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Abstract 

Following a series of high profile miscarriages of justice linked to questionable expert 
evidence, the post of the Forensic Science Regulator was created in 2008 with a remit to 
improve the standard of practitioner competences and forensic procedures. It has since moved 
to incorporate a greater level of scientific practice in these areas, as used in the production of 
expert evidence submitted to the UK Criminal Justice System.  Accreditation to their codes of 
practice and conduct will become mandatory for all forensic practitioners by October 2017.  
A variety of challenges with expert evidence are explored and linked to a lack of a scientific 
methodology underpinning the processes followed.  In particular, the research focuses upon 
investigations where malicious software (‘malware’) has been identified.   
 
A framework, called the ‘Malware Analysis Tool Evaluation Framework’ (MATEF), has 
been developed to address this lack of methodology to evaluate software tools used during 
investigations involving malware.  A prototype implementation of the framework was used to 
evaluate two tools against a population of over 350,000 samples of malware.  Analysis of the 
findings indicated that the choice of tool could impact on the number of artefacts observed in 
malware forensic investigations as well as identifying the optimal execution time for a given 
tool when observing malware artefacts. 
 
Three different measures were used to evaluate the framework.  The first of these evaluated 
the framework against the requirements and determined that these were largely met.  Where 
the requirements were not met these are attributed to matters either outside scope or the 
fledgling nature of the research.  Another measure used to evaluate the framework was to 
consider its performance in terms of speed and resource utilisation.  This identified scope for 
improvement in terms of the time to complete a test and the need for more economical use of 
disk space. Finally, the framework provides a scientific means to evaluate malware analysis 
tools, hence addressing the Research Question subject to the level at which ground truth is 
established. 
 
A number of contributions are produced as the output of this work.  First there is confirmation 
for the case for a lack of trusted practice in the field of malware forensics.  Second, the 
MATEF itself, as it facilitates the production of empirical evidence of a tool’s ability to detect 
malware artefacts.  A third contribution is a set of requirements for establishing trusted 
practice in the use of malware artefact detection tools.  Finally, empirical evidence that 
supports both the notion that the choice of tool can impact on the number of artefacts 
observed in malware forensic investigations as well as identifying the optimal execution time 
for a given tool when observing malware artefacts.  
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Dual-tool verification The process of comparing the output of one tool with another. 

Dynamic Link Library A binary file containing commonly used code used by applications, such as 
code to display an open file dialogue window.  

Dynamic malware 
analysis 

The process of analysing malware behaviour by executing the binary file in a 
controlled environment. 

Effect size A measure of how easy it is to observe a given effect. 

Emulation platform Similar to a Virtualisation platform, this is an environment where all of the 
hardware is emulated in software, allowing for the Host and Guest 
architectures to be different. 

Expected value The value expected as the result of the counting artefacts of a given type, e.g.: 
count of open ports 

Expert evidence Evidence that requires an expert to produce and interpret the evidence in a 
manner that meets a court's admissibility requirements. 

Familywise error A type of error introduced as a result of combining the results of multiple 
independent statistical tests. 
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The office created in 2008 by the U.K. Government to oversee all forensic 
science provision within the U.K. criminal justice system. 
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from any size of data. 

Internet simulator The component of the MATEF used to simulate Internet services such as email 
and web servers. 
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An implementation of a Normality test. 
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Malware artefact 
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The database component of the MATEF used to store malware artefacts. 
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the MATEF during testing. 
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supports nominal data. 

Message Digest 5 A form of hash where a specific algorithm is used to verify data integrity. 

Normality test A form of statistical test used to determine if a dataset can be modelled by a 
Normal distribution. 

Nominal data Data that can only be categorised or assigned a label/name. 

Nonparametric tests The converse of a parametric test whereby no assumptions are made that 
sample data comes from a population that follows a probability distribution 
based on a fixed set of parameters. 
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Observed value The value obtained as the result of the count of artefacts of a given type, e.g.: 
count of open ports 

Oracle The component of the MATEF used to estimate the ground truth value of 
expected artefacts. 

Ordinal data Data with the same properties as Nominal data, but can also be ordered or 
compared, based on ranking or size. 

Packer Software that compresses an original binary file (typically malware) to render 
the original code and data unreadable. 

Parametric test A type of statistical test that assumes that sample data comes from a population 
that follows a probability distribution based on a fixed set of parameters. 

