

M−2. (25)

With uniform frequency hopping, the probability that interfer-
ence and remote control signal are in the same channel is 1/M
and the overall probability of missed detection is

P SI
MD,R(Nd, Pr, Psi, σ

2
n, VT,M, ρl) =

1

M
P SI,2
MD,R(Nd, Pr, Psi, σ

2
n, VT,M)

+
M − 1

M
P SI,1
MD,R(Nd, Pr, Psi, σ

2
n, VT,M, ρl). (26)

The probability of a FD counter-drone system with logical-
OR energy detector missing a jamming opportunity under
wideband frequency-swept interference is therefore given by
substituting (26) into (20) in place of the SI-affected terms.

The probability of false alarm when using logical-OR with-
out interference is given by the probabilities that in none of
the channels a false alarm occurs [34]

PFA,R

(
Nd, σ

2
n, VT,M

)
= 1−(1−PFA(Nd, σ

2
n, VT))

M . (27)

With interference, which for the integration time stays within
a single channel, the probability of false alarm for that channel
is given by (21) and the logical-OR result becomes

P SI
FA,R

(
Nd, Psi, σ

2
n, VT,M

)
=

1− (1− P SI
FA(Nd, Psi, σ

2
n, VT))

· (1− PFA(Nd, σ
2
n, VT))

M−1. (28)

Proposition 5. Correlation coefficient between a BFSK signal
and frequency-swept interference can be estimated from

ρl (ωj, ω∆, θ, c, T ) = exp

(
iθ − i

(ωj + lω∆)
2

2c

)

(
1 + i

2

)√
π

c

(
erf

(
(1− i) (ωj + lω∆)

2
√
c

)
−

erf

(
(1− i) (cT + ωj + lω∆)

2
√
c

))
, (29)

where erf is the complex error function [30, eq. 7.1.1].

Proof. Correlation of a tone and frequency-swept signal is

ρl =

∫ T

0

exp
(
i
(
ct2/2 + ωjt+ θ

))
exp (−ilω∆t) dt (30)

=

∫ T

0

exp
(
i
(
ct2/2 + (ωj − lω∆) t+ θ

))
dt. (31)
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where λ = 2NdPr/σ
2
n is the noncentrality parameter, γ(a, x)

is the lower incomplete gamma function [30, eq. 6.5.2], Γ(z)
denotes the gamma function [30, eq. 6.1.1], and Iv(z) is the
modified Bessel function of the first kind [30, eq. 9.6.3].

Proof. Given zk, the test statistic for the channel that contains
the signals of interest, and that zm are statistically independent
for all m, the probability of the test statistic zk being larger
than any of the other test statistics is

Pr (zm < zk, all m  = k | zk) =
M∏

m=1,m  =k

Pr (zm < zk | zk) , (12)

where the probability on the right-hand side can be expressed
through the cumulative distribution function of a chi-squared
distributed random variable so that

Pr (zm < zk | zk) =
γ
(
Nd,

zk
2

)

Γ (Nd)
. (13)

Since zk contains the signal-of-interest, it has a noncentral
chi-squared probability density function (PDF) given by

pχ2 (x;Nd, λ) =

1

2

(x
λ

)Nd−1

2

exp

(−λ− x

2

)
INd−1

(√
λx

)
(14)

and the probability of correct detection is (12) averaged over
zk from VT to ∞, where zk has the PDF given in (14).
Therefore, the single-shot probability of missed detection
for a channelized energy detector without self-interference
results in the integral given in (11). Considering that the HD
counter-drone system is always required to go into detection
state after jamming or after a missed detection, which can
be considered the two distinct states of a two-state Markov
chain [31]. The transition probability of going into detec-
tion mode after jamming is ν = 1 and the probability
of transitioning into jamming mode after detection is µ =
1 − PMD,F

(
Nd, Pr, σ

2
n, VT,M

)
. The steady-state probability

of a HD counter-drone system missing a jamming opportunity
is, therefore, ν

ν+µ that results in (10) and characterises the
steady-state probability of such Markov chain.

Proposition 2. The steady-state probability of a half-duplex
counter-drone system with logical-OR energy detector missing
a jamming opportunity (i.e., not deciding to jam due to missed
detection or not being able to jam while in detection mode) is

PHD
MJ,R

(
Nd, Pr, σ

2
n, VT,M

)
=

1/
(
2− PMD,R

(
Nd, Pr, σ

2
n, VT,M

))
(15)

where the probability of missed detection for a channelized
energy detector using logical-OR without self-interference is

PMD,R

(
Nd, Pr, σ

2
n, VT,M

)
=

PMD(Nd, Pr, σ
2
n, VT) · (1− PFA(Nd, σ

2
n, VT))

M−1, (16)

where

PFA(Nd, σ
2
n, VT) =

Γ(Nd,
VT

σ2
n
)

Γ(Nd)
(17)

and

PMD(Nd, Pr, σ
2
n, VT) =

1−QNd

(√
2NdPr/σ2

n,
√

2VT/σ2
n

)
, (18)

with Qv(α, β) being the generalized Marcum Q-function [32,
eq. A.16].

Proof. When relying on logical-OR combining at the output
of the channelized energy detector, the overall probability of
missed detection can be expressed in terms of the probabil-
ities of false alarm PFA(Nd, σ

2
n, VT) and missed detection

PMD(Nd, Pr, σ
2
n, VT) for an individual energy detector chan-

nel. The probabilities of false alarm and missed detection for
an individual energy detector channel without interference are
characterized by the noncentral χ2 distribution as given in (17)
and (18) respectively [33]. The probability of missed detection
for a channelized energy detector using logical-OR combining
is the probability that the detection is missed for the channel
that actually contains the signal and that the other channels,
which do not contain the signal-of-interest, do not cause a false
alarm. The probability of those independent events occurring
together can be estimated using the result in (16). And again,
the steady-state probability of a HD counter-drone system
missing a jamming opportunity is given by (15) by considering
jamming and detection to be two distinct states of a two-state
Markov chain.

Propositions 1 and 2 provide the main tools for analyz-
ing the counter-drone system’s performance in detecting the
remote control signals without SI. With SI, the estimation
is further complicated due to the non-uniform noise floor
for follower jamming and frequency-swept interference for
reactive jamming.

Proposition 3. The steady-state probability of a full-duplex
counter-drone system missing a jamming opportunity (i.e., not
deciding to jam due to missed detection) is

PFD
MJ,F

(
Nd, Pr, Psi, σ

2
n, VT,M

)
=

PMD,F

(
Nd, Prσ

2
n/

(
Psi + σ2

n

)
, σ2

n, VT,M
)

/
(
PMD,F

(
Nd, Prσ

2
n/

(
Psi + σ2

n

)
, σ2

n, VT,M
)

+ 1− PMD,F

(
Nd, Pr, σ

2
n, VT,M

) )
. (19)

Proof. We assume that the energy detector knows the residual
SI power and normalizes the energy in the affected channel
to have the same distribution as the channels without SI. This
is equivalent to defining separate detection thresholds for the
channels with and without SI based on a desired CFAR. In ei-
ther case, the detector-jammer then has two states — firstly, the
SI is occupying a different channel as the signal-of-interest or
there being no SI at all due to previous missed detection and,
secondly, the SI is occupying the same channel as the signal-
of-interest. In the first case, the probability of missed detec-
tion is simply given by (11) as PMD,F

(
Nd, Pr, σ

2
n, VT,M

)
,

whereas in the second case the probability of missed detection
due to the normalization of the integrated energy is given
by (11) as PMD,F

(
Nd, Prσ

2
n/

(
Psi + σ2

n

)
, σ2

n, VT,M
)
. Again,
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these probabilities give us the transition probabilities of a two-
state Markov chain as in the proof of Proposition 1 and the
steady-state distribution, or the overall probability of a missed
jamming opportunity, becomes (19).

Proposition 4. The steady-state probability of a full-duplex
counter-drone system with logical-OR energy detector missing
a jamming opportunity (i.e., not deciding to jam due to missed
detection) under wideband noise-like self-interference is

PFD
MJ,R

(
Nd, Pr, Psi, σ

2
n, VT,M

)
=

PMD,R

(
Nd, Prσ

2
n/

(
Psi + σ2

n

)
, σ2

n, VT,M
)

/
(
PMD,R

(
Nd, Prσ

2
n/

(
Psi + σ2

n

)
, σ2

n, VT,M
)

+ 1− PMD,R

(
Nd, Pr, σ

2
n, VT,M

) )
. (20)

Proof. Similarly to the proof of Proposition 3, we assume
that the energy detector knows the residual SI power and
normalizes the integrated energy in all of the channels to have
the same distribution as the channels would without the SI.
This is equivalent to defining a separate detection thresholds
for detection with and without SI based on a desired CFAR.
In either case, the detector-jammer then has two states —
firstly, there is no SI due to previous missed detection or,
secondly, the SI is hampering the detection of the signal-
of-interest. In the first case, the probability of missed detec-
tion is simply given by (16) as PMD,R

(
Nd, Pr, σ

2
n, VT,M

)
,

whereas in the second case the probability of missed detection
due to the normalization of the integrated energy is given
by (16) as PMD,R

(
Nd, Prσ

2
n/

(
Psi + σ2

n

)
, σ2

n, VT,M
)
. These

probabilities give us the transition probabilities of a two-state
Markov chain. The steady-state distribution, or the overall
missed detection probability, becomes (20).

From (18), it directly follows that the false alarm probabil-
ity under deterministic interference for an individual energy
detector is

P SI
FA(Nd, Psi, σ

2
n, VT) =

QNd

(√
2NdPsi/σ2

n,
√

2VT/σ2
n

)
. (21)

In order to calculate the probability of missed detection under
deterministic interference for an individual energy detector, the
signal-and-interference to noise ratio must be considered in-
stead of the signal-to-noise ratio (SNR). So that (18) becomes

P SI
MD(Nd, Pr, Psi, σ

2
n, VT, ρl) =

1−QNd

(√
2γ,

√
2VT/σ2

n

)
, (22)

and where γ is the signal-and-interference to noise ratio of the
superposed signal-of-interest and interference signals as

γ =
Pr + Psi +

√
PrPsiℜ{ρl}

σ2
n

, (23)

where ℜ{} denotes the real part of a complex-valued variable
and ρl is the correlation coefficient between the signal-of-
interest xm,l and interference jm that for frequency-swept
interference can be estimated using Proposition 5.

The probability of missed detection using logical-OR with-
out interference is given by the probability of independent

events that the signal-of-interest is missed in the channel where
it exists and a false alarm does not occur in any other channels
as in (16). When a deterministic interference and signal-of-
interest are in the same channel this probability becomes

P SI,1
MD,R(Nd, Pr, Psi, σ

2
n, VT,M, ρl) =

P SI
MD(Nd, Pr, Psi, σ

2
n, VT, ρl)

· (1− PFA(Nd, σ
2
n, VT))

M−1. (24)

If both occupy different channels, the probability becomes

P SI,2
MD,R(Nd, Pr, Psi, σ

2
n, VT,M) =

PMD(Nd, Pr, σ
2
n, VT) · (1− P SI

FA(Nd, Psi, σ
2
n, VT))

· (1− PFA(Nd, σ
2
n, VT))

M−2. (25)

With uniform frequency hopping, the probability that interfer-
ence and remote control signal are in the same channel is 1/M
and the overall probability of missed detection is

P SI
MD,R(Nd, Pr, Psi, σ

2
n, VT,M, ρl) =

1

M
P SI,2
MD,R(Nd, Pr, Psi, σ

2
n, VT,M)

+
M − 1

M
P SI,1
MD,R(Nd, Pr, Psi, σ

2
n, VT,M, ρl). (26)

The probability of a FD counter-drone system with logical-
OR energy detector missing a jamming opportunity under
wideband frequency-swept interference is therefore given by
substituting (26) into (20) in place of the SI-affected terms.
The probability of false alarm when using logical-OR with-

out interference is given by the probabilities that in none of
the channels a false alarm occurs [34]

PFA,R

(
Nd, σ

2
n, VT,M

)
= 1−(1−PFA(Nd, σ

2
n, VT))

M . (27)

With interference, which for the integration time stays within
a single channel, the probability of false alarm for that channel
is given by (21) and the logical-OR result becomes

P SI
FA,R

(
Nd, Psi, σ

2
n, VT,M

)
=

1− (1− P SI
FA(Nd, Psi, σ

2
n, VT))

· (1− PFA(Nd, σ
2
n, VT))

M−1. (28)

Proposition 5. Correlation coefficient between a BFSK signal
and frequency-swept interference can be estimated from

ρl (ωj, ω∆, θ, c, T ) = exp

(
iθ − i

(ωj + lω∆)
2

2c

)

(
1 + i

2

)√
π

c

(
erf

(
(1− i) (ωj + lω∆)

2
√
c

)
−

erf

(
(1− i) (cT + ωj + lω∆)

2
√
c

))
, (29)

where erf is the complex error function [30, eq. 7.1.1].

