164 research outputs found

    An Experimental and Numerical Investigation of Nitrogen Dioxide Emissions Characteristics of Compression Ignition Dual Fuel Engines

    Get PDF
    Detailed experimental research was conducted to explore the impact of the addition of gaseous fuels, including H2 and natural gas (NG), and engine load on the emissions of NO2, NO, and NOx from dual fuel engines. The addition of less than 2% of H2 or NG was shown to dramatically increase the emissions of NO2 until a maximum level of NO2 emissions was reached. The increased NO 2 emissions were due to the conversion of NO to NO2. The maximum NO2/NOx ratio obtained with the addition of H2 was 3.2 to 5.0 times that of diesel operation. The maximum NO 2/NOx ratio obtained with the addition of NG was 3.4 to 4.3 times that of diesel operation. Further increasing the amount of gaseous fuel beyond the point of maximum NO2 emissions resulted in a reduction of NO2 emissions. Detailed examination of factors having the potential to affect the formation of NOx and NO2 in compression ignition engines reported a firm correlation between the emissions of NO 2 and emissions of unburned H2 and methane (CH4), and their relative emissions. The presence of unburned gaseous fuels that survived the main combustion process appears to be one of the main factors contributing to the enhanced conversion of NO to NO2. This was supported by the experimental data reported in the literature. The presence of fumigation fuels outside the diesel spray plume might be the main factor contributing to the increased emissions of NO2 from dual fuel engines. The spontaneous combustion of fumigation fuels that are entrained into the diesel spray plume may not contribute to the increased emissions of NO 2. In comparison, the correlations between the increased emissions of NO2 and the variation in bulk mixture temperature and heat release process including maximum heat release rate, and combustion duration were weak.;A single zone, zero-dimensional, constant volume numerical model with detailed chemistry was used to simulate the oxidization process of the gaseous fuel, as well as its effect on the conversion of NO to NO2 after the post-combustion mixing of the gaseous fuel surviving the main combustion process with the NOx-containing combustion products. The gaseous fuel examined included CH4, H2, and carbon monoxide (CO). The simulation results revealed the significant effects of the fuel mixed, its initial concentration in the mixture, and the initial temperature on the oxidization of gaseous fuel, the conversion of NO to NO2, and the destruction of NO2 to NO after the completion of the oxidation process.;The single zone zero-dimensional model was further modified to a variable volume model with the volume of the combustion chamber calculated using the geometry of the 1999 Cummins engine and engine speed. The modified variable volume model with detailed chemistry was used to improve the simulation of the effect on the conversion of NO to NO2 of the post-combustion mixing of surviving gaseous fuel with NOx-containing combustion products. The spatial variation of the local bulk mixture temperature with the progress of the combustion process and the variation of cylinder volume during the expansion process was taken into account by a pseudo temperature at the top dead center (TDC) noted as Tpseudo TDC defined in this research. The simulation identified the importance of the phasing of postcombustion mixing on the oxidation of gaseous fuel and its effect on the conversion of NO to NO2.;A preliminary sensitivity analysis was also conducted to identify the reactions having significant effect on the conversion of NO to NO2 and its destruction to NO. Among the four reactions associated with the formation and destruction of NO2, R186 was identified as the main reaction to the formation of NO2 during the oxidation process of H 2 and CO. This was due to the high concentration of HO2 formed during the oxidation process of H2 and CO in the combustion product. The destruction of NO2 to NO occurred through R187 and R189. (Abstract shortened by UMI.)

    Face Image Modality Recognition and Photo-Sketch Matching

    Get PDF
    Face is an important physical characteristic of human body, and is widely used in many crucial applications, such as video surveillance, criminal investigation, and security access system. Based on realistic demand, such as useful face images in dark environment and criminal profile, different modalities of face images appeared, e.g. three-dimensional (3D), near infrared (NIR), and thermal infrared (TIR) face images. Thus, researches with various face image modalities become a hot area. Most of them are set on knowing the modality of face images in advance, which contains a few limitations. In this thesis, we present approaches for face image modality recognition to extend the possibility of cross-modality researches as well as handle new modality-mixed face images. Furthermore, a large facial image database is assembled with five commonly used modalities such as 3D, NIR, TIR, sketch, and visible light spectrum (VIS). Based on the analysis of results, a feature descriptor based on convolutional neural network with linear kernel SVM did an optimal performance.;As we mentioned above, face images are widely used in crucial applications, and one of them is using the sketch of suspect\u27s face, which based on the witness\u27 description, to assist law enforcement. Since it is difficult to capture face photos of the suspect during a criminal activity, automatic retrieving photos based on the suspect\u27s facial sketch is used for locating potential suspects. In this thesis, we perform photo-sketch matching by synthesizing the corresponding pseudo sketch from a given photo. There are three methods applied in this thesis, which are respectively based on style transfer, DualGAN, and cycle-consistent adversarial networks. Among the results of these methods, style transfer based method did a poor performance in photo-sketch matching, since it is an unsupervised one which is not purposeful in photo to sketch synthesis problem while the others need to train pointed models in synthesis stage