Port An interface of a computer.  Each port has a number that is typically associated 
with a specific means of communication, e.g.: Internet browsers typically use 
port 80. 

Portable Executable 
file format 

A standard binary file format containing executable code that is recognised by 
the Windows operating system. 

Prefetch Files created to speed up the launching of applications on a Windows 
computer.   

Process An instance of a computer program that is being executed.  

Ratio data Data with the same properties as Interval data, but the factor/ratio of any 
difference can be determined. 

Registry The Registry is a hierarchical database that stores low-level settings for the 
Microsoft Windows operating system 

Registry key Part of the structure used to store data in the Windows Registry.  Similar to 
folders on a disk. 

Repeatable The closeness of agreement between independent test results obtained under 
the same conditions by the same operator within a short interval of time. 

Reproducible The closeness of agreement between independent test results obtained under 
the same conditions by the different operators in different locations with 
different equipment. 

Restore point A backup feature of the Windows operating system that allows the user to 
revert a computer's state to that of a previous point in time. 

Reverse engineering The process of examining a binary executable file and identifying the 
commands and algorithm used to determine how it operates. 

Sandbox A virtual space in which new or untested software or coding can be run 
securely. 

Shapiro-Wilk test An implementation of a Normality test. 

Standard error A measure of population dispersion, meaningful only to data distributed 
symmetrically about a mean. 

Standardised test 
statistic 

The test statistic expressed in units of standard deviation 

Static malware 
analysis 

The process of analysing malware through the examination of the binary file 
without executing it. 
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Test control script The script used by the MATEF to manage the test process.  Typical tasks 
include starting and reverting VMs. 

Test environment The virtualisation platform in which malware binaries and tools under test are 
executed on the MATEF. 

Test statistic The ratio of systematic to unsystematic (or effect to error), if the null 
hypothesis is true. Arbitrary for unknown distributions. 

Tool log files Log files generated by tools under test. 

Trojan defence A defence offered by a defendant whereby an alleged offence was performed 
as a result of some form of malware (or third-party) that gained control of their 
computer. 

User Access Control  A security feature of the Windows operating system that prevents unauthorized 
changes to your computer. 

Validation The process of generating independent evidence that a method, process or 
device is fit for purpose.  Answers the question "Is it the right method, device, 
etc.?" 

Verification Confirmation through comparing with an independent source that a method, 
process or device is fit for purpose.  Answers the question "Are we doing it 
right?" 

Virtual machine An environment where the operating system (called a Guest) is installed in an 
environment controlled by software (called a Hypervisor) running on an 
operating system on a physical machine (called a Host).  

Virtualisation platform An environment that uses a virtual machine. 

Wilcoxon signed rank 
test 

A nonparametric test equivalent to the Dependent t-Test. 

Wrapper A short item of plug-in code containing tool specific parameters. 
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List of Abbreviations 
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CFTT Computer Forensics Tool Testing  
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DFTT Digital Forensic Tool Testing  

DLL Dynamic Link Library 

DMZ Demilitarised zone  

DNS Domain Name System 

FSR Forensic Science Regulator 

HTTP Hypertext Transfer Protocol 

IRC Internet relay chat  

MATEF Malware Analysis Tool Evaluation Framework 

MD5 Message Digest 5 

NIST National Institute of Standards and Technology 

OLAF European Anti-Fraud Office  

PE Portable Executable 

PMS Program Manager Script  

RAM Random Access Memory 

SMTP Simple Mail Transfer Protocol 
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UAC User Access Control  

VM Virtual Machine 

VMM Virtual Machine Manager  
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Chapter 1  Introduction 
The biological virus has been mankind’s constant companion throughout history. Unseen by 

the naked eye and adaptable to its environment, a virus can be harmful, hostile and very 

capable of defending itself.  The battle to eradicate it is a never-ending arms race between 

mankind and the virus.  

Unlike its biological counterpart, computer viruses are man-made but share many of the 

characteristics and challenges in their handling and study. As with the biological variety, 

computer viruses can be hostile in nature and hazardous to handle for analysis purposes.  

Although often termed computer virus, the more definitive term is malicious software (a.k.a. 

malware).   This is due to fact that the infiltration and distribution techniques they use have 

evolved beyond those used by biological viruses and that they are typically synthesised with 

hostile intent. 