Proof. Correlation of a tone and frequency-swept signal is

ρl =

∫ T

0

exp
(
i
(
ct2/2 + ωjt+ θ

))
exp (−ilω∆t) dt (30)

=

∫ T

0

exp
(
i
(
ct2/2 + (ωj − lω∆) t+ θ

))
dt. (31)
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Using rule [35, eq. (5.A2)], this simplifies to

ρl = exp

(
iθ − i

(ωj + lω∆)
2

2c

)(
1 + i

2

)√
π

c

erf

(
(1− i) (ct+ ωj + lω∆)

2
√
c

)∣∣∣∣∣

T

0

(32)

that evaluated from 0 to T results in (29).

Since frequency-swept interference can have any frequency
and phase offsets, the overall missed detection probability for
an individual radiometer is obtained by averaging the phase
θ over interval (0, 2π) and frequency ωj over the relevant
interval.

B. Demodulation

In order to evaluate the demodulation BER under interfer-
ence, the challenge becomes to determine the probability by
which one Rician random variable fluctuates above another.
It has been previously shown that for uncorrelated Rician
random variables, i.e., orthogonal BFSK, this probability can
be calculated using

Pe(Nd, Pr, σ
2
n, ρ) =

1

2

[
1 +Q1

(√
b,
√
a
)
−Q1

(√
a,
√
b
)]

, (33)

where variables a and b denote the ratios between the de-
terministic and nondeterministic signal components in either
of the BFSK branches such as a = NdPr/σ

2
n and b = 0

for xm,−1 transmitted [36]. In case of correlated Rician
variables, i.e. nonorthogonal BFSK, the variables must first
be decorrelated [36], resulting in

a =
NdPr

2σ2
n

(
1 +

√
1− |ρ|2

)
b =

NdPr

2σ2
n

(
1−

√
1− |ρ|2

)

where ρ = |ρ|eiα is the correlation coefficient between xm,−1

and xm,+1.

Proposition 6. The probability of bit error for noncoherent
BFSK demodulator under deterministic interference, a signal
with known form and energy, is

P I
e

(
Nd, Pr, Pi, σ

2
n, ρ, ρl

)
=

1

2

[
1 +Q1

(√
bl,

√
al

)
−Q1

(√
al,

√
bl

)]
, (34)

where

al =
PiNd

4σ2
n (|ρ|+ 1)

(
(C + ρl) (β + 1) eiα

− (β − 1) (Cρ+ ρ−l)
)2
e−2iα, (35)

bl =
PiNd

4σ2
n (|ρ|+ 1)

(
− (C + ρl) (β − 1) eiα

+ (β + 1) (Cρ+ ρ−l)
)2
e−2iα, (36)

C =
√

Pr/Pi and β =
√

(1 + |ρ|) / (1− |ρ|).

Proof. The underlying correlated Rician random variables of
the test statistics are Y−1 = v∗−1ym/σ2

n and Y+1 = v∗+1ym/σ2
n.

The means of those correlated variables are ⟨y1⟩ =
√
Prσn(1+

ρl

C ) and ⟨y2⟩ =
√
Prσn(ρ + ρ−l

C ). In [36] the decorrelation
transformation is given by

⟨x1⟩ = ⟨y1⟩ (1 + β) b+ ⟨y2⟩(1− β)be−iα, (37)

⟨x2⟩ = ⟨y1⟩ (1− β) b+ ⟨y2⟩(1 + β)be−iα, (38)

where b = 1√
4β

. Applying the transformation, we get

⟨x1⟩ =
√
Prσn

2C
√
β

(
(C + ρl) (β + 1) eiα

− (β − 1) (Cρ+ ρ−l)
)
e−iα, (39)

⟨x2⟩ =
√
Prσn

2C
√
β

(
− (C + ρl) (β − 1) eiα

+ (β + 1) (Cρ+ ρ−l)
)
e−iα. (40)

Resultingly, variance of the newly created uncorrelated com-
plex Gaussian variables is σ2

x1
= σ2

x2
= 4b2(1 + ρ) [37, pp.

226–231] and therefore arguments of the Q-function in (33)
are given by ⟨x1⟩2

4b2(1+ρ) and
⟨x2⟩2

4b2(1+ρ) that result in (35) and (36).
Thus, the probability of bit error is (34).

Again, ρl can be calculated using (29). The overall probabil-
ity of bit error is obtained by averaging the phase θ over region
(0, 2π) and frequency ωj over the relevant interval. Note that
Proposition 6 relies on solving the canonical problem proposed
in [36], which itself relies on transforming the received signal
to that canonical model. Using a modulation other than BFSK
would require that transformation step to be retailored. How-
ever, if an appropriate transform was found, then the canonical
solution along with its extensions could be used for other
modulation schemes in place of the BFSK. Still, the approach
used herein does not limit the practicality of this work, since
BFSK is widely used in drone systems [38], [39]. Furthermore,
while different modulation schemes would affect the absolute
values obtained in the following numerical analysis, they are
not expected to significantly change the relative performance
of the studied operation modes and strategies.

C. Duplex Comparison
Fig. 6 illustrates how the propositions can be used to

estimate, depending on the operation mode and strategy of
the counter-drone system, the probability that a counter-drone
system misses a jamming opportunity and, consequently, what
will be the average BER at either the drone or remote
controller. Here, we use the propositions to analytically char-
acterise the remote control link reliability in the presence of a
follower counter-drone system. The BER of a receiver under
attack from HD and FD follower counter-drone systems, as
per Fig. 6, are respectively

PHD
e,F

(
Nd, P

J
r , P

D
r , PD

i , σ2
n, ρ, VT,M

)
= Pe(Nd, P

D
r , σ2

n, ρ)

· PHD
MJ,F(Nd, P

J
r , σ

2
n, VT,M) + P I

e (Nd, P
D
r , 0, PD

i + σ2
n, ρ, 0)

·
(
1− PHD

MJ,F(Nd, P
J
r , σ

2
n, VT,M)

)
(41)
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Fig. 6. Calculating the average bit error rate caused by the counter-drone
system depending on its mode and strategy. P1 refers to Proposition 1 etc.

and

PFD
e,F

(
Nd, P

J
r , P

D
r , P J

si, P
D
i , σ2

n, ρ, VT,M
)
=

Pe(Nd, P
D
r , σ2

n, ρ) · PFD
MJ,F(Nd, P

J
r , P

J
si, σ

2
n, VT,M)

+ P I
e (Nd, P

D
r , 0, PD

i + σ2
n, ρ, 0)

·
(
1− PFD

MJ,F(Nd, P
J
r , P

J
si, σ

2
n, VT,M)

)
. (42)

where the superscripts D and J denote the received power by
drone and counter-drone system respectively.

To highlight the differences of HD and FD counter-drone
system operation modes in (41) and (42), we can consider the
special case where both the counter-drone system and remote-
controlled drone have good SNR of the remote control signal
so that P J

r ≫ σ2
n and PD

r ≫ σ2
n, while the counter-drone

system also has good SINR P J
r ≫ P J

si and a nonzero CFAR.
This altogether yields asymptotic BERs

PHD
e,F

(
Nd, P

J
r , P

D
r , PD

i , σ2
n, ρ, VT,M

)
≈

1

2
Pe(Nd, P

D
r , PD

i + σ2
n, ρ) (43)

and

PFD
e,F

(
Nd, P

J
r , P

D
r , P J

si, P
D
i , σ2

n, ρ, VT,M
)
≈

Pe(Nd, P
D
r , PD

i + σ2
n, ρ). (44)

The asymptotic results in (43) and (44) emphasise the fun-
damental difference between the two operation modes — a
counter-drone system in FD mode can inflict double the BER
compared to that in HD mode.

Even if we do not assume that the signal received by the
counter-drone system is more powerful than the SI, then still
the FD system has an advantage over its HD counterpart due

to the FD system’s ability to more often react to false alarms.
To explain this, assume that the SI at the counter-drone system
is much more powerful than the signal-of-interest and the
power of SI approaches infinity P J

si → ∞, while the other
assumptions stay the same. Then the asymptotic BER inflicted
by the FD counter-drone system becomes

PFD
e,F

(
Nd, P

J
r , P

D
r , P J

si, P
D
i , σ2

n, ρ, VT,M
)
≈

1

2− 1−(1−PFA(Nd,σ2
n,VT))M

M

Pe(Nd, P
D
r , PD

i + σ2
n, ρ), (45)

which means that as longs as the system’s CFAR is nonzero,
the system occasionally uses the FD-provided time slot for
jamming the correct channel and, therefore, (45) results in
larger BER than (43). This is illustrated in Fig. 7 at different
false alarm probabilities and with different number of channels
but assuming that PD

i ≫ PD
r . The comparisons show that

the FD counter-drone system always outperforms its HD
counterpart, doubling the BER in favourable conditions.
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Fig. 7. Asymptotic comparison of follower counter-drone systems.

While we considered the follower counter-drone system,
similar comparisons and conclusions can be drawn for the
other strategies. However, to truly recognize the differences
of the two operation modes, it is important to consider
how significant the impact of BER doubling is and when
it is achievable. Doing so using analytical comparisons is
challenging due to the intricate expressions and large number
of parameters. As such, we present the following numerical
results for comprehensive insight that includes comparing the
performance across different strategies.

IV. RESULTS AND ANALYSIS

We compare the advantages and disadvantages of FD and
HD in three different scenarios. We consider that the three
nodes operate as described in Section II and we use the
propositions developed in Section III to evaluate the per-
formance of these nodes in different operation modes and
strategies. In the first scenario, we evaluate the counter-drone
system’s ability to minimize the area into which a remote-
controlled drone can intrude (i.e., minimizing the intrusion
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Using rule [35, eq. (5.A2)], this simplifies to

ρl = exp

(
iθ − i

(ωj + lω∆)
2

2c

)(
1 + i

2

)√
π

c

erf

(
(1− i) (ct+ ωj + lω∆)

2
√
c

)∣∣∣∣∣

T

0

(32)

that evaluated from 0 to T results in (29).

Since frequency-swept interference can have any frequency
and phase offsets, the overall missed detection probability for
an individual radiometer is obtained by averaging the phase
θ over interval (0, 2π) and frequency ωj over the relevant
interval.

B. Demodulation

In order to evaluate the demodulation BER under interfer-
ence, the challenge becomes to determine the probability by
which one Rician random variable fluctuates above another.
It has been previously shown that for uncorrelated Rician
random variables, i.e., orthogonal BFSK, this probability can
be calculated using

Pe(Nd, Pr, σ
2
n, ρ) =

1

2

[
1 +Q1

(√
b,
√
a
)
−Q1

(√
a,
√
b
)]

, (33)

where variables a and b denote the ratios between the de-
terministic and nondeterministic signal components in either
of the BFSK branches such as a = NdPr/σ

2
n and b = 0

for xm,−1 transmitted [36]. In case of correlated Rician
variables, i.e. nonorthogonal BFSK, the variables must first
be decorrelated [36], resulting in

a =
NdPr

2σ2
n

(
1 +

√
1− |ρ|2

)
b =

NdPr

2σ2
n

(
1−

√
1− |ρ|2

)

where ρ = |ρ|eiα is the correlation coefficient between xm,−1

and xm,+1.

