198 research outputs found

    Adversarial Autoencoders with Constant-Curvature Latent Manifolds

    Get PDF
    Constant-curvature Riemannian manifolds (CCMs) have been shown to be ideal embedding spaces in many application domains, as their non-Euclidean geometry can naturally account for some relevant properties of data, like hierarchy and circularity. In this work, we introduce the CCM adversarial autoencoder (CCM-AAE), a probabilistic generative model trained to represent a data distribution on a CCM. Our method works by matching the aggregated posterior of the CCM-AAE with a probability distribution defined on a CCM, so that the encoder implicitly learns to represent data on the CCM to fool the discriminator network. The geometric constraint is also explicitly imposed by jointly training the CCM-AAE to maximise the membership degree of the embeddings to the CCM. While a few works in recent literature make use of either hyperspherical or hyperbolic manifolds for different learning tasks, ours is the first unified framework to seamlessly deal with CCMs of different curvatures. We show the effectiveness of our model on three different datasets characterised by non-trivial geometry: semi-supervised classification on MNIST, link prediction on two popular citation datasets, and graph-based molecule generation using the QM9 chemical database. Results show that our method improves upon other autoencoders based on Euclidean and non-Euclidean geometries on all tasks taken into account.Comment: Submitted to Applied Soft Computin

    Change Detection in Graph Streams by Learning Graph Embeddings on Constant-Curvature Manifolds

    Get PDF
    The space of graphs is often characterised by a non-trivial geometry, which complicates learning and inference in practical applications. A common approach is to use embedding techniques to represent graphs as points in a conventional Euclidean space, but non-Euclidean spaces have often been shown to be better suited for embedding graphs. Among these, constant-curvature Riemannian manifolds (CCMs) offer embedding spaces suitable for studying the statistical properties of a graph distribution, as they provide ways to easily compute metric geodesic distances. In this paper, we focus on the problem of detecting changes in stationarity in a stream of attributed graphs. To this end, we introduce a novel change detection framework based on neural networks and CCMs, that takes into account the non-Euclidean nature of graphs. Our contribution in this work is twofold. First, via a novel approach based on adversarial learning, we compute graph embeddings by training an autoencoder to represent graphs on CCMs. Second, we introduce two novel change detection tests operating on CCMs. We perform experiments on synthetic data, as well as two real-world application scenarios: the detection of epileptic seizures using functional connectivity brain networks, and the detection of hostility between two subjects, using human skeletal graphs. Results show that the proposed methods are able to detect even small changes in a graph-generating process, consistently outperforming approaches based on Euclidean embeddings.Comment: 14 pages, 8 figure

    The Riemannian Geometry of Deep Generative Models

    Full text link
    Deep generative models learn a mapping from a low dimensional latent space to a high-dimensional data space. Under certain regularity conditions, these models parameterize nonlinear manifolds in the data space. In this paper, we investigate the Riemannian geometry of these generated manifolds. First, we develop efficient algorithms for computing geodesic curves, which provide an intrinsic notion of distance between points on the manifold. Second, we develop an algorithm for parallel translation of a tangent vector along a path on the manifold. We show how parallel translation can be used to generate analogies, i.e., to transport a change in one data point into a semantically similar change of another data point. Our experiments on real image data show that the manifolds learned by deep generative models, while nonlinear, are surprisingly close to zero curvature. The practical implication is that linear paths in the latent space closely approximate geodesics on the generated manifold. However, further investigation into this phenomenon is warranted, to identify if there are other architectures or datasets where curvature plays a more prominent role. We believe that exploring the Riemannian geometry of deep generative models, using the tools developed in this paper, will be an important step in understanding the high-dimensional, nonlinear spaces these models learn.Comment: 9 page

    Fast Approximate Geodesics for Deep Generative Models

    Full text link
    The length of the geodesic between two data points along a Riemannian manifold, induced by a deep generative model, yields a principled measure of similarity. Current approaches are limited to low-dimensional latent spaces, due to the computational complexity of solving a non-convex optimisation problem. We propose finding shortest paths in a finite graph of samples from the aggregate approximate posterior, that can be solved exactly, at greatly reduced runtime, and without a notable loss in quality. Our approach, therefore, is hence applicable to high-dimensional problems, e.g., in the visual domain. We validate our approach empirically on a series of experiments using variational autoencoders applied to image data, including the Chair, FashionMNIST, and human movement data sets.Comment: 28th International Conference on Artificial Neural Networks, 201
    • …
    corecore