Despite the numerous and conflicting (British Computer Society, 2011) anti-malware reports 

routinely published by vendors, the exact number of species is unknown and is subject to an 

increasing number of variants (Smith, 2014) which makes obtaining an accurate assessment 

of the threat level at any one time difficult.  Smith (2014) argues that estimates of exact 

numbers of infections are dependent on either statistics reported by security and anti-malware 

vendors or the monitoring of Internet traffic.  The former is subject to issues of sample sizes 

and bias while the latter has data attribution issues, whereby Internet traffic monitoring logs 

don’t always contain the information needed to attribute network activity to specific malware.  

Aycock (2006) argues the single biggest problem is that there is no industry-wide agreement 

on what constitutes a threat. He also points out the figures quoted in reports are only for the 

known instances of malware and that it is impossible to known how many unknown threats 

are in the wild.   

Despite these ambiguities, Baker et al. (2011) identify malware as a cybersecurity issue; they 

report almost two-thirds of critical infrastructure companies admit to finding malware on a 

monthly basis designed to sabotage their systems.  Hence, although there are ambiguities 

surrounding the quantification and classification of malware, it is recognised that malware 

remains a key vector for cybersecurity attacks.  This is supported by Hunton (2012) who cites 

the revelation from the Cabinet Office (2010) that cybersecurity is one of the highest priority 

national security risks to the UK.  Such is the scale of concern of this threat that in 2011 the 

UK Government published a Cybersecurity strategy (Cabinet Office, 2011).  In 2016 The UK 

Government reaffirmed its position in their updated strategy that the cyber threat continues to 

be a “Tier One risk to UK interests” (Cabinet Office, 2016). 
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Underpinning a nation’s commerce and military sectors, the strategy goes on to argue that the 

increasing use of cyberspace “means that its disruption can affect nations’ ability to function 

effectively in a crisis”. 

The impact of this reaches beyond national security matters and into domestic law 

enforcement capability.  Burd et. al. (2011) recognise that national security and law 

enforcement agencies have historically evolved their capability along differing paths.  They 

go on to argue that the increasing sophistication of cybercrime now supports a need to bridge 

the capability gap between them.  

The need for law enforcement to increase their capability followed comments reported in 

Computer Weekly (Grant, 2010) when the then Metropolitan Police commissioner, Paul 

Stephenson is reported to have declared that the skills available to his cyber investigators 

were “thin compared to the skills at the disposal of cyber criminals”.   The National Audit 

Office corroborated this viewpoint and asserted it could take 20 years to address the cyber-

security skills gap (2013). Hunton (2012) admits that law enforcement is in a position where 

in terms of the specialist knowledge needed to investigate the evolving cybercrime domain, 

demand is in excess of capability.  Similarly, Runciman (2011) identifies malware related 

cybercrime as a specific area where law enforcement need to be better resourced.  

It is not uncommon during cybercrime investigations to discover malware.  The presence of 

malware on a computer will either be intentional or unintentional on the part of the suspect.  

In the case of the former, the suspect may have either created the malware or obtained it from 

a third party, possibly with a view to committing an offence, such as DDoS attack or 

unauthorised access to a computer system.   

For the latter case, the suspect may be an actual or potential victim of crime in that if 

executed, the malware will likely perform one or more actions, such as granting unauthorised 

access to their computer, exfiltrating personal data or using their computer to attack or access 

a remote computer without authorisation. For an individual under investigation, a common 

tactic is to claim the alleged illegal activity was performed as a result of some form of 

malware (or third-party) that gained control of their computer (Bridges, 2008).  This is 

referred to as the Trojan defence.  

Regardless of the intentions of the suspect in possessing malware on their computer, both 

civil and criminal forensic practitioners have a duty to identify the capabilities of any 

malware found as part of an investigation.  In the UK, the forensic practitioner is reminded of 

their responsibility of their duty to the court under both the Civil Procedure Rules (Ministry 

of Justice, 1999) and the Criminal Procedure Rules (Ministry of Justice, 2015).  
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To undertake this duty, the forensic practitioner is reliant on their tools, skills and knowledge 

of malware to detect, identify and study the behaviour of any identified malware.  As a result, 

the forensic practitioner aims to form an opinion on the impact any identified malware has on 

an investigation.  

1.1 Justification 

The terms malware and forensics are increasingly being combined to describe the emerging 

field malware forensics.  The original motivation for this thesis arose from the realisation that 

digital forensic practitioners were conducting malware forensic investigations in a largely 

anecdotal manner. 

