6 research outputs found

    Deriving of Sequencing Strategies for Multi-Stage Productions Supported by Logistic Models and Software Tools

    Get PDF
    Sequencing as a core task of production control has a significant influence on the logistical performance and efficiency of a single work system. Particularly in the presence of sequence dependent setup times, systematic sequencing can increase the productivity of a work system by saving them. This, however, leads to a decreasing schedule reliability of the work system, which creates an area of conflict. In recent years, mathematical models have been developed at the Institute of Production Systems and Logistics (IFA) that describe the influence of different sequencing rules on the schedule reliability and productivity of a work system. In a further step, these single so-called partial models can be linked with each other. This allows a calculation of the lateness behaviour of a multi-stage production in dependency of the sequencing rules assigned to the individual work system and thus of the overall sequencing strategy. This paper presents the possibilities of linking different logistic models in order to quantify the influence of sequencing on logistic target values as well as two software tools by which the impact and combination of various sequencing rules can be examined based on production feedback data or by means of a generic supply chain. As a result, it is possible to assess different sequence configurations of a multi-stage production and thus strategically align the production in the area of conflict between productivity and schedule reliability

    Cultura organizacional y transformaci贸n digital en una instituci贸n p煤blica, Lima, 2023

    Get PDF
    La presente investigaci贸n tuvo como objetivo establecer la asociaci贸n entre cultura organizacional y transformaci贸n digital en una instituci贸n p煤blica, Lima, 2023. La metodolog铆a fue de tipo b谩sica intencionada y de dise帽o no experimental, con un enfoque cuantitativo y nivel correlacional. Tambi茅n, se utiliz贸 un cuestionario como instrumento de recolecci贸n de datos, la cual se aplic贸 a 45 colaboradores. Los resultados evidenciaron que entre ambas variables existe una asociaci贸n positiva muy fuerte, gracias a la prueba de Rho Spearman de 0.877 y una significancia bilateral de 0.000. Concluyendo que existe correlaci贸n positiva muy fuerte entre cultura organizacional y transformaci贸n digital en una instituci贸n p煤blica, Lima, 2023. La relaci贸n positiva muy fuerte permite inferir que implementar la cultura organizacional adecuada mejora la transformaci贸n digital

    A Requirement Ontology To Guide The Analysis Of System Life Cycle Processes

    Get PDF
    Economies prosper by designing, manufacturing, and servicing a variety of innovative products, for example airplanes, healthcare services, infrastructure development, and information technologies. Having the right competency (aka information processing skills) for designing, manufacturing, and servicing these products is necessary for economies to exploit new opportunities. These products have become more complex to design, manufacture and serve involving people with different education, language, and possibly globally distributed. In order to create these products, information processing skills have been put to the limits causing competitiveness problems. Detailed analysis has associated these problems to requirements. Requirements involve to process different kinds of information (e.g., texts, presentations, sketches, graphs, tables, drawings, engineering analysis, and managerial analysis) during system life cycle processes (i.e., from idea generation to retirement of a product); where at each stage, information has different content (e.g., aspect, medium, and format). Therefore, a root cause associated to requirements can be attributed to a lack of a common vocabulary to communicate this variety of information in the context of system life cycle processes. Theories and models have been employed as solution to solve this communication problem; however, current practice results suggest that a more effective solution is needed. As a result, this thesis employs an ontology as a means to solve the problem which is also an alternative and complement to theories and models. In general, a requirement ontology for system life cycle processes defines the core concepts and their relationships which combined define a common vocabulary in the context of requirements for system life cycle processes. A common vocabulary enables better communication and understanding among people as a core tool to support information processing skills. Hence, an ontology as a common vocabulary is the foundation to increase competitiveness to design, manufacture, and serve a variety of innovative products; which may lead to economies prosperity. More specifically, this thesis proposes a requirement ontology for system life cycle processes as a tool to be used to guide the analysis of these processes. Based on the fact that the ontology refers to the knowledge domain of design, guidance from a design theory (i.e., Environment-Based Design) was adopted to create the proposed ontology. Four related ontologies were created based on frequency analysis in this thesis, but the proposed core ontology contains a vocabulary of 50+2 concepts and 24 types of relationships. The proposed core ontology has been validated from different perspectives: 1) design theory (i.e., Environment-Based Design) compliance, 2) creation and evaluation from international standards (ISO 15288:2015 and ISO 29148:2011) and three European research efforts, and 3) retrospection from three case studies: a) Total Quality Management System Guideline Development Using Environment-Based Design for Area Development Planning, b) Designing the Right Framework for Healthcare Decision Support, and c) Integrating learning through design methodologies in aircraft design. This type of validation enables to speculate that the ontology can be generalized to the scope of requirements for different engineering endeavours. At the current stage of research, the proposed ontology is an information technology product that contributes to the actual knowledge base two major aspects: 1) a common vocabulary in the context of requirements for system lifecycle processes, and 2) a replicable ontology design process that can be extended to other domains of knowledge. The current stage of the proposed ontology shall be moved forward as future research. Two major venues for future research can be considered. First, expose the proposed ontology to potential users to improve the current stage of development of the ontology. Second, use the ontology as a tool to guide the analysis of system life cycle processes (e.g., ilities or specialty engineering). The current stage of the proposed ontology and future research venues shall improve communication and understanding among people as a core tool to support information processing skills for designing, manufacturing, and servicing a variety of innovative products
    corecore