Proposition 6. The probability of bit error for noncoherent
BFSK demodulator under deterministic interference, a signal
with known form and energy, is

P I
e

(
Nd, Pr, Pi, σ

2
n, ρ, ρl

)
=

1

2

[
1 +Q1

(√
bl,

√
al

)
−Q1

(√
al,

√
bl

)]
, (34)

where

al =
PiNd

4σ2
n (|ρ|+ 1)

(
(C + ρl) (β + 1) eiα

− (β − 1) (Cρ+ ρ−l)
)2
e−2iα, (35)

bl =
PiNd

4σ2
n (|ρ|+ 1)

(
− (C + ρl) (β − 1) eiα

+ (β + 1) (Cρ+ ρ−l)
)2
e−2iα, (36)

C =
√

Pr/Pi and β =
√

(1 + |ρ|) / (1− |ρ|).

Proof. The underlying correlated Rician random variables of
the test statistics are Y−1 = v∗−1ym/σ2

n and Y+1 = v∗+1ym/σ2
n.

The means of those correlated variables are ⟨y1⟩ =
√
Prσn(1+

ρl

C ) and ⟨y2⟩ =
√
Prσn(ρ + ρ−l

C ). In [36] the decorrelation
transformation is given by

⟨x1⟩ = ⟨y1⟩ (1 + β) b+ ⟨y2⟩(1− β)be−iα, (37)

⟨x2⟩ = ⟨y1⟩ (1− β) b+ ⟨y2⟩(1 + β)be−iα, (38)

where b = 1√
4β

. Applying the transformation, we get

⟨x1⟩ =
√
Prσn

2C
√
β

(
(C + ρl) (β + 1) eiα

− (β − 1) (Cρ+ ρ−l)
)
e−iα, (39)

⟨x2⟩ =
√
Prσn

2C
√
β

(
− (C + ρl) (β − 1) eiα

+ (β + 1) (Cρ+ ρ−l)
)
e−iα. (40)

Resultingly, variance of the newly created uncorrelated com-
plex Gaussian variables is σ2

x1
= σ2

x2
= 4b2(1 + ρ) [37, pp.

226–231] and therefore arguments of the Q-function in (33)
are given by ⟨x1⟩2

4b2(1+ρ) and
⟨x2⟩2

4b2(1+ρ) that result in (35) and (36).
Thus, the probability of bit error is (34).

Again, ρl can be calculated using (29). The overall probabil-
ity of bit error is obtained by averaging the phase θ over region
(0, 2π) and frequency ωj over the relevant interval. Note that
Proposition 6 relies on solving the canonical problem proposed
in [36], which itself relies on transforming the received signal
to that canonical model. Using a modulation other than BFSK
would require that transformation step to be retailored. How-
ever, if an appropriate transform was found, then the canonical
solution along with its extensions could be used for other
modulation schemes in place of the BFSK. Still, the approach
used herein does not limit the practicality of this work, since
BFSK is widely used in drone systems [38], [39]. Furthermore,
while different modulation schemes would affect the absolute
values obtained in the following numerical analysis, they are
not expected to significantly change the relative performance
of the studied operation modes and strategies.

C. Duplex Comparison
Fig. 6 illustrates how the propositions can be used to

estimate, depending on the operation mode and strategy of
the counter-drone system, the probability that a counter-drone
system misses a jamming opportunity and, consequently, what
will be the average BER at either the drone or remote
controller. Here, we use the propositions to analytically char-
acterise the remote control link reliability in the presence of a
follower counter-drone system. The BER of a receiver under
attack from HD and FD follower counter-drone systems, as
per Fig. 6, are respectively
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·
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)
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Fig. 6. Calculating the average bit error rate caused by the counter-drone
system depending on its mode and strategy. P1 refers to Proposition 1 etc.

and
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e,F
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J
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D
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si, P
D
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n, ρ, VT,M
)
=

Pe(Nd, P
D
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n, ρ) · PFD
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·
(
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J
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J
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2
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)
. (42)

where the superscripts D and J denote the received power by
drone and counter-drone system respectively.

To highlight the differences of HD and FD counter-drone
system operation modes in (41) and (42), we can consider the
special case where both the counter-drone system and remote-
controlled drone have good SNR of the remote control signal
so that P J

r ≫ σ2
n and PD

r ≫ σ2
n, while the counter-drone

system also has good SINR P J
r ≫ P J

si and a nonzero CFAR.
This altogether yields asymptotic BERs

PHD
e,F

(
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J
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D
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i , σ2
n, ρ, VT,M

)
≈

1

2
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D
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i + σ2
n, ρ) (43)

and

PFD
e,F

(
Nd, P

J
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D
r , P J

si, P
D
i , σ2

n, ρ, VT,M
)
≈

Pe(Nd, P
D
r , PD

i + σ2
n, ρ). (44)

The asymptotic results in (43) and (44) emphasise the fun-
damental difference between the two operation modes — a
counter-drone system in FD mode can inflict double the BER
compared to that in HD mode.

Even if we do not assume that the signal received by the
counter-drone system is more powerful than the SI, then still
the FD system has an advantage over its HD counterpart due

to the FD system’s ability to more often react to false alarms.
To explain this, assume that the SI at the counter-drone system
is much more powerful than the signal-of-interest and the
power of SI approaches infinity P J

si → ∞, while the other
assumptions stay the same. Then the asymptotic BER inflicted
by the FD counter-drone system becomes

PFD
e,F

(
Nd, P

J
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D
r , P J

si, P
D
i , σ2

n, ρ, VT,M
)
≈

1

2− 1−(1−PFA(Nd,σ2
n,VT))M

M

Pe(Nd, P
D
r , PD

i + σ2
n, ρ), (45)

which means that as longs as the system’s CFAR is nonzero,
the system occasionally uses the FD-provided time slot for
jamming the correct channel and, therefore, (45) results in
larger BER than (43). This is illustrated in Fig. 7 at different
false alarm probabilities and with different number of channels
but assuming that PD

i ≫ PD
r . The comparisons show that

the FD counter-drone system always outperforms its HD
counterpart, doubling the BER in favourable conditions.
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Fig. 7. Asymptotic comparison of follower counter-drone systems.

While we considered the follower counter-drone system,
similar comparisons and conclusions can be drawn for the
other strategies. However, to truly recognize the differences
of the two operation modes, it is important to consider
how significant the impact of BER doubling is and when
it is achievable. Doing so using analytical comparisons is
challenging due to the intricate expressions and large number
of parameters. As such, we present the following numerical
results for comprehensive insight that includes comparing the
performance across different strategies.

IV. RESULTS AND ANALYSIS

We compare the advantages and disadvantages of FD and
HD in three different scenarios. We consider that the three
nodes operate as described in Section II and we use the
propositions developed in Section III to evaluate the per-
formance of these nodes in different operation modes and
strategies. In the first scenario, we evaluate the counter-drone
system’s ability to minimize the area into which a remote-
controlled drone can intrude (i.e., minimizing the intrusion
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area). In the second scenario, we consider the drone’s ability
to maximize the area in which it can operate in the presence
of a malicious counter-drone system (i.e., maximizing the
operable area). In the third scenario, we study the drone’s
ability to detect malicious interference at ineffective levels
to prevent entering areas in which the interference would
become effective. Table I summarizes operation configurations
of the three devices (remote controller (RC), drone (UAV), and
counter-drone system (CDS)) in the considered scenarios. The
highlighted background in the table’s some cells indicates the
comparison in question for any given scenario. The table also
summarizes the outcomes of the comparisons, which will be
covered scenario-by-scenario in detail in Sections IV-B, IV-C,
and IV-D, respectively. Finally, we also analyse the energy
efficiency of different counter-drone system strategies and the
effect of elevation.

TABLE I
SUMMARY OF SCENARIOS

Tr
an
sm

it

R
ec
ei
ve

In
te
rf
er
e

D
et
ec
t

D
ev
ic
e

O
ut
co
m
e

of
U
si
ng

FD

HD HD RC increased
effective
area

1 HD HD UAV
HD/FD HD/FD CDS

HD/FD HD/FD RC reduced
operable
area

2 HD/FD HD/FD UAV
HD/FD HD/FD CDS

HD HD RC increased
detection
range

3 HD/FD HD HD/FD UAV
HD/FD HD/FD CDS

In Scenario 1, the counter-drone system either detects and inter-
feres intermittently (HD) or simultaneously (FD), the latter result-
ing in an improved effective area for the counter-drone system. In
Scenario 2, the drone and remote controller either communicate
intermittently (HD) on the same frequency or simultaneously (FD),
the latter resulting in a reduced operable area for the drone. In
Scenario 3, the drone either transmits in one channel and detects
jamming in the other channels (HD) or it also simultaneously
detects jamming in the channel it is transmitting in (FD), the
latter increasing the drone’s capability to detect the intentional
interference from the counter-drone system. Conclusively, both
Scenarios 1 and 3 benefit from the FD operation mode, whereas
Scenario 2 does not.

The following parameters are used in the system model to
represent realistic devices and environments. The parameter
values do not strictly correspond to specific systems, but are
close to what can be found in many remote-controlled drone
and counter-drone systems [38], [39]. The total bandwidth
used by the remote control link is taken to be 80MHz and it
is divided into 160 equally spaced channels with bandwidths
of 0.5MHz. The remote controller and drone transmit BFSK
signal with frequency deviation of 200 kHz, encoded data rate
25 kbps, and frequency hopping rate of 40 hops per second.

The remote controller and drone both have transmit output
powers of 20 dBm in HD mode, while the counter-drone sys-

tem has an output power of 40 dBm regardless of the operation
mode. The drone system halves its output power in FD mode to
retain the same energy-per-bit ratio as in HD mode, while the
counter-drone system uses always the highest possible output
power to maximise its impact. For frequency sweep jamming,
2.5 kHz sweep rate is used, meaning that the interference
covers 16 channels during a single bit transmission in HD
mode, giving a good chance of high BER even at low jammer-
to-signal ratios (JSRs). The noise floor in a 0.5MHz channel is
taken to be −90 dBm. Both the signal detection and jamming
times are taken to be 1.6ms, hence the HD counter-drone
system uses a 50% duty cycle.
We consider the radio link between the remote controller

and drone to be functional as long as the channel-BER in both
ways is less than 1% (i.e., PT = 0.01). The area coverable by
the drone in which that constraint is satisfied will be referred
to as the operable area. Conversely, for a drone and its remote
controller at fixed positions, the area in which the counter-
drone system is able to force the channel-BER between the
drone and its remote controller over 1% in either direction
will be referred to as the counter-drone system’s effective
area. With a moderate coding rate, a below 1% channel-BER
would allow to reach an information-BER that suffices for
the repetitive nature of drone remote control. For example,
using Golay (23, 12) code and relying on (5), the channel-
BER of 1% allows to reach information-BER of about 10−5

after decoding.
The drone is assumed to operate at an elevation of 100m

above ground level, while the other nodes are at ground level
unless stated otherwise. The ground-to-air channel between the
remote controller and the drone is in practice clearly distin-
guishable from the conventional ground-to-ground channel be-
tween the remote controller and the counter-drone system [40].
Furthermore, a third, air-to-air, channel model is required
if any two of the three nodes are in the air. Therefore, in
order take these differences into account, we rely on empirical
studies that have characterized the air-to-air, ground-to-air, and
ground-to-ground channels in wireless drone communications,
and take the path loss exponents in those channels to be 2.0,
2.2, and 3.3 respectively [41], [42].