Court proceedings involving malware that is not properly investigated inevitably become a 

candidate for miscarriages of justice, as the court would be forming a judgment without being 

fully informed of the facts. 

An investigation involving malware, however, is just one example of where the expert’s 

opinion, findings and associated methodologies are subject to an increasing level of scrutiny 

due to recent problems with expert evidence.  These are examined in more detail in the 

sections that follow.  

1.1.1 The Trojan defence 

Separating user actions from those of malicious software is the fundamental objective when 

investigating the Trojan defence. The impact of this defence is illustrated by the following 

cases. As a result of a criminal investigation, malicious software, described as a Trojan horse 

was found alongside a number of indecent images of children on the computer belonging to 

Karl Schofield. A forensic expert at the trial of R v Schofield [2003]1 concluded that it was 

the Trojan horse and not the actions of the defendant that led to the pictures being 

downloaded (GetReading, 2003).  Similarly, in R v Green [2003] the defendant was acquitted 

for downloading indecent images of children after it was argued that the material could have 

been placed there by one of eleven items of malware (described as Trojan horses) found on 

his computer.  A few months later in R v Caffrey [2003], the defendant was also acquitted as 

he successfully argued that it was the actions of a Trojan horse that launched a Distributed 

Denial of Service (DDoS) attack from his computer on the Port of Houston, Texas. 

                                                        
1 For all legal case citations, see Table 0 1 
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Similarly, Amero (2007) and Fiola (2008) both involved a defence citing malware as the 

cause of all or part of their alleged actions. More recently Welham (2010) reported on the 

case of Chris Singam who was acquitted of making and possessing indecent images of 

children as a result of a “virus that meant he could not have known indecent images of 

children were being sent to his computer.”   In cases such as these, the Defence will typically 

argue in terms of possibilities (and hence introduce reasonable doubt) while the Prosecution 

focus on likelihoods (and how low such likelihoods are in their personal experience).  Brown 

(2015) highlights the Trojan Defence as one of several tactics used by counsel to raise doubt 

as to the authenticity of the electronic evidence presented to court.  On the matter of malware 

behaviour, neither side present anything other than anecdotal evidence to support their stance.  

A more comprehensive review of these and other cases covering 2003 to 2013 is provided by 

Bowles and Hernandez-Castro (2015) who highlight “clear and obvious mistakes” with 

regard to Trojan Defence cases over a 10 year period.  

From a sceptic’s perspective, the Trojan defence is not an issue; conventional artefacts are 

sufficient to determine if the identified actions were performed by malware, or intentionally 

by the user (Carvey, 2009).  However, anti-forensic measures (commonly adopted by 

malware) are cited as a risk to this practice (Kessler, 2007), (Casey, 2002).  There is also an 

argument that sceptics will place too much trust in their own anecdotal experience of repeated 

confirmation that malware was not the cause of illegal activity found on a computer.  

 

1.1.2 Unfounded trust in repeated confirmation  

When asked about the possibility that malware has been used to perform certain types of 

operations (such as downloading child abuse images), some digital forensic experts defer to 

their own anecdotal experience and assert arguments based on the fact that they have “yet to 

see an example” of such behaviour by malware (McLinden, 2009).  Others have made 

greater, albeit non-scientific, attempts to reach out to the practitioner community to locate any 

instances of such malware and reported that they “haven’t seen a single case” (Douglas, 

2007).  Arguments such as these can be convincing in court but are based on inductive 

reasoning derived from repeated confirmation.  Hence it is possible for this statement to be 

proven incorrect the moment a single instance of malware downloading child abuse images is 

identified.  Whilst inductive reasoning is useful to use a small number of observations to infer 

a larger theory or generate a hypothesis, it cannot be used to test scientific theory.  This 

means the use of repeated confirmation is not scientific in its approach.    
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Similarly, the results from mainstream digital forensic tools have been accepted “based solely 

on the reputation of the vendor” (Garfinkel, Farrell, Roussev & Dinolt, 2009).  Repeated 

confirmation, such as this, does not prove anything.    Criminals are reported to have 

exploited this viewpoint to hide contraband material (McLinden, 2011). It may be argued that 

anecdotal arguments are sufficient for legal proceedings and accepted by Courts.  However, 

some see this simply as the result of the Court’s naivety in the area of forensic science (Saks 

& Faigman, 2008).  Such naivety, it could be argued, has led to the discovery of problems 

with some expert evidence. 

