390,029 research outputs found

    Control strategy for switched reluctance motor with rotary encoder based rotor position detection

    Get PDF
    Development of electric drive tends to the use of Switched Reluctance Motor (SRM) for their advantages and green technology issues. The SRM takes significant place in development for its simplicity, robust construction, and low cost. Sensorless method can be applied to drive SRM, it is less expansive but has more complexity and limitation. On the other hand, although sensor-based rotor position detection needs a hardware assembled on the shaft, some advantages can be obtained. In this paper, a control strategy for SRM drive with rotary encoder based rotor position detection is proposed, core of the strategy implements digital signal controller. The problem associated with wide range speed and standstill operation can be overcome by this strategy. This is also capable to vary the time to turn the switches on and off by software. The analysis was verified by simulations and experiments

    TEM Study of High-Temperature Precipitation of Delta Phase in Inconel 718 Alloy

    Get PDF
    Inconel 718 is widely used because of its ability to retain strength at up to 650◦C for long periods of time through coherent metastable γ” Ni3Nb precipitation associated with a smaller volume fraction of γ’ Ni3Al precipitates. At very long ageing times at service temperature, γ” decomposes to the stable Ni3Nb δ phase. This latter phase is also present above the γ” solvus and is used for grain control during forging of alloy 718.While most works available on δ precipitation have been performed at temperatures below the γ” solvus, it appeared of interest to also investigate the case where δ phase precipitates directly fromthe fccmatrix free of γ’’precipitates. This was studied by X-ray diffraction and transmission electron microscopy (TEM). TEM observations confirmed the presence of rotation-ordered domains in δ plates, and some unexpected contrast could be explained by double diffraction due to overlapping phases

    Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    Get PDF
    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed

    An investigation of planar array system artefacts generated within an electrical impedance mammography system developed for breast cancer detection

    Get PDF
    An Electrical Impedance Mammography (EIM) planar array imaging system is being developed at the University of Sussex for the detection of breast cancers. Investigations have shown that during data collection, systematic errors and patient artefacts are frequently introduced during signal acquisition from different electrodes pairs. This is caused, in particular, by the large variations in the electrode-skin contact interface conditions occurring between separate electrode positions both with the same and different patients. As a result, the EIM image quality is seriously affected by these errors. Hence, this research aims to experimentally identify, analyse and propose effective methods to reduce the systematic errors at the electrode-skin interface. Experimental studies and subsequent analysis is presented to determine what ratio of electrode blockage seriously affects the acquired raw data which may in turn compromise the reconstruction. This leads to techniques for the fast and accurate detection of any such occurrences. These methodologies can be applied to any planar array based EIM system

    Using Noninvasive Brain Measurement to Explore the Psychological Effects of Computer Malfunctions on Users during Human-Computer Interactions

    Full text link
    In today’s technologically driven world, there is a need to better understand the ways that common computer malfunctions affect computer users. These malfunctions may have measurable influences on computer user’s cognitive, emotional, and behavioral responses. An experiment was conducted where participants conducted a series of web search tasks while wearing functional nearinfrared spectroscopy (fNIRS) and galvanic skin response sensors. Two computer malfunctions were introduced during the sessions which had the potential to influence correlates of user trust and suspicion. Surveys were given after each session to measure user’s perceived emotional state, cognitive load, and perceived trust. Results suggest that fNIRS can be used to measure the different cognitive and emotional responses associated with computer malfunctions. These cognitive and emotional changes were correlated with users’ self-report levels of suspicion and trust, and they in turn suggest future work that further explores the capability of fNIRS for the measurement of user experience during human-computer interactions

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    New Zealand Building Project Cost and Its Influential Factors: A Structural Equation Modelling Approach

    Get PDF
    Construction industry significantly contributes to New Zealand's economic development. However, the delivery of construction projects is usually plagued by cost overruns, which turn potentially successful projects into money-losing ventures, resulting in various other unexpected negative impacts. The objectives of the study were to identify, classify, and assess the impacts of the factors affecting project cost in New Zealand. The proposed research model was examined with structural equation modelling. Recognising the lack of a systematic approach for assessing the influencing factors associated with project cost, this study identified 30 influencing factors from various sources and quantified their relative impacts. The research data were gathered through a questionnaire survey circulated across New Zealand construction industry. A total of 283 responses were received, with a 37% response rate. A model was developed for testing the relationship between project cost and the influential factors. The proposed research model was examined with structural equation modelling (SEM). According to the results of the analysis, market and industry conditions factor has the most significant effect on project cost, while regulatory regime is the second-most significant influencing factor, followed by key stakeholders' perspectives. The findings can improve project cost performance through the identification and evaluation of the cost-influencing factors. The results of such analysis enable industry professionals to better understand cost-related risks in the complex environment

    Optical network technologies for future digital cinema

    Get PDF
    Digital technology has transformed the information flow and support infrastructure for numerous application domains, such as cellular communications. Cinematography, traditionally, a film based medium, has embraced digital technology leading to innovative transformations in its work flow. Digital cinema supports transmission of high resolution content enabled by the latest advancements in optical communications and video compression. In this paper we provide a survey of the optical network technologies for supporting this bandwidth intensive traffic class. We also highlight the significance and benefits of the state of the art in optical technologies that support the digital cinema work flow
    corecore