A. Verification of Analytical Expressions

Before using the analysis techniques developed in Sec-
tion III for studying the three scenarios, we first verify their
accuracy in comparison to simulated results. We begin by
checking the probabilities of correct detection and false alarm
by the counter-drone system in FD and HD mode (i.e., with
and without SI). Using Propositions 1 through 4, we have
evaluated the receiver operating characteristic (ROC) curves
and plotted them together with the simulated results in Fig. 8.
The reactive jammer with noise (RJn) or frequency-swept
interference (RJs) is guaranteed to correctly detect the presence
of the signal-of-interest with low enough threshold, while the
follower jammer (FJn) is not guaranteed to choose the correct
channel which is why the probability of correct detection for
the follower jammer is lower than for the other schemes in
Fig. 8. Also, we observe flattening of the ROC curves as the
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residual SI level increases when using noise as interference,
but not when using a deterministic signal. Overall, the results
indicate that the estimations are closely matched with the
simulations.
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Fig. 8. Receiver operating characteristic curves of the counter-drone system
with different detection strategies and at varying levels of self-interference.
Solid lines represent the analytical and marks the simulated results.
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With confidence in detection estimation accuracy, we
present the demodulation results by building on the detection
analysis. That is, we compare the estimated and simulated
channel-BERs at the drone, whereas the counter-drone system
is first required to detect the signal transmitted by the remote
controller. Using additionally Propositions 5 and 6, we esti-
mate the BER at the drone depending on the strategy and
mode of the counter-drone system. The results are presented
in Fig. 9. As expected, follower jamming becomes effective
at lower JSRs than reactive jamming because it is able to
overcome the processing gain of frequency hopping. Also,
reactive frequency-swept interference has the potential to

become effective at lower JSRs than reactive noise jamming,
since the interference is concentrated to just 10% of the total
bandwidth during a single symbol transmission. Similarly, FD
operation mode becomes effective at lower JSRs than HD
because it is able to spend more time in jamming mode.

It is interesting to note that, as the SNR at the counter-
drone system worsens, the performance difference between
FD and HD counter-drone system diminishes. That is because
the FD system stops taking advantage of its ability to jam
continuously due to the missed detections. Together the results
in Fig. 8 and Fig. 9 cover the analysis techniques presented
in Section III and indicate a good match between estimated
and simulated results. This allows us to confidently present the
following scenarios relying purely on the analytical functions.
Using the analytical functions is significantly less computing
intensive than running simulations, especially considering the
vast amount of data points that will be considered next to cover
the scenarios.

B. Scenario 1 (Minimizing Intrusion Area)

In the first scenario, we consider a defensive counter-drone
system as illustrated in Fig. 10. The counter-drone system
is positioned in front of an area that is to be restricted
to drones. This could be, e.g., national border, prison or
airport perimeter. The drone operator aims to control the
drone to enter the area behind the counter-drone system and
the counter-drone system aims to minimize the area behind
itself in which the drone can be remote-controlled. Using all
of the derived analytical functions in alignment with Fig. 6,
we study which counter-drone system strategies and operation
modes are most efficient in reducing the intrusion area. That
is, for the given remote controller and counter-drone system
positions, modes and strategies, BERs at the drone and remote
controller are evaluated for all the possible drone positions
in that area, and operable area is taken to be that where
the BER at both the drone and remote controller remains
below 1%. The operable area depends on the position of the
remote controller relative to the counter-drone system and
Fig. 10 illustrates how the different strategies and operation
modes limit the operable area of the remote-controlled drone
at different remote controller positions. The illustration shows
that FD operation outperforms HD to some extent in any
case due to more time spent jamming, but the efficiency of
the different strategies is a more significant factor than the
operation mode.

In Fig. 11, the area that can be covered by a malicious drone
behind a counter-drone system is plotted for different jamming
strategies and modes depending on the remote controller’s dis-
tance from the counter-drone system. Due to the differences in
the ground-to-air and ground-to-ground channels, the counter-
drone system is at a significant disadvantage compared to the
drone when detecting the remote control signals. As such,
when the remote controller is far away from the counter-drone
system, i.e., the remote control signal received by the counter-
drone system is weak, constant jamming outperforms other
strategies. Of course this increases the detectability of the
counter-drone system. If detectability is not a concern, then
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area). In the second scenario, we consider the drone’s ability
to maximize the area in which it can operate in the presence
of a malicious counter-drone system (i.e., maximizing the
operable area). In the third scenario, we study the drone’s
ability to detect malicious interference at ineffective levels
to prevent entering areas in which the interference would
become effective. Table I summarizes operation configurations
of the three devices (remote controller (RC), drone (UAV), and
counter-drone system (CDS)) in the considered scenarios. The
highlighted background in the table’s some cells indicates the
comparison in question for any given scenario. The table also
summarizes the outcomes of the comparisons, which will be
covered scenario-by-scenario in detail in Sections IV-B, IV-C,
and IV-D, respectively. Finally, we also analyse the energy
efficiency of different counter-drone system strategies and the
effect of elevation.

TABLE I
SUMMARY OF SCENARIOS
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HD HD RC increased
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1 HD HD UAV
HD/FD HD/FD CDS

HD/FD HD/FD RC reduced
operable
area

2 HD/FD HD/FD UAV
HD/FD HD/FD CDS

HD HD RC increased
detection
range

3 HD/FD HD HD/FD UAV
HD/FD HD/FD CDS

In Scenario 1, the counter-drone system either detects and inter-
feres intermittently (HD) or simultaneously (FD), the latter result-
ing in an improved effective area for the counter-drone system. In
Scenario 2, the drone and remote controller either communicate
intermittently (HD) on the same frequency or simultaneously (FD),
the latter resulting in a reduced operable area for the drone. In
Scenario 3, the drone either transmits in one channel and detects
jamming in the other channels (HD) or it also simultaneously
detects jamming in the channel it is transmitting in (FD), the
latter increasing the drone’s capability to detect the intentional
interference from the counter-drone system. Conclusively, both
Scenarios 1 and 3 benefit from the FD operation mode, whereas
Scenario 2 does not.

The following parameters are used in the system model to
represent realistic devices and environments. The parameter
values do not strictly correspond to specific systems, but are
close to what can be found in many remote-controlled drone
and counter-drone systems [38], [39]. The total bandwidth
used by the remote control link is taken to be 80MHz and it
is divided into 160 equally spaced channels with bandwidths
of 0.5MHz. The remote controller and drone transmit BFSK
signal with frequency deviation of 200 kHz, encoded data rate
25 kbps, and frequency hopping rate of 40 hops per second.

The remote controller and drone both have transmit output
powers of 20 dBm in HD mode, while the counter-drone sys-

tem has an output power of 40 dBm regardless of the operation
mode. The drone system halves its output power in FD mode to
retain the same energy-per-bit ratio as in HD mode, while the
counter-drone system uses always the highest possible output
power to maximise its impact. For frequency sweep jamming,
2.5 kHz sweep rate is used, meaning that the interference
covers 16 channels during a single bit transmission in HD
mode, giving a good chance of high BER even at low jammer-
to-signal ratios (JSRs). The noise floor in a 0.5MHz channel is
taken to be −90 dBm. Both the signal detection and jamming
times are taken to be 1.6ms, hence the HD counter-drone
system uses a 50% duty cycle.

We consider the radio link between the remote controller
and drone to be functional as long as the channel-BER in both
ways is less than 1% (i.e., PT = 0.01). The area coverable by
the drone in which that constraint is satisfied will be referred
to as the operable area. Conversely, for a drone and its remote
controller at fixed positions, the area in which the counter-
drone system is able to force the channel-BER between the
drone and its remote controller over 1% in either direction
will be referred to as the counter-drone system’s effective
area. With a moderate coding rate, a below 1% channel-BER
would allow to reach an information-BER that suffices for
the repetitive nature of drone remote control. For example,
using Golay (23, 12) code and relying on (5), the channel-
BER of 1% allows to reach information-BER of about 10−5

after decoding.
The drone is assumed to operate at an elevation of 100m

above ground level, while the other nodes are at ground level
unless stated otherwise. The ground-to-air channel between the
remote controller and the drone is in practice clearly distin-
guishable from the conventional ground-to-ground channel be-
tween the remote controller and the counter-drone system [40].
Furthermore, a third, air-to-air, channel model is required
if any two of the three nodes are in the air. Therefore, in
order take these differences into account, we rely on empirical
studies that have characterized the air-to-air, ground-to-air, and
ground-to-ground channels in wireless drone communications,
and take the path loss exponents in those channels to be 2.0,
2.2, and 3.3 respectively [41], [42].

A. Verification of Analytical Expressions

Before using the analysis techniques developed in Sec-
tion III for studying the three scenarios, we first verify their
accuracy in comparison to simulated results. We begin by
checking the probabilities of correct detection and false alarm
by the counter-drone system in FD and HD mode (i.e., with
and without SI). Using Propositions 1 through 4, we have
evaluated the receiver operating characteristic (ROC) curves
and plotted them together with the simulated results in Fig. 8.
The reactive jammer with noise (RJn) or frequency-swept
interference (RJs) is guaranteed to correctly detect the presence
of the signal-of-interest with low enough threshold, while the
follower jammer (FJn) is not guaranteed to choose the correct
channel which is why the probability of correct detection for
the follower jammer is lower than for the other schemes in
Fig. 8. Also, we observe flattening of the ROC curves as the
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residual SI level increases when using noise as interference,
but not when using a deterministic signal. Overall, the results
indicate that the estimations are closely matched with the
simulations.
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Fig. 8. Receiver operating characteristic curves of the counter-drone system
with different detection strategies and at varying levels of self-interference.
Solid lines represent the analytical and marks the simulated results.
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Fig. 9. Bit error rate at a frequency-hopped BFSK receiver under reactive or
follower jamming at different SNRs at the counter-drone system. The detection
threshold at the counter-drone system is chosen so that the false alarm rate is
1%. Solid lines represent the analytical and marks the simulated results.

With confidence in detection estimation accuracy, we
present the demodulation results by building on the detection
analysis. That is, we compare the estimated and simulated
channel-BERs at the drone, whereas the counter-drone system
is first required to detect the signal transmitted by the remote
controller. Using additionally Propositions 5 and 6, we esti-
mate the BER at the drone depending on the strategy and
mode of the counter-drone system. The results are presented
in Fig. 9. As expected, follower jamming becomes effective
at lower JSRs than reactive jamming because it is able to
overcome the processing gain of frequency hopping. Also,
reactive frequency-swept interference has the potential to

become effective at lower JSRs than reactive noise jamming,
since the interference is concentrated to just 10% of the total
bandwidth during a single symbol transmission. Similarly, FD
operation mode becomes effective at lower JSRs than HD
because it is able to spend more time in jamming mode.
It is interesting to note that, as the SNR at the counter-

drone system worsens, the performance difference between
FD and HD counter-drone system diminishes. That is because
the FD system stops taking advantage of its ability to jam
continuously due to the missed detections. Together the results
in Fig. 8 and Fig. 9 cover the analysis techniques presented
in Section III and indicate a good match between estimated
and simulated results. This allows us to confidently present the
following scenarios relying purely on the analytical functions.
Using the analytical functions is significantly less computing
intensive than running simulations, especially considering the
vast amount of data points that will be considered next to cover
the scenarios.