1.1.3 Recent problems with expert evidence 

Recent high profile miscarriages of justice have been attributed in part to flawed expert 

evidence (Law Commission, 2011).  The Solicitors Journal (2011) cites the Law 

Commissioner, Professor David Ormerod, as saying that judges are “in the unsatisfactory 

position of having no real test to gauge the unreliability of expert evidence”.  

The case of R v Clark [1999] concerned the circumstances surrounding infant cot deaths.  

Professor Sir Roy Meadows made a number of claims that had “no statistical basis” (Royal 

Statistical Society, 2001). As a paediatrician (not a statistician), Meadows was testifying 

outside of his expertise.  Similar claims were made by Meadows in the subsequent trials of R 

v Cannings [2002] and R v Patel [2003].  All of these convictions were quashed at subsequent 

appeals and the Law Commission reviewed the admissibility of expert evidence for use in 

criminal trials (Law Commission, 2011). The report called for a move to incorporate a greater 

level of scientific principles and provenance in expert evidence.   

1.1.4 Lack of scientific principles 

One of the challenges in applying greater levels of scientific rigour to expert evidence derived 

from forensic science is the view that forensic science is an oxymoron, lacking the scientific 

principles enjoyed by established scientific disciplines (Kennedy, 2003). Some disciplines 

such as forensic otoscopy (Mohurle, Khutwad, Kunjir & Bhosle, 2016), which seeks to 

identify humans based upon their ear impression, have little formal research and no research 

agenda.  A view taken when such disciplines are applied is that there is a correlation between 

“dubious forensic science and wrongful convictions” (Cooley, 2004). Cole (2011) echoes this 

view and points to a lack of sufficient studies in some disciplines of forensic science, such 

that little can be inferred about their accuracy.  

This absence of a body of knowledge, established through accepted scientific methodologies, 

has led to criticism of practitioners being rhetorical in their application of substance or 

methodology (Saks & Faigman, 2008).  Saks & Faigman go on to state that scientific 
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principles, such as rigorous empirical testing, inductive methodologies and reporting of error 

rates are all absent from many of the “non-science forensic science” disciplines. 

Without this scientific pedigree, many of the specialties within forensic science taken into the 

courtroom face the risk of being labelled as junk science (Huber, 1993).  Epstein (2009) cites 

fingerprints, handwriting and firearms as three examples of such science. He goes on to 

promote the exclusion of such evidence from trials. Other examples include voice 

identification, footprints, bite marks, tool marks, blood spatter and hair comparison (Edmond, 

Biber, Kemp & Porter, 2009).  Broadly speaking, all of these specialties concern themselves 

with applying individualization to link an artefact to a suspect. 

Computers are meticulous keepers of time and they record times and dates for a multitude of 

events that take place on them. Specialities such as computer forensics and malware forensics 

utilise this intrinsic auditing feature to determine the provenance of identified artefacts.  It is 

ironic that these specialties themselves also do not have any such scientific provenance.    

The lack of a scientific footing for malware forensics has a greater impact for the discipline 

than it does for computer forensics.  The availability of both undergraduate and post-graduate 

qualifications in computer forensics provides an opportunity for practitioners to engage with 

their discipline on an academic and scientific footing.  Although included as modules on 

some courses, there are no such equivalent academic qualifications for malware forensics.   

This absence of both a scientific and academic foundation identifies a number of risks for 

evidence tendered in criminal proceedings. Malware is designed to obfuscate its true 

intentions and hinder attempts to analyse it (Wagener, Dulaunoy & Engel, 2008).  There is 

therefore a level of uncertainty associated with any conclusions drawn from malware 

analysis.  This uncertainty can be used to raise reasonable doubt about the true nature and 

intentions of malware. 

There is also uncertainty in the ontology of the field.  Aycock (2006) argues there is no 

universally accepted definition of terms such as virus.  This is echoed by Bureau and Harley 

(2008), who suggest the expectations of end users are too high. They go on to suggest it is too 

impractical to classify malware by names.  Mundie and McIntire (2013) also identify issues 

with inconsistent vocabulary amongst anti-malware vendors and members of the 

cybersecurity community.  

