17 research outputs found

    Enhancing Efficiency and Privacy in Memory-Based Malware Classification through Feature Selection

    Full text link
    Malware poses a significant security risk to individuals, organizations, and critical infrastructure by compromising systems and data. Leveraging memory dumps that offer snapshots of computer memory can aid the analysis and detection of malicious content, including malware. To improve the efficacy and address privacy concerns in malware classification systems, feature selection can play a critical role as it is capable of identifying the most relevant features, thus, minimizing the amount of data fed to classifiers. In this study, we employ three feature selection approaches to identify significant features from memory content and use them with a diverse set of classifiers to enhance the performance and privacy of the classification task. Comprehensive experiments are conducted across three levels of malware classification tasks: i) binary-level benign or malware classification, ii) malware type classification (including Trojan horse, ransomware, and spyware), and iii) malware family classification within each family (with varying numbers of classes). Results demonstrate that the feature selection strategy, incorporating mutual information and other methods, enhances classifier performance for all tasks. Notably, selecting only 25\% and 50\% of input features using Mutual Information and then employing the Random Forest classifier yields the best results. Our findings reinforce the importance of feature selection for malware classification and provide valuable insights for identifying appropriate approaches. By advancing the effectiveness and privacy of malware classification systems, this research contributes to safeguarding against security threats posed by malicious software.Comment: Accepted in IEEE ICMLA-2023 Conferenc

    Integrating Digital Forensics Techniques into Curatorial Tasks: A Case Study

    Get PDF
    In this paper, we investigate how digital forensics tools can support digital curation tasks around the acquisition, processing, management and analysis of born-digital materials. Using a real world born-digital collection as our use case, we describe how BitCurator, a digital forensics open source software environment, supports fundamental curatorial activities such as secure data transfer, assurance of authenticity and integrity, and the identification and elimination of private and/or sensitive information. We also introduce a workflow diagram that articulates the processing steps for institutions processing born-digital materials. Finally, we review possibilities for further integration, development and use of digital forensic tools

    Integrating Digital Forensics Techniques into Curatorial Tasks: A Case Study

    Full text link

    FRASHER – A framework for automated evaluation of similarity hashing

    Get PDF
    A challenge for digital forensic investigations is dealing with large amounts of data that need to be processed. Approximate matching (AM), a.k.a. similarity hashing or fuzzy hashing, plays a pivotal role in solving this challenge. Many algorithms have been proposed over the years such as ssdeep, sdhash, MRSH-v2, or TLSH, which can be used for similarity assessment, clustering of different artifacts, or finding fragments and embedded objects. To assess the differences between these implementations (e.g., in terms of runtime efficiency, fragment detection, or resistance against obfuscation attacks), a testing framework is indispensable and the core of this article. The proposed framework is called FRASHER (referring to a predecessor FRASH from 2013) and provides an up-to-date view on the problem of evaluating AM algorithms with respect to both the conceptual and the practical aspects. Consequently, we present and discuss relevant test case scenarios as well as release and demonstrate our framework allowing a comprehensive evaluation of AM algorithms. Compared to its predecessor, we adapt it to a modern environment providing better modularity and usability as well as more thorough testing cases

    Advances in Digital Forensics VI: Sixth IFIP WG 11.9 International Conference on Digital Forensics, Hong Kong, China, January 4-6, 2010,Revised Selected Papers

    No full text
    International audienceBook Front Matter of AICT 33

    The Proceedings of the 23rd Annual International Conference on Digital Government Research (DGO2022) Intelligent Technologies, Governments and Citizens June 15-17, 2022

    Get PDF
    The 23rd Annual International Conference on Digital Government Research theme is “Intelligent Technologies, Governments and Citizens”. Data and computational algorithms make systems smarter, but should result in smarter government and citizens. Intelligence and smartness affect all kinds of public values - such as fairness, inclusion, equity, transparency, privacy, security, trust, etc., and is not well-understood. These technologies provide immense opportunities and should be used in the light of public values. Society and technology co-evolve and we are looking for new ways to balance between them. Specifically, the conference aims to advance research and practice in this field. The keynotes, presentations, posters and workshops show that the conference theme is very well-chosen and more actual than ever. The challenges posed by new technology have underscored the need to grasp the potential. Digital government brings into focus the realization of public values to improve our society at all levels of government. The conference again shows the importance of the digital government society, which brings together scholars in this field. Dg.o 2022 is fully online and enables to connect to scholars and practitioners around the globe and facilitate global conversations and exchanges via the use of digital technologies. This conference is primarily a live conference for full engagement, keynotes, presentations of research papers, workshops, panels and posters and provides engaging exchange throughout the entire duration of the conference
    corecore