1,809 research outputs found

    To “Sketch-a-Scratch”

    Get PDF
    A surface can be harsh and raspy, or smooth and silky, and everything in between. We are used to sense these features with our fingertips as well as with our eyes and ears: the exploration of a surface is a multisensory experience. Tools, too, are often employed in the interaction with surfaces, since they augment our manipulation capabilities. “Sketch-a-Scratch” is a tool for the multisensory exploration and sketching of surface textures. The user’s actions drive a physical sound model of real materials’ response to interactions such as scraping, rubbing or rolling. Moreover, different input signals can be converted into 2D visual surface profiles, thus enabling to experience them visually, aurally and haptically

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    Haptics for the development of fundamental rhythm skills, including multi-limb coordination

    Get PDF
    This chapter considers the use of haptics for learning fundamental rhythm skills, including skills that depend on multi-limb coordination. Different sensory modalities have different strengths and weaknesses for the development of skills related to rhythm. For example, vision has low temporal resolution and performs poorly for tracking rhythms in real-time, whereas hearing is highly accurate. However, in the case of multi-limbed rhythms, neither hearing nor sight are particularly well suited to communicating exactly which limb does what and when, or how the limbs coordinate. By contrast, haptics can work especially well in this area, by applying haptic signals independently to each limb. We review relevant theories, including embodied interaction and biological entrainment. We present a range of applications of the Haptic Bracelets, which are computer-controlled wireless vibrotactile devices, one attached to each wrist and ankle. Haptic pulses are used to guide users in playing rhythmic patterns that require multi-limb coordination. One immediate aim of the system is to support the development of practical rhythm skills and multi-limb coordination. A longer-term goal is to aid the development of a wider range of fundamental rhythm skills including recognising, identifying, memorising, retaining, analysing, reproducing, coordinating, modifying and creating rhythms – particularly multi-stream (i.e. polyphonic) rhythmic sequences. Empirical results are presented. We reflect on related work, and discuss design issues for using haptics to support rhythm skills. Skills of this kind are essential not just to drummers and percussionists but also to keyboards players, and more generally to all musicians who need a firm grasp of rhythm

    Electrostatic Friction Displays to Enhance Touchscreen Experience

    Get PDF
    Touchscreens are versatile devices that can display visual content and receive touch input, but they lack the ability to provide programmable tactile feedback. This limitation has been addressed by a few approaches generally called surface haptics technology. This technology modulates the friction between a user’s fingertip and a touchscreen surface to create different tactile sensations when the finger explores the touchscreen. This functionality enables the user to see and feel digital content simultaneously, leading to improved usability and user experiences. One major approach in surface haptics relies on the electrostatic force induced between the finger and an insulating surface on the touchscreen by supplying high AC voltage. The use of AC also induces a vibrational sensation called electrovibration to the user. Electrostatic friction displays require only electrical components and provide uniform friction over the screen. This tactile feedback technology not only allows easy and lightweight integration into touchscreen devices but also provides dynamic, rich, and satisfactory user interfaces. In this chapter, we review the fundamental operation of the electrovibration technology as well as applications have been built upon
    • …
    corecore