The complexity of the subject matter and the specialist skills required to study it (e.g.: reverse 

engineering & assembly language) may make the specialty less accessible to practitioners. 
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Lawyers seeking to undermine evidence produced from malware analysis currently have a 

rich choice of attack vectors they can use to introduce reasonable doubt concerning its 

validity.  The lack of scientific provenance, the skillset of the practitioner, the absence of 

academic programmes to give credibility to conclusions drawn and the hostile nature of the 

subject matter itself which seeks to obfuscate analysis.  Even one of the most fundamental 

requirements of digital evidence, the ability to repeat and hence corroborate the findings of 

the expert, is open to challenge.   

1.1.5 Reproducibility flaws 

An established tenet of science is that hypotheses are supported by reproducible experiments 

(Beckett, 2010).  To meet the requirements of scientific reproducibility, these hypotheses 

need to incorporate Popper’s concept of falsification (Popper, 1968), the idea that a 

hypothesis can be proven to be false, thereby advancing one’s knowledge of the subject.  

Typically a null hypothesis is formed and controlled tests are performed to identify the 

circumstances under which it can be proven to be false.  The concept of reproducibility also 

applies to evidence prepared for criminal proceedings. 

Practitioners tendering digital evidence must expect to defend their findings and disclose 

enough detail to enable an opposing expert to verify and possibly provide an alternative 

explanation for an artefact.  One technique used by practitioners to mitigate against any such 

challenges is to compare the findings of one tool with those of another tool. 

This technique is promoted as a tenet of forensic computing (Beckett, 2010).  Practitioners 

refer to this technique as dual-tool verification.  One forensic provider states “Dual-tool 

verification can confirm result integrity during analysis” (Forensic control, 2011).  This is a 

bold claim and is open to challenge if a third tool or manual inspection of the raw data 

identify a discrepency.  Another provider makes the less radical claim that the forensic 

software products EnCase and FTK “allow for a dual-tool approach for the verification of 

findings” (Cy4or, 2009).  As before, no scientific studies or supporting evidence are cited.  A 

third example is a freelance forensic investigator also states on his website in relation to tool 

validation, “I don't validate my tools - I validate my results. Generally I do this with dual tool 

verification” (Drinkwater, 2009).  This statement is contradictory as a second tool is used to 

check the results of another. 

This form of verification falls short of the scientific practice of verification.  Even if the 

definition of verification is limited to a simple comparison, there is no documented record of 

the notion that two tools can make the same error (Beckett & Slay, 2007). This could arise, 
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for example, by using the same underlying Windows API call.  Under these circumstances, 

the designs of both tools are subject to the same erroneous assumption (Sommer, 2010).  

Dual-tool verification cannot confirm a result, but it can corroborate it on a statistically 

insignificant scale.  The main benefit in applying a dual-tool approach is in identifying 

discrepancies in results (Turner, 2008), thereby highlighting the need for closer analysis.  An 

example of this is in the trial of Casey Anthony [2011] who was charged with the murder of 

Caylee Marie Anthony in Orlando, Florida.  During this trial a discrepancy was identified 

between two Internet history tools used to produce expert testimony.  As a result of this 

discovery, the developer of one of the tools corroborated the tool’s output by reverting to the 

underlying raw data and interpreting the data manually (Wilson, 2011).  Although good 

practice, this step is not without bias on the part of the developer towards defending his code 

and commercial product.  Ideally, an independent party unaware of the expected outcome 

should have undertaken this step.  

The acceptance of a tool or methodology sanctioned by others is common practice in both 

legal and scientific circles.   In judicial processes, legal precedent can be cited from prior 

cases where techniques have been admitted into proceedings.  Scientific work advances by 

citing and carefully extending through hypotheses a previously established body of 

knowledge.  The difference arises in how these precedents are determined and hence 

accepted. 

1.1.6 Acceptance of fact 

Kritzer (2009) argues scientific and legal inquiry differ in how they persuade and hence 

accept propositions.  He argues that the scientific tenet of general acceptance and peer review 

is advanced through repeated attempts to falsify a hypothesis. Truth, he continues, in a 

scientific context is complex and elusive and can only be approached by a process of 

eliminating falsehoods.  This differs to truth as applied within the legal context, which is 

revealed through the adversarial process.   

In accepting a given truth, the legal enquirer values certainty, whilst the scientist values doubt 

and scepticism, argues Marsico (2004).  He goes on to state that if justice is blind, then it will 

“blindly follow evidence presented as truth”. Judges, he continues, whose role should be 

limited to evaluating the admissibility of evidence, are actually empowered to evaluate the 

credibility of scientific evidence.  It can be argued that this power combined with the trust 

given to an expert’s testimony has contributed to the problems identified in section 1.1.3. 