B. Scenario 1 (Minimizing Intrusion Area)

In the first scenario, we consider a defensive counter-drone
system as illustrated in Fig. 10. The counter-drone system
is positioned in front of an area that is to be restricted
to drones. This could be, e.g., national border, prison or
airport perimeter. The drone operator aims to control the
drone to enter the area behind the counter-drone system and
the counter-drone system aims to minimize the area behind
itself in which the drone can be remote-controlled. Using all
of the derived analytical functions in alignment with Fig. 6,
we study which counter-drone system strategies and operation
modes are most efficient in reducing the intrusion area. That
is, for the given remote controller and counter-drone system
positions, modes and strategies, BERs at the drone and remote
controller are evaluated for all the possible drone positions
in that area, and operable area is taken to be that where
the BER at both the drone and remote controller remains
below 1%. The operable area depends on the position of the
remote controller relative to the counter-drone system and
Fig. 10 illustrates how the different strategies and operation
modes limit the operable area of the remote-controlled drone
at different remote controller positions. The illustration shows
that FD operation outperforms HD to some extent in any
case due to more time spent jamming, but the efficiency of
the different strategies is a more significant factor than the
operation mode.
In Fig. 11, the area that can be covered by a malicious drone

behind a counter-drone system is plotted for different jamming
strategies and modes depending on the remote controller’s dis-
tance from the counter-drone system. Due to the differences in
the ground-to-air and ground-to-ground channels, the counter-
drone system is at a significant disadvantage compared to the
drone when detecting the remote control signals. As such,
when the remote controller is far away from the counter-drone
system, i.e., the remote control signal received by the counter-
drone system is weak, constant jamming outperforms other
strategies. Of course this increases the detectability of the
counter-drone system. If detectability is not a concern, then
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Fig. 10. Operable area of a remote-controlled drone against a counter-drone
system. Results for counter-drone system in FD mode are plotted in solid
lines and HD in dashed lines.
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Fig. 11. Area behind the counter-drone system in which a malicious drone
can be controlled. The reactive and follower jammers are operated with a
constant false alarm rate of 10%. Results for FD counter-drone system are
plotted in solid lines and HD in dashed lines.

using constant jamming and switching to follower jamming
after confidently detecting the remote control signals would be
the optimal strategy for reducing the operable area. It is also
evident that, compared to HD reactive and follower jammers,
their FD counterparts reduce the operable area somewhat.
Depending on the strategy, the operable area is reduced by 4%
to 17%. This is due to the FD counter-drone system being able
to spend more time in jamming mode than its HD counterpart.
Resultantly, as hinted in Table I, FD operation mode allows
to improve the efficiency of the counter-drone system.

C. Scenario 2 (Maximizing Operable Area)

In the second scenario, we consider the defensive drone
point of view and trying to extend the area that a drone can
survey as illustrated in Fig. 12. The malicious counter-drone
system aims to neutralize the drone in order to carry out some
activity in the surveyed area unseen and the drone aims to max-
imize the area in which it can operate. Given that the counter-
drone system is either HD or FD and uses some neutralization
strategy, the question then is which operation mode between
the remote controller and drone is most beneficial from the
drone’s perspective. We consider that the remote controller and
drone use the same energy per bit ratio in both FD and HD
operation modes. That is, in FD mode the symbol transmission
time is doubled but the transmission power is halved compared
to the HD mode.
Fig. 12 gives results for some node placements. The actual

area in which the drone can be remote-controlled decreases
as the counter-drone system approaches the remote controller.
Due to the different channel models, if the drone is trans-
mitting and receiving at the same time (i.e., FD mode), it
becomes a much easier target than in the HD time division
mode when the counter-drone system needs to detect the
signals from the remote controller. Therefore, using FD for
two-way communications between the remote controller and
drone make the drone system highly vulnerable to jamming
attacks. Fig. 13 gives the operable areas as depending on the
counter-drone system’s distance from the remote controller.
The operable area in FD mode can be reduced to as little
as couple percent of that in HD mode. That is, using FD
operation mode instead of HD for two-way communications
reduces the operable area of the drone when under attack from
a counter-drone system (cf. Table I). The results highlight the
relative vulnerability of FD two-way communications between
a drone and its remote controller compared to HD operation.
This is a considerable issue that affects many potential FD
drone applications.

D. Scenario 3 (Detecting Counter-Measures)

In the third scenario, we analyze the drone’s ability to
detect intentional interference from the counter-drone system.
In practice, this could help to make sure that the drone does not
enter the area in which it would be immobilized and this could
again be applicable in a situation where the drone is surveying
an area. The counter-drone system aims to disable the drone
in order to reduce the situational awareness about the area
and the drone aims to avoid becoming disabled by detecting
the counter-measures applied by the adversarial counter-drone
system. In this scenario we only consider the follower jammer,
which can be the most difficult to detect.
Fig. 14 illustrates the scenario — the drone is positioned

at a distance from the remote controller, leaving it to be
vulnerable to jamming attacks. For every viable counter-drone
position, the propositions from Section III are then used to
evaluate probability that the counter-drone system detects and
correctly jams the remote control link, the BER that this
jamming inflicts, and the probability by which the drone can
detect the follower jamming. The effective jamming area, in
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Fig. 13. Illustration of the area in which a drone can be controlled. The
reactive and follower jammers are operated in FD mode with a constant false
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which the counter-drone system needs to be positioned to
push the BER at the drone or remote controller above 1%,
is shown in red. The counter-drone system detection area, in
which the counter-drone system needs to be positioned so
that the drone can detect it, is shown in blue. The results
show that jamming detection in FD mode can lead to up to
60% increase of the detection area compared to HD mode.
The FD-enhanced drone has a considerable advantage over
its HD-limited counterpart because simultaneous transmission
and detection capability allows to detect the jamming attacks

more consistently. Without that capability, HD drone is limited
to detecting the counter-drone system’s attacks only when
the counter-drone system targets a wrong channel or is too
late with its attack against a recently vacated channel. As
such, jamming detection in FD mode is more certain to be
able to detect the malicious interference before becoming
immobilized by it. Depending on the direction from which the
counter-drone system approaches, HD detection might miss
the adversary altogether before becoming paralyzed.
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Fig. 14. Jamming detection by drone systems with HD and FD capabilities.
For illustration, the effective jamming area is also plotted, which allows to
get some sense about the drone’s capability to detect ineffective interference
and avoid entering an area where interference becomes effective.
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In Fig. 15, counter-drone system detectability is plotted
depending on the false alarm rate used by the counter-
drone system. Furthermore, Pd is the target detection rate at
the drone, i.e., the percentage of jamming attempts that are
required to be detected. As the counter-drone system lowers
its detection threshold, it becomes less discerning about the
channels that it attacks and consequently becomes detectable
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Fig. 11. Area behind the counter-drone system in which a malicious drone
can be controlled. The reactive and follower jammers are operated with a
constant false alarm rate of 10%. Results for FD counter-drone system are
plotted in solid lines and HD in dashed lines.

using constant jamming and switching to follower jamming
after confidently detecting the remote control signals would be
the optimal strategy for reducing the operable area. It is also
evident that, compared to HD reactive and follower jammers,
their FD counterparts reduce the operable area somewhat.
Depending on the strategy, the operable area is reduced by 4%
to 17%. This is due to the FD counter-drone system being able
to spend more time in jamming mode than its HD counterpart.
Resultantly, as hinted in Table I, FD operation mode allows
to improve the efficiency of the counter-drone system.

C. Scenario 2 (Maximizing Operable Area)

In the second scenario, we consider the defensive drone
point of view and trying to extend the area that a drone can
survey as illustrated in Fig. 12. The malicious counter-drone
system aims to neutralize the drone in order to carry out some
activity in the surveyed area unseen and the drone aims to max-
imize the area in which it can operate. Given that the counter-
drone system is either HD or FD and uses some neutralization
strategy, the question then is which operation mode between
the remote controller and drone is most beneficial from the
drone’s perspective. We consider that the remote controller and
drone use the same energy per bit ratio in both FD and HD
operation modes. That is, in FD mode the symbol transmission
time is doubled but the transmission power is halved compared
to the HD mode.

Fig. 12 gives results for some node placements. The actual
area in which the drone can be remote-controlled decreases
as the counter-drone system approaches the remote controller.
Due to the different channel models, if the drone is trans-
mitting and receiving at the same time (i.e., FD mode), it
becomes a much easier target than in the HD time division
mode when the counter-drone system needs to detect the
signals from the remote controller. Therefore, using FD for
two-way communications between the remote controller and
drone make the drone system highly vulnerable to jamming
attacks. Fig. 13 gives the operable areas as depending on the
counter-drone system’s distance from the remote controller.
The operable area in FD mode can be reduced to as little
as couple percent of that in HD mode. That is, using FD
operation mode instead of HD for two-way communications
reduces the operable area of the drone when under attack from
a counter-drone system (cf. Table I). The results highlight the
relative vulnerability of FD two-way communications between
a drone and its remote controller compared to HD operation.
This is a considerable issue that affects many potential FD
drone applications.

D. Scenario 3 (Detecting Counter-Measures)

In the third scenario, we analyze the drone’s ability to
detect intentional interference from the counter-drone system.
In practice, this could help to make sure that the drone does not
enter the area in which it would be immobilized and this could
again be applicable in a situation where the drone is surveying
an area. The counter-drone system aims to disable the drone
in order to reduce the situational awareness about the area
and the drone aims to avoid becoming disabled by detecting
the counter-measures applied by the adversarial counter-drone
system. In this scenario we only consider the follower jammer,
which can be the most difficult to detect.

Fig. 14 illustrates the scenario — the drone is positioned
at a distance from the remote controller, leaving it to be
vulnerable to jamming attacks. For every viable counter-drone
position, the propositions from Section III are then used to
evaluate probability that the counter-drone system detects and
correctly jams the remote control link, the BER that this
jamming inflicts, and the probability by which the drone can
detect the follower jamming. The effective jamming area, in
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which the counter-drone system needs to be positioned to
push the BER at the drone or remote controller above 1%,
is shown in red. The counter-drone system detection area, in
which the counter-drone system needs to be positioned so
that the drone can detect it, is shown in blue. The results
show that jamming detection in FD mode can lead to up to
60% increase of the detection area compared to HD mode.
The FD-enhanced drone has a considerable advantage over
its HD-limited counterpart because simultaneous transmission
and detection capability allows to detect the jamming attacks

more consistently. Without that capability, HD drone is limited
to detecting the counter-drone system’s attacks only when
the counter-drone system targets a wrong channel or is too
late with its attack against a recently vacated channel. As
such, jamming detection in FD mode is more certain to be
able to detect the malicious interference before becoming
immobilized by it. Depending on the direction from which the
counter-drone system approaches, HD detection might miss
the adversary altogether before becoming paralyzed.
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Fig. 14. Jamming detection by drone systems with HD and FD capabilities.
For illustration, the effective jamming area is also plotted, which allows to
get some sense about the drone’s capability to detect ineffective interference
and avoid entering an area where interference becomes effective.
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In Fig. 15, counter-drone system detectability is plotted
depending on the false alarm rate used by the counter-
drone system. Furthermore, Pd is the target detection rate at
the drone, i.e., the percentage of jamming attempts that are
required to be detected. As the counter-drone system lowers
its detection threshold, it becomes less discerning about the
channels that it attacks and consequently becomes detectable



14 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

from a greater distance. Conclusively, enhancing the drone
with FD signal detection capabilities simultaneously to feed-
back signal transmission considerably improves its ability to
detect interference from the counter-drone system (cf. Table I).

E. Energy Efficiency and Elevation

Since high-power jamming consumes a lot of energy, it
could be beneficial to take into account the energy efficiency
of different counter-drone strategies. For example, constant
jamming strategy is clearly the most wasteful when there are
no malicious drones. In this work we simplify the analysis
and consider only the time when the threat has realised (i.e.,
there is a drone in the vicinity). Fig. 16 shows the drone’s
operable area reduction divided by the counter-drone system’s
average output power (i.e., the energy efficiency). It can be
observed that FD operation facilitates doubling the jamming
energy consumption over HD operation. However, this does
not unfortunately result in equivalent reductions in the drone’s
operable area. When looking at the area that the counter-drone
system is able to protect at given energy consumption, the HD
operation mode utilises the energy more efficiently. This is
reasonable, because after the 1% BER threshold is crossed,
there is no benefit to increasing the BER any further by using
more energy. Furthermore, follower jamming can be the most
energy efficient strategy, but that requires the nodes to be
positioned so that the follower jammer is able to target the
correct channels.
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One of the main characteristics that separates drone and
general physical-layer reliability studies is the difference in
the air-to-air, ground-to-air, and ground-to-ground channels.
Specifically, the ground-to-air channel between a drone and
its remote controller is much less prone to degradation than
the ground-to-ground channel between a typical counter-drone
system and a remote controller. So far, we have assumed
that the counter-drone system is on the ground, which is a
fair assumption considering practical systems. However, it is
plausible that the counter-drone system be elevated (using,
e.g., a tethered drone or antenna tower) to an altitude similar
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Fig. 17. Performance of the counter-drone system from ground and air.

as the drone. This would level the playing field. In Fig. 17,
we compare the counter-drone system’s performance when on
the ground and elevated to the same altitude as the drone.
The results show that an airborne counter-drone system out-
performs a terrestrial system regardless of the operation mode
and strategy. However, by lifting the counter-drone system,
also the relative performance of different strategies changes.
For example, follower jamming becomes most efficient.

