1,023 research outputs found

    Fractal-fractional advection–diffusion–reaction equations by Ritz approximation approach

    Get PDF
    In this work, we propose the Ritz approximation approach with a satisfier function to solve fractalfractional advection–diffusion–reaction equations. The approach reduces fractal-fractional advection–diffusion– reaction equations to a system of algebraic equations; hence, the system can be solved easily to obtain the numerical solution for fractal-fractional advection–diffusion–reaction equations. With only a few terms of two variables-shifted Legendre polynomials, this method is capable of providing high-accuracy solution for fractal-fractional advection–diffusion–reaction equations. Numerical examples show that this approach is comparable with the existing numerical method. The proposed approach can reduce the number of terms of polynomials needed for numerical simulation to obtain the solution for fractal-fractional advection–diffusion–reaction equations

    A streamline derivative POD-ROM for advection-diffusion-reaction equations

    Get PDF
    We introduce a new streamline derivative projection-based closure modeling strategy for the numerical stabilization of Proper Orthogonal Decomposition-Reduced Order Models (PODROM). As a first preliminary step, the proposed model is analyzed and tested for advection-dominated advection-diffusion-reaction equations. In this framework, the numerical analysis for the Finite Element (FE) discretization of the proposed new POD-ROM is presented, by mainly deriving the corresponding error estimates. Numerical tests for advection-dominated regime show the efficiency of the proposed method, as well the increased accuracy over the standard POD-ROM that discovers its well-known limitations very soon in the numerical settings considered, i.e. for low diffusion coefficients.Nous introduisons une nouvelle stratégie de modélisation de type streamline derivative basée sur projection pour la stabilisation numérique de modèles d’ordre réduit de type POD (PODROM). Comme première étape préliminaire, le modèle proposé est analysé et testé pour les équations d’advection-diffusion-réaction dominées par l’advection. Dans ce cadre, l’analyse numérique de la discrétisation par éléments finis (FE) du nouveau POD-ROM proposé est présentée, en dérivant principalement les estimations d’erreur correspondantes. Des tests numériques pour le régime dominé par l’advection montrent l’efficacité de la méthode proposée, ainsi que la précision accrue par rapport à la méthode POD-ROM standard qui d´ecouvre très rapidement ses limites bien connues dans le cas des paramètres numériques considérés, c’est-à-dire pour de faibles coefficients de diffusion

    Wavelet-Fourier CORSING techniques for multi-dimensional advection-diffusion-reaction equations

    Get PDF
    We present and analyze a novel wavelet-Fourier technique for the numerical treatment of multidimensional advection-diffusion-reaction equations based on the CORSING (COmpRessed SolvING) paradigm. Combining the Petrov-Galerkin technique with the compressed sensing approach, the proposed method is able to approximate the largest coefficients of the solution with respect to a biorthogonal wavelet basis. Namely, we assemble a compressed discretization based on randomized subsampling of the Fourier test space and we employ sparse recovery techniques to approximate the solution to the PDE. In this paper, we provide the first rigorous recovery error bounds and effective recipes for the implementation of the CORSING technique in the multi-dimensional setting. Our theoretical analysis relies on new estimates for the local a-coherence, which measures interferences between wavelet and Fourier basis functions with respect to the metric induced by the PDE operator. The stability and robustness of the proposed scheme is shown by numerical illustrations in the one-, two-, and three-dimensional case

    Râ‚€ Analysis of a Spatiotemporal Model for a Stream Population

    Get PDF
    Water resources worldwide require management to meet industrial, agricultural, and urban consumption needs. Management actions change the natural flow regime, which impacts the river ecosystem. Water managers are tasked with meeting water needs while mitigating ecosystem impacts. We develop process-oriented advection-diffusion-reaction equations that couple hydraulic flow to population growth, and we analyze them to assess the effect of water flow on population persistence. We present a new mathematical framework, based on the net reproductive rate R0 for advection-diffusion-reaction equations and on related measures. We apply the measures to population persistence in rivers under various flow regimes. This work lays the groundwork for connecting R0 to more complex models of spatially structured and interacting populations, as well as more detailed habitat and hydrological data

    Accelerating exponential integrators to efficiently solve advection-diffusion-reaction equations

    Full text link
    In this paper we consider an approach to improve the performance of exponential integrators/Lawson schemes in cases where the solution of a related, but usually much simpler, problem can be computed efficiently. While for implicit methods such an approach is common (e.g. by using preconditioners), for exponential integrators this has proven more challenging. Here we propose to extract a constant coefficient differential operator from advection-diffusion-reaction equations for which we are then able to compute the required matrix functions efficiently. Both a linear stability analysis and numerical experiments show that the resulting schemes can be unconditionally stable. In fact, we find that exponential integrators and Lawson schemes can have better stability properties than similarly constructed implicit-explicit schemes. We also propose new Lawson type integrators that further improve on these stability properties. The effectiveness of the approach is highlighted by a number of numerical examples in two and three space dimensions
    • …
    corecore