    Recent Advances in Deep Learning Techniques for Face Recognition

    Full text link
    In recent years, researchers have proposed many deep learning (DL) methods for various tasks, and particularly face recognition (FR) made an enormous leap using these techniques. Deep FR systems benefit from the hierarchical architecture of the DL methods to learn discriminative face representation. Therefore, DL techniques significantly improve state-of-the-art performance on FR systems and encourage diverse and efficient real-world applications. In this paper, we present a comprehensive analysis of various FR systems that leverage the different types of DL techniques, and for the study, we summarize 168 recent contributions from this area. We discuss the papers related to different algorithms, architectures, loss functions, activation functions, datasets, challenges, improvement ideas, current and future trends of DL-based FR systems. We provide a detailed discussion of various DL methods to understand the current state-of-the-art, and then we discuss various activation and loss functions for the methods. Additionally, we summarize different datasets used widely for FR tasks and discuss challenges related to illumination, expression, pose variations, and occlusion. Finally, we discuss improvement ideas, current and future trends of FR tasks.Comment: 32 pages and citation: M. T. H. Fuad et al., "Recent Advances in Deep Learning Techniques for Face Recognition," in IEEE Access, vol. 9, pp. 99112-99142, 2021, doi: 10.1109/ACCESS.2021.309613

    Bridging Domain Gaps for Cross-Spectrum and Long-Range Face Recognition Using Domain Adaptive Machine Learning

    Get PDF
    Face recognition technology has witnessed significant advancements in recent decades, enabling its widespread adoption in various applications such as security, surveillance, and biometrics applications. However, one of the primary challenges faced by existing face recognition systems is their limited performance when presented with images from different modalities or domains( such as infrared to visible, long range to close range, nighttime to daytime, profile to f rontal, e tc.) Additionally, advancements in camera sensors, analytics beyond the visible spectrum, and the increasing size of cross-modal datasets have led to a particular interest in cross-modal learning for face recognition in the biometrics and computer vision community. Despite a relatively large gap between source and target domains, existing approaches reduce or bridge such domain gaps by either synthesizing face imagery in the target domain using face imagery from the source domain, or by learning cross-modal image representations that are robust to both the source and the target domain. Therefore, this dissertation presents the design and implementation of a novel domain adaptation framework leveraging robust image representations to achieve state-of-the art performance in cross-spectrum and long-range face recognition. The proposed methods use machine learning and deep learning techniques to (1) efficiently ex tract an d le arn do main-invariant embedding from face imagery, (2) learn a mapping from the source to the target domain, and (3) evaluate the proposed framework on several cross-modal face datasets

    Rethinking the Domain Gap in Near-infrared Face Recognition

    Full text link
    Heterogeneous face recognition (HFR) involves the intricate task of matching face images across the visual domains of visible (VIS) and near-infrared (NIR). While much of the existing literature on HFR identifies the domain gap as a primary challenge and directs efforts towards bridging it at either the input or feature level, our work deviates from this trend. We observe that large neural networks, unlike their smaller counterparts, when pre-trained on large scale homogeneous VIS data, demonstrate exceptional zero-shot performance in HFR, suggesting that the domain gap might be less pronounced than previously believed. By approaching the HFR problem as one of low-data fine-tuning, we introduce a straightforward framework: comprehensive pre-training, succeeded by a regularized fine-tuning strategy, that matches or surpasses the current state-of-the-art on four publicly available benchmarks. Corresponding codes can be found at https://github.com/michaeltrs/RethinkNIRVIS.Comment: 5 pages, 3 figures, 6 table
    corecore