V. CONCLUSIONS

In this article, we have presented a systematic approach
for the reliability analysis of remote-controlled drones and
counter-drone systems operating in FD and HD modes. We
developed analytical tools to evaluate the detection and de-
modulation probabilities of frequency-hopped BFSK with
channelized energy detectors and noncoherent demodulators
under adversarial or self-induced interference. We verified the
analytical methods through comparison to simulated results
and then used the methods to study three different scenarios,
showing what can be expected to be the actual impact of
either operation mode in terms of the coverage or operation
area. Analysis of the three scenarios showed that FD radio
technology has clear benefits in remote-controlled drone and
counter-drone systems. Specifically, FD operation mode can
improve the effectiveness of counter-drone systems and allows
drone systems to detect interference from the counter-drone
system at a greater distance. However, there are also potential
drawbacks to using FD over HD operation mode, especially
in two-way communications. That is because FD operation
between a remote controller and drone simplifies targeting that
link for the counter-drone system, resulting in significantly
reduced operable area for the drone, although achieving better
spectral efficiency.

REFERENCES

[1] A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and
R. Wichman, “In-band full-duplex wireless: Challenges and opportuni-
ties,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637–1652, Sep.
2014.
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from a greater distance. Conclusively, enhancing the drone
with FD signal detection capabilities simultaneously to feed-
back signal transmission considerably improves its ability to
detect interference from the counter-drone system (cf. Table I).

E. Energy Efficiency and Elevation

Since high-power jamming consumes a lot of energy, it
could be beneficial to take into account the energy efficiency
of different counter-drone strategies. For example, constant
jamming strategy is clearly the most wasteful when there are
no malicious drones. In this work we simplify the analysis
and consider only the time when the threat has realised (i.e.,
there is a drone in the vicinity). Fig. 16 shows the drone’s
operable area reduction divided by the counter-drone system’s
average output power (i.e., the energy efficiency). It can be
observed that FD operation facilitates doubling the jamming
energy consumption over HD operation. However, this does
not unfortunately result in equivalent reductions in the drone’s
operable area. When looking at the area that the counter-drone
system is able to protect at given energy consumption, the HD
operation mode utilises the energy more efficiently. This is
reasonable, because after the 1% BER threshold is crossed,
there is no benefit to increasing the BER any further by using
more energy. Furthermore, follower jamming can be the most
energy efficient strategy, but that requires the nodes to be
positioned so that the follower jammer is able to target the
correct channels.
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Fig. 16. Energy efficiency of counter-drone systems with different strategies
and operation modes.

One of the main characteristics that separates drone and
general physical-layer reliability studies is the difference in
the air-to-air, ground-to-air, and ground-to-ground channels.
Specifically, the ground-to-air channel between a drone and
its remote controller is much less prone to degradation than
the ground-to-ground channel between a typical counter-drone
system and a remote controller. So far, we have assumed
that the counter-drone system is on the ground, which is a
fair assumption considering practical systems. However, it is
plausible that the counter-drone system be elevated (using,
e.g., a tethered drone or antenna tower) to an altitude similar
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Fig. 17. Performance of the counter-drone system from ground and air.

as the drone. This would level the playing field. In Fig. 17,
we compare the counter-drone system’s performance when on
the ground and elevated to the same altitude as the drone.
The results show that an airborne counter-drone system out-
performs a terrestrial system regardless of the operation mode
and strategy. However, by lifting the counter-drone system,
also the relative performance of different strategies changes.
For example, follower jamming becomes most efficient.

V. CONCLUSIONS

In this article, we have presented a systematic approach
for the reliability analysis of remote-controlled drones and
counter-drone systems operating in FD and HD modes. We
developed analytical tools to evaluate the detection and de-
modulation probabilities of frequency-hopped BFSK with
channelized energy detectors and noncoherent demodulators
under adversarial or self-induced interference. We verified the
analytical methods through comparison to simulated results
and then used the methods to study three different scenarios,
showing what can be expected to be the actual impact of
either operation mode in terms of the coverage or operation
area. Analysis of the three scenarios showed that FD radio
technology has clear benefits in remote-controlled drone and
counter-drone systems. Specifically, FD operation mode can
improve the effectiveness of counter-drone systems and allows
drone systems to detect interference from the counter-drone
system at a greater distance. However, there are also potential
drawbacks to using FD over HD operation mode, especially
in two-way communications. That is because FD operation
between a remote controller and drone simplifies targeting that
link for the counter-drone system, resulting in significantly
reduced operable area for the drone, although achieving better
spectral efficiency.

REFERENCES

[1] A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and
R. Wichman, “In-band full-duplex wireless: Challenges and opportuni-
ties,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637–1652, Sep.
2014.
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Known-Interference Cancellation in Cooperative Jamming:
Experimental Evaluation and Benchmark Algorithm Performance

Karel Pärlin, Taneli Riihonen, Matias Turunen, Vincent Le Nir, and Marc Adrat

Abstract—Physical layer security is a sought-after concept
to complement the established upper layer security techniques
in wireless communications. An appealing approach to achieve
physical layer security is to use cooperative jamming with
interference that is known to and suppressible by the legitimate
receiver but unknown to, and hence not suppressible by, the
eavesdropper. Suppressing known interference (KI), however, is
challenging due to the numerous unknowns, including carrier and
sampling frequency offsets, that impact its reception. This letter
presents a measurement campaign that captures this challenge
and then demonstrates the feasibility of solving that challenge by
cancelling the KI using the frequency offsets least mean squares
(FO-LMS) algorithm. Results show that KI suppression directly
improves processing the signal-of-interest and that cooperative
jamming effectively provides security at the physical layer.

Index Terms—Cooperative jamming, physical layer security.

I. INTRODUCTION

W IRELESS communications are by nature broadcast,
which on one hand means that multiple receivers can

receive the same transmitted signal, but on the other hand
it means that one receiver can receive the superposition of
multiple transmitted signals. The former results in significant
concern for the security of wirelessly transmitted information
because of the susceptibility to eavesdropping, while the latter
causes concern about robustness because of the vulnerability
to interference. In order to secure wirelessly transmitted in-
formation, encryption is typically used on the upper layers of
the communication model. In general, cryptographic systems
can be implemented to provide reasonable security, but their
functioning does rely on secure key exchange and limited
adversarial computational capabilities. As such, there is sig-
nificant interest in complementing the upper layer security at
the physical layer [1] and the solution to achieving physical
layer secrecy is often seen to be the other side of the broadcast
transmission nature — the superposition of multiple signals.

Specifically, if an interference signal can be transmitted so
that it superposes the signal-of-interest at the eavesdropper
but not at the intended receiver, then that could secure the
transmission. This could be achieved by either having the

Manuscript received 9 May 2023; accepted 4 June 2023. Date of publication
August 31, 2023; date of current version August 31, 2023. The associate
editor coordinating the review of this paper and approving it for publication
was L. Yang.
K. Pärlin, T. Riihonen, and M. Turunen are with Tampere University,

Faculty of Information Technology and Communication Sciences, Korkeak-
oulunkatu 1, 33720 Tampere, Finland (e-mail: karel.parlin@tuni.fi).
V. Le Nir is with Royal Military Academy, Signal and Image Center,

Avenue de la Renaissance 30, B-1000 Brussels, Belgium.
M. Adrat is with Fraunhofer Institute for Communication, Information Pro-

cessing and Ergonomics, Fraunhofer Straße 20, 53343 Wachtberg, Germany.
This research work was supported by the Academy of Finland and the

Finnish Scientific Advisory Board for Defence.
Digital Object Identifier 10.1109/LWC.2023.3284006

Transmitter

DACSoI
s(t)

Cooperative Jammer

DACKI
x(t)

Receiver

ADC DSP

dr(t)

Eavesdropper

ADC DSP
de(t)

hte

hjr

hje

htr

Fig. 1. System model of cooperatively jammed wireless communications.

transmitter itself or a separate cooperative jammer produce the
interference, such that only the eavesdropper is affected [2].
Targeting an eavesdropper this way requires the nodes to be
positioned favorably, but also that the interference transmitter
is capable of directing the interference and knows how the de-
vices are positioned. This awareness, however, can be difficult
to obtain in practice, especially if the adversary is passive.

An alternative, that does not rely on such knowledge, is to
cover the whole area with interference but suppress it at the
receiver. Instead, this relies on the receiver having the tech-
nological capability to cancel the interference from the total
received signal and it knowing the transmitted interference
signal. The latter is achieved if the receiver itself transmits
the interference. This results in self-interference (SI), but that
can be suppressed using SI cancellation methods as in in-band
full-duplex (IBFD) radios [3]. Such interference-transmitting
receivers effectively block out near-by eavesdroppers [4].
However, they also block out near-by non-adversarial nodes,
unless those nodes possess known-interference cancellation
(KIC) capabilities and know the interference signal. Known
interference (KI) from another radio is more complicated to
cancel than SI due to oscillator inaccuracies [5] and methods
to do so are scarce [6]. Still, information theoretical works
often assume perfect KIC [7], [8] somewhat negligently.

In this work, we help bridge that gap between theory and
practice by carrying out an extensive KI measurement cam-
paign1, demonstrating the practicality of KIC, and studying its
impact on signal-of-interest processing. We consider a four-
node network as in Fig. 1, where the jammer can be an IBFD
node or not, but the focus is on how the interference affects
the receiver and eavesdropper. The signal-of-interest is an
IEEE 802.15.4 waveform, basis for many Internet-of-Things
applications [9], and we use the waveform agnostic frequency
offsets least mean squares (FO-LMS) algorithm [10] for KIC.

1Measurement dataset is available at https://dx.doi.org/10.21227/9mty-pf96
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transmitter itself or a separate cooperative jammer produce the
interference, such that only the eavesdropper is affected [2].
Targeting an eavesdropper this way requires the nodes to be
positioned favorably, but also that the interference transmitter
is capable of directing the interference and knows how the de-
vices are positioned. This awareness, however, can be difficult
to obtain in practice, especially if the adversary is passive.
An alternative, that does not rely on such knowledge, is to

cover the whole area with interference but suppress it at the
receiver. Instead, this relies on the receiver having the tech-
nological capability to cancel the interference from the total
received signal and it knowing the transmitted interference
signal. The latter is achieved if the receiver itself transmits
the interference. This results in self-interference (SI), but that
can be suppressed using SI cancellation methods as in in-band
full-duplex (IBFD) radios [3]. Such interference-transmitting
receivers effectively block out near-by eavesdroppers [4].
However, they also block out near-by non-adversarial nodes,
unless those nodes possess known-interference cancellation
(KIC) capabilities and know the interference signal. Known
interference (KI) from another radio is more complicated to
cancel than SI due to oscillator inaccuracies [5] and methods
to do so are scarce [6]. Still, information theoretical works
often assume perfect KIC [7], [8] somewhat negligently.
In this work, we help bridge that gap between theory and

practice by carrying out an extensive KI measurement cam-
paign1, demonstrating the practicality of KIC, and studying its
impact on signal-of-interest processing. We consider a four-
node network as in Fig. 1, where the jammer can be an IBFD
node or not, but the focus is on how the interference affects
the receiver and eavesdropper. The signal-of-interest is an
IEEE 802.15.4 waveform, basis for many Internet-of-Things
applications [9], and we use the waveform agnostic frequency
offsets least mean squares (FO-LMS) algorithm [10] for KIC.

1Measurement dataset is available at https://dx.doi.org/10.21227/9mty-pf96
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II. KNOWN-INTERFERENCE CANCELLATION

The challenges of KIC follow from the system model in
Fig. 1. The transmitter broadcasts a signal s(t) that is of
interest to the receiver and eavesdropper. The jammer, on the
other hand, broadcasts a signal x(t) that, in its discrete-time
baseband complex form x(n), is known to the receiver but
not to the eavesdropper. Then, the discrete-time signal at the
receiver becomes a superposition of those two so that

dr(n) = hH
jr yne

j
∑n

i=1 ϵ(i) + hH
trsn + v(n), (1)

where htr and hjr are the channel impulse responses from
transmitter and jammer to the receiver respectively, {·}H
denotes conjugate transpose, v(n) is measurement noise with
variance σ2

v, yn accounts for sampling x(t) with time-varying
sampling frequency offset η(i) according to (2) in [10], and
the multiplicative term ej

∑n
i=1 ϵ(i) accounts for the carrier

frequency offset and phase noise. The received signal at the
eavesdropper becomes

de(n) = hH
jexn + hH

tesn + v(n), (2)

where hte and hje are the channel impulse responses from
transmitter and jammer to the eavesdropper respectively, and
we can ignore the frequency offsets, since the signals are
assumed to be unknown to the eavesdropper anyway.

Not knowing x(n), the eavesdropper is stuck with the
superposition of the received signals. The receiver, however,
can subtract x(n) from the received signal if it is able to
estimate htr, η(n), and ϵ(n), resulting in

er(n) = dr(n)− ĥH
n−1ŷne

j
∑n

i=1 ϵ̂(i−1) (3)

where ĥn−1, ϵ̂(n− 1), and η̂(n− 1) are respectively the esti-
mates of the channel impulse response htr, carrier frequency
offset, and sampling frequency offset at iteration n, and ŷn

is the result of resampling x(n) with η̂(n − 1). With very
good parameter estimates, the error in (3) approximates to
er(n) ≈ hH

trsn+v(n), containing just the signal-of-interest and
measurement noise. In practice, KIC is likely to result in some
residual KI that degrades the signal-of-interest processing.

The signal-to-interference-plus-noise ratios (SINRs) with
and without KIC are defined as

γr =
E
[
|hH

trsn|2
]

E
[
|er(n)− hH

trsn|2
] (4)

and

γe =
E
[
|hH

tesn|2
]

E
[
|de(n)− hH

tesn|2
] =

E
[
|hH

tesn|2
]

E
[
|hH

jexn|2
]
+ σ2

v

, (5)

where E[·] is the statistical expectation operator.
In this work, we use the adaptive FO-LMS algorithm [10]

as the reference KIC method. At every iteration, FO-LMS up-
dates [10, Algorithm 1] the parameter estimates by minimizing
the error in (3) so that

ĥn = ĥn−1 + µhŷne
jϕ(n)e∗r (n), (6a)

ϵ̂(n) = ϵ̂(n− 1) + µϵℑ
{
ĥH
n−1ŷne

jϕ(n)e∗r (n)
}
, (6b)

η̂(n) = η̂(n− 1) + µηℜ
{
ĥH
n−1ŷ

′
ne

jϕ(n)e∗r (n)
}
, (6c)

where ŷ′
n is the derivative of ŷn and ϕ(n) =

∑n
i=1 ϵ̂(i− 1).

III. MEASUREMENT CAMPAIGN

In order to study the performance of the described KIC ap-
proach, we carried out an extensive experiment using the setup
illustrated in Fig. 2a. The setup implements the system model
with some simplifying modifications. Firstly, the receiver and
eavesdropper were implemented using the same hardware,
leaving the distinction to be made in software. Secondly, a
reference timing generator was used that optionally provides
initial synchronization across the devices and emulates that
step required in practical implementation. Finally, the trans-
mitter and receiver were connected to a reference frequency
generator, which makes processing the signal-of-interest more
straightforward and allows us to focus the analysis on the KIC
performance but in no way simplifies cancelling the KI.
As shown in Fig. 2b, the measurements were carried out

in an anechoic chamber. The three nodes were implemented
using USRP-2900 software-defined radios that were positioned
on the edges of a table in the middle of the chamber with
approximately 0.5m between any two devices. The radios
were configured to 2.45GHz center frequency with 8MHz
sampling rate. The USRPs provide approximately 90 dB trans-
mit gain range and both transmitting node gains were varied
over that range with 5 dB, and some additional 2.5 dB, steps.
The entire resulting measurement grid1 was recorded on a
drive using the receiver. The receiver gain was kept fixed at
a level that took full advantage of the DAC dynamic range
when both transmitted signals were at their highest power.

1 PPS 10 MHz
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(a) Diagram of the measurement setup

(b) Photograph of the measurement setup

Fig. 2. Setup for over-the-air experiments in an anechoic chamber.
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The signal-of-interest was taken to be IEEE 802.15.4 that
specifies the physical layer and medium access control sub-
layer for low data rate wireless connectivity with fixed,
portable, and moving devices with no battery or limited energy
consumption requirements [9]. It is the basis for several well-
known high-level communication protocols such as Zigbee and
6LoWPAN amongst others. IEEE 802.15.4 specifies multiple
physical-layer implementation variants. In this work, we used
the 2.4GHz option that is aligned with our chosen measure-
ment carrier frequency, but is also the most common IEEE
802.15.4 physical layer variant, since it provides the maximum
data rate and highest number of RF channels. This variant uses
O-QPSK modulation and direct sequence spectrum spreading
with about 9 dB of processing gain, offering 250 kbit/s data
rate in a 2MHz channel bandwidth.

For each gain configuration, we made ten separate record-
ings, each of which consisted of 512 signal-of-interest frames.
The KI was 4MHz bandlimited noise created with a pseudo-
random number generator and filtering. This approach would
also straightforwardly facilitate generating the same signal
across legitimate nodes in practice, relying only on a pre-
shared secret seed to avoid transferring and storing the
complex-valued baseband jamming waveform into each de-
vice. Furthermore, except for a short burst (2048 samples
in length) in the beginning of the KI that optionally facil-
itates auto-correlation based KI start detection, the KI does
not repeat making it difficult for an adversary to estimate
the KI signal and sets this work apart from previous KIC
experiments [6]. The following analysis takes advantage of
the measurement simplifications but also demonstrates the
use of the repeated start sequence. That is, the signal-of-
interest demodulator always knows where each transmitted
frame starts in the received signal streams since the aim is to
focus on KIC performance. The KI canceller, however, either
knows where the KI starts in the received streams or detects its
start through auto-correlation. In either case, the KI canceller
is then still affected by the carrier and sampling frequency
offsets.

IV. EXPERIMENTAL RESULTS

The signal-of-interest and KI are illustrated in Fig. 3, which
shows the power spectral density of the received superposed
signals without KIC, with KIC, and with perfect KIC (i.e.,
the signal-of-interest received without the KI). In this case,
we have chosen a point in the measurement grid where the
received KI is much more powerful than the received signal-
of-interest. This view already indicates that the reference KIC
method suppresses the KI significantly, albeit not perfectly.
For a more detailed analysis, Fig. 4 shows the residual KI
power without and with cancellation when there is no signal-
of-interest received. Either auto-correlation is used to detect
the start of the KI or the coarse time synchronization from
the shared timing generator is relied on. The latter results
in a more robust cancellation at low received interference
powers as the correlation-based signal detector can in that
range misjudge the start of the signal beyond the extent that
the FO-LMS algorithm can handle (i.e., the offset is larger
than the estimated channel impulse response length).
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II. KNOWN-INTERFERENCE CANCELLATION

The challenges of KIC follow from the system model in
Fig. 1. The transmitter broadcasts a signal s(t) that is of
interest to the receiver and eavesdropper. The jammer, on the
other hand, broadcasts a signal x(t) that, in its discrete-time
baseband complex form x(n), is known to the receiver but
not to the eavesdropper. Then, the discrete-time signal at the
receiver becomes a superposition of those two so that

dr(n) = hH
jr yne

j
∑n

i=1 ϵ(i) + hH
trsn + v(n), (1)

where htr and hjr are the channel impulse responses from
transmitter and jammer to the receiver respectively, {·}H
denotes conjugate transpose, v(n) is measurement noise with
variance σ2

v, yn accounts for sampling x(t) with time-varying
sampling frequency offset η(i) according to (2) in [10], and
the multiplicative term ej

∑n
i=1 ϵ(i) accounts for the carrier

frequency offset and phase noise. The received signal at the
eavesdropper becomes

de(n) = hH
jexn + hH

tesn + v(n), (2)

where hte and hje are the channel impulse responses from
transmitter and jammer to the eavesdropper respectively, and
we can ignore the frequency offsets, since the signals are
assumed to be unknown to the eavesdropper anyway.

Not knowing x(n), the eavesdropper is stuck with the
superposition of the received signals. The receiver, however,
can subtract x(n) from the received signal if it is able to
estimate htr, η(n), and ϵ(n), resulting in

er(n) = dr(n)− ĥH
n−1ŷne

j
∑n

i=1 ϵ̂(i−1) (3)

where ĥn−1, ϵ̂(n− 1), and η̂(n− 1) are respectively the esti-
mates of the channel impulse response htr, carrier frequency
offset, and sampling frequency offset at iteration n, and ŷn

is the result of resampling x(n) with η̂(n − 1). With very
good parameter estimates, the error in (3) approximates to
er(n) ≈ hH

trsn+v(n), containing just the signal-of-interest and
measurement noise. In practice, KIC is likely to result in some
residual KI that degrades the signal-of-interest processing.

The signal-to-interference-plus-noise ratios (SINRs) with
and without KIC are defined as

γr =
E
[
|hH

trsn|2
]

E
[
|er(n)− hH

trsn|2
] (4)

and

γe =
E
[
|hH

tesn|2
]

E
[
|de(n)− hH

tesn|2
] =

E
[
|hH

tesn|2
]

E
[
|hH

jexn|2
]
+ σ2

v

, (5)

where E[·] is the statistical expectation operator.
In this work, we use the adaptive FO-LMS algorithm [10]

as the reference KIC method. At every iteration, FO-LMS up-
dates [10, Algorithm 1] the parameter estimates by minimizing
the error in (3) so that

ĥn = ĥn−1 + µhŷne
jϕ(n)e∗r (n), (6a)

ϵ̂(n) = ϵ̂(n− 1) + µϵℑ
{
ĥH
n−1ŷne

jϕ(n)e∗r (n)
}
, (6b)

η̂(n) = η̂(n− 1) + µηℜ
{
ĥH
n−1ŷ

′
ne

jϕ(n)e∗r (n)
}
, (6c)

where ŷ′
n is the derivative of ŷn and ϕ(n) =

∑n
i=1 ϵ̂(i− 1).

III. MEASUREMENT CAMPAIGN

In order to study the performance of the described KIC ap-
proach, we carried out an extensive experiment using the setup
illustrated in Fig. 2a. The setup implements the system model
with some simplifying modifications. Firstly, the receiver and
eavesdropper were implemented using the same hardware,
leaving the distinction to be made in software. Secondly, a
reference timing generator was used that optionally provides
initial synchronization across the devices and emulates that
step required in practical implementation. Finally, the trans-
mitter and receiver were connected to a reference frequency
generator, which makes processing the signal-of-interest more
straightforward and allows us to focus the analysis on the KIC
performance but in no way simplifies cancelling the KI.

As shown in Fig. 2b, the measurements were carried out
in an anechoic chamber. The three nodes were implemented
using USRP-2900 software-defined radios that were positioned
on the edges of a table in the middle of the chamber with
approximately 0.5m between any two devices. The radios
were configured to 2.45GHz center frequency with 8MHz
sampling rate. The USRPs provide approximately 90 dB trans-
mit gain range and both transmitting node gains were varied
over that range with 5 dB, and some additional 2.5 dB, steps.
The entire resulting measurement grid1 was recorded on a
drive using the receiver. The receiver gain was kept fixed at
a level that took full advantage of the DAC dynamic range
when both transmitted signals were at their highest power.

1 PPS 10 MHz

Transmitter

DACSoI
s(t)

Cooperative Jammer

DACKI
x(t)

Receiver / Eavesdropper

ADC DSP

ht

hj

(a) Diagram of the measurement setup

(b) Photograph of the measurement setup

Fig. 2. Setup for over-the-air experiments in an anechoic chamber.
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The signal-of-interest was taken to be IEEE 802.15.4 that
specifies the physical layer and medium access control sub-
layer for low data rate wireless connectivity with fixed,
portable, and moving devices with no battery or limited energy
consumption requirements [9]. It is the basis for several well-
known high-level communication protocols such as Zigbee and
6LoWPAN amongst others. IEEE 802.15.4 specifies multiple
physical-layer implementation variants. In this work, we used
the 2.4GHz option that is aligned with our chosen measure-
ment carrier frequency, but is also the most common IEEE
802.15.4 physical layer variant, since it provides the maximum
data rate and highest number of RF channels. This variant uses
O-QPSK modulation and direct sequence spectrum spreading
with about 9 dB of processing gain, offering 250 kbit/s data
rate in a 2MHz channel bandwidth.
For each gain configuration, we made ten separate record-

ings, each of which consisted of 512 signal-of-interest frames.
The KI was 4MHz bandlimited noise created with a pseudo-
random number generator and filtering. This approach would
also straightforwardly facilitate generating the same signal
across legitimate nodes in practice, relying only on a pre-
shared secret seed to avoid transferring and storing the
complex-valued baseband jamming waveform into each de-
vice. Furthermore, except for a short burst (2048 samples
in length) in the beginning of the KI that optionally facil-
itates auto-correlation based KI start detection, the KI does
not repeat making it difficult for an adversary to estimate
the KI signal and sets this work apart from previous KIC
experiments [6]. The following analysis takes advantage of
the measurement simplifications but also demonstrates the
use of the repeated start sequence. That is, the signal-of-
interest demodulator always knows where each transmitted
frame starts in the received signal streams since the aim is to
focus on KIC performance. The KI canceller, however, either
knows where the KI starts in the received streams or detects its
start through auto-correlation. In either case, the KI canceller
is then still affected by the carrier and sampling frequency
offsets.

IV. EXPERIMENTAL RESULTS

The signal-of-interest and KI are illustrated in Fig. 3, which
shows the power spectral density of the received superposed
signals without KIC, with KIC, and with perfect KIC (i.e.,
the signal-of-interest received without the KI). In this case,
we have chosen a point in the measurement grid where the
received KI is much more powerful than the received signal-
of-interest. This view already indicates that the reference KIC
method suppresses the KI significantly, albeit not perfectly.
For a more detailed analysis, Fig. 4 shows the residual KI
power without and with cancellation when there is no signal-
of-interest received. Either auto-correlation is used to detect
the start of the KI or the coarse time synchronization from
the shared timing generator is relied on. The latter results
in a more robust cancellation at low received interference
powers as the correlation-based signal detector can in that
range misjudge the start of the signal beyond the extent that
the FO-LMS algorithm can handle (i.e., the offset is larger
than the estimated channel impulse response length).
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Fig. 3. Power spectral densities of the superposed KI and signal-of-interest
without KIC, with proposed KIC, and with perfect KIC.
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Fig. 6. SINRs at the eavesdropper, γe, and receiver, γr, (i.e., without and with KIC) along with the PERs with regards to the transmitted signal powers.

Altogether this gives a baseline understanding of how well
the method can potentially perform. The results exhibit that
FO-LMS is able cancel the KI at most by about 39 dB before
being limited by the nonlinearities and noise within the KI at
high KI powers. Given that the estimated carrier and sampling
frequency offsets were on the order of kilohertz and hertz
respectively, the performance is nonetheless very good. In
Fig. 5, the analysis is extended to include the signal-of-interest.
In this case, the signal-of-interest gain is varied and the KI gain
is set to 85 dB or 0 dB. The former allows us to get the results
with and without KIC, while the latter acts as a reference case
that would be achieved with perfect KIC. We look at the bit
error rate at the receiver when demodulating the signal-of-
interest. Firstly, the bit error rate curve is significantly affected
by the powerful jamming signal, as expected. Secondly, KIC
directly translates to improved signal-of-interest demodulation,
i.e., the results in Fig. 4 are consistent with those in Fig. 5,
despite the added signal-of-interest. Unfortunately this also
means that the residual KI remaining after the reference KIC
prevents the demodulation performance from reaching that as
after the perfect KIC.

The entire measurement grid is presented in Fig. 6 by
plotting SINRs before and after the KIC together with the
95% and 50% packet error rate (PER) thresholds. The results
characterize the reference KIC performance over a wide range
that in practice may occur depending on the transmitted
signal powers and node placements. We see that there is a
significant portion of the grid, where SINR without the KIC
is too poor to successfully demodulate most of the packets,
but KIC improves the SINR enough to facilitate successful
demodulation. In alignment with the above results, it is also
clear that for high power KI, the reference KIC is unable to
suppress the KI all the way to the noise floor, causing some
SINR degradation. Similarly, the reference KIC is affected by
a powerful signal-of-interest, which results in the flat SINR
area in the upper right corner of Fig. 6b. Still, the reference
KIC facilitates a significant shift in the SINR.
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Fig. 7. Secrecy capacity, Cs, in bps/Hz with perfect and reference KIC.

That shift in the SINR consequently provides security at the
physical layer. This is evident by contrasting the results from
Fig. 6 with that of the perfect KIC and calculating the secrecy
capacity that the legitimate receiver has over the eavesdropper
given either reference or perfect KIC at the receiver. The
secrecy capacity, Cs = max{log2 (1 + γr)−log2 (1 + γe) , 0},
is plotted in Fig. 7 with regards to the received KI and signal-
of-interest powers. It is clear that the reference KIC does
not always allow to achieve quite the same secrecy capacity
as perfect KIC would. At high KI and low signal-of-interest
powers (i.e., upper left corner), this is due to the reference
method’s inability to deal with nonlinearities in the KI. When
the signal-of-interest power is relatively high compared to
the KI power (i.e., lower right corner), this is because the
signal-of-interest hampers the KIC. However, the physical
layer security provided by the reference KIC is still significant,
especially considering that without KIC the secrecy capacity
is zero since then γr = γe in the experiments.
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V. CONCLUSION

In this letter, we studied the practicality of cooperative jam-
ming with an arbitrary known interference (KI) waveform for
the purpose of providing physical layer security in the presence
of an eavesdropper. Specifically, we looked at the capability of
the frequency offsets least mean squares (FO-LMS) adaptive
algorithm to suppress a KI signal that is received through
an unknown channel with carrier and sampling frequency
offsets. We also analyzed how the KI suppression affects
the subsequent signal-of-interest processing. To facilitate the
analysis in this work, and to support further research into
this topic, a comprehensive measurement dataset was collected
and is released alongside this letter.1 The experimental results
demonstrated that the FO-LMS is well capable of suppressing
a KI signal even when the KI is superposed with a signal-
of-interest. The algorithm is, though, unable to deal with
nonlinearities and phase noise in the received KI, which can
result in some residual KI after the cancellation and therefore
leaves room for improvement of the KI cancellation method.
Still, despite these limitations, the results showed that this
approach is useful for providing physical layer security in
the presence of an eavesdropper. Furthermore, this approach
could be used to prevent adversarial nodes from wirelessly
communicating within an area while not overly hampering
legitimate nodes therein.
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Fig. 6. SINRs at the eavesdropper, γe, and receiver, γr, (i.e., without and with KIC) along with the PERs with regards to the transmitted signal powers.

Altogether this gives a baseline understanding of how well
the method can potentially perform. The results exhibit that
FO-LMS is able cancel the KI at most by about 39 dB before
being limited by the nonlinearities and noise within the KI at
high KI powers. Given that the estimated carrier and sampling
frequency offsets were on the order of kilohertz and hertz
respectively, the performance is nonetheless very good. In
Fig. 5, the analysis is extended to include the signal-of-interest.
In this case, the signal-of-interest gain is varied and the KI gain
is set to 85 dB or 0 dB. The former allows us to get the results
with and without KIC, while the latter acts as a reference case
that would be achieved with perfect KIC. We look at the bit
error rate at the receiver when demodulating the signal-of-
interest. Firstly, the bit error rate curve is significantly affected
by the powerful jamming signal, as expected. Secondly, KIC
directly translates to improved signal-of-interest demodulation,
i.e., the results in Fig. 4 are consistent with those in Fig. 5,
despite the added signal-of-interest. Unfortunately this also
means that the residual KI remaining after the reference KIC
prevents the demodulation performance from reaching that as
after the perfect KIC.

The entire measurement grid is presented in Fig. 6 by
plotting SINRs before and after the KIC together with the
95% and 50% packet error rate (PER) thresholds. The results
characterize the reference KIC performance over a wide range
that in practice may occur depending on the transmitted
signal powers and node placements. We see that there is a
significant portion of the grid, where SINR without the KIC
is too poor to successfully demodulate most of the packets,
but KIC improves the SINR enough to facilitate successful
demodulation. In alignment with the above results, it is also
clear that for high power KI, the reference KIC is unable to
suppress the KI all the way to the noise floor, causing some
SINR degradation. Similarly, the reference KIC is affected by
a powerful signal-of-interest, which results in the flat SINR
area in the upper right corner of Fig. 6b. Still, the reference
KIC facilitates a significant shift in the SINR.
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That shift in the SINR consequently provides security at the
physical layer. This is evident by contrasting the results from
Fig. 6 with that of the perfect KIC and calculating the secrecy
capacity that the legitimate receiver has over the eavesdropper
given either reference or perfect KIC at the receiver. The
secrecy capacity, Cs = max{log2 (1 + γr)−log2 (1 + γe) , 0},
is plotted in Fig. 7 with regards to the received KI and signal-
of-interest powers. It is clear that the reference KIC does
not always allow to achieve quite the same secrecy capacity
as perfect KIC would. At high KI and low signal-of-interest
powers (i.e., upper left corner), this is due to the reference
method’s inability to deal with nonlinearities in the KI. When
the signal-of-interest power is relatively high compared to
the KI power (i.e., lower right corner), this is because the
signal-of-interest hampers the KIC. However, the physical
layer security provided by the reference KIC is still significant,
especially considering that without KIC the secrecy capacity
is zero since then γr = γe in the experiments.
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V. CONCLUSION

In this letter, we studied the practicality of cooperative jam-
ming with an arbitrary known interference (KI) waveform for
the purpose of providing physical layer security in the presence
of an eavesdropper. Specifically, we looked at the capability of
the frequency offsets least mean squares (FO-LMS) adaptive
algorithm to suppress a KI signal that is received through
an unknown channel with carrier and sampling frequency
offsets. We also analyzed how the KI suppression affects
the subsequent signal-of-interest processing. To facilitate the
analysis in this work, and to support further research into
this topic, a comprehensive measurement dataset was collected
and is released alongside this letter.1 The experimental results
demonstrated that the FO-LMS is well capable of suppressing
a KI signal even when the KI is superposed with a signal-
of-interest. The algorithm is, though, unable to deal with
nonlinearities and phase noise in the received KI, which can
result in some residual KI after the cancellation and therefore
leaves room for improvement of the KI cancellation method.
Still, despite these limitations, the results showed that this
approach is useful for providing physical layer security in
the presence of an eavesdropper. Furthermore, this approach
could be used to prevent adversarial nodes from wirelessly
communicating within an area while not overly hampering
legitimate nodes therein.
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