The Daubert test in the USA, developed from Daubert v Merrell  [1993], seeks to provide a 

framework to assist the judiciary in evaluating scientific evidence.  Critics of this system 
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argue that it is flawed, as it is reliant on the existence of a “scientific community” when there 

is none for computer forensics (Marsico, 2004).  

Beckett (2010) identifies the Latin terms Ad populum “appeal to the people” and consensus 

gentium “agreement of the people” to describe arguments that are flawed on the basis that 

they are believed by a large number of people.  Citing Appel and Pollitt (2005), Beckett 

questions whether the consensus of the community can be trusted with a largely non-graduate 

educated scientific community in law enforcement. 

Similar consensus gentium arguments are adopted by the vendor community who promote the 

acceptance of their software as it holds a vast market presence.  In their Legal Journal (2011) 

Guidance Software state they have evaluated their forensic software product (named EnCase) 

against the Daubert test.  In addressing the general acceptance criteria of this test, they argue 

that with more than 30,000 licensed users their product is generally accepted.  

Van Buskirk & Liu (2006) argue that statements such as these lead to a tendency within the 

judicial system to presume forensic software is reliable.  In their discussion, they identify 

issues, which they argue are indicative of reliability issues with the software.  In response to 

this, Limongelli (2008) of Guidance Software defends the reliability of the software by citing 

Williford v State of Texas [2004], where it was concluded by the court that the EnCase 

software is reliable.  However, closer examination of this case reveals that this conclusion 

was made on the basis of the anecdotal testimony of a single police officer and therefore not 

based on a generally accepted scientific process.   

Limongelli goes on to cite Sanders v State [2006], where it was concluded that once the 

scientific reliability of a specific methodology is determined, “other courts may take judicial 

notice” of the result.  The impact of such a decision within the jurisdiction where it applies is 

that this forensic product is prone to being accepted without due consideration to the impact 

of changes in the software version or bugs and/or errors that arise due to the environment 

where it is applied. 

However, Carrier (2002) distinguishes between acceptance of a tool and acceptance of a 

procedure.  He argues that in the absence of any published procedure detail, the choice of 

forensic tool from the limited range available will likely be based on non-procedural factors 

such as interface and support.  He concludes therefore, that the size of the user community is 

not a valid measure of procedural acceptance. 

Sommer (2010) identifies how, through the application of Part 33.6 of the Criminal Procedure 

Rules (2015), just two individuals (the opposing experts in a case) can accept novel scientific 
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evidence as “sufficient” for the case without committing to a more “universal” finding.  This 

procedure is one example of the practice where for the purpose of addressing specific matters 

at hand, practitioners “ignore the evidence of falsification” (Saks & Faigman, 2008).  A more 

conservative view on this is offered by Beach (2010) who suggests falsification is not treated 

by practitioners operating within the legal arena in the same way as scientists as the concept 

of truth differs between the  science and legal profession.  Within the bounds of a single case, 

truth is deemed static and not open to be re-evaluated.  Denning (2005) argues this acceptance 

of untested theories is a wider problem within the computer science community as a whole, 

citing a study by Tichy (1998) that found approximately 50% of computer science papers 

published prior to 1995 had proposed models or hypotheses that were untested. 

  

1.1.7 Emerging statutory requirements 

In response to these miscarriages of justice, a UK Forensic Science Regulator (FSR) was 

appointed in 2008 with a remit to manage standards applicable to both scientific processes 

and individual competence (Sommer, 2011).  The FSR is also responsible for developing 

guidelines for validating new developments. 

The following year a European Union Council Framework Decision 2009/905/JHA 

(European Union, 2009) was passed on the subject of “accreditation of forensic service 

providers carrying out laboratory activities” relating to DNA and fingerprinting provision 

which declared that: 

“Member States shall ensure that their forensic service providers carrying out 

laboratory activities are accredited by a national accreditation body as 

complying with EN ISO/IEC 17025” 

The FSR took this decision and broadened it to encompass all forensic service provision 

within the UK in their ‘Codes of Practice and Conduct’ (Forensic Science Regulator, 2011).  

This document aligns itself to the laboratory standard BS EN ISO/IEC17025:2005 (ISO, 

2005).  The UK Government has since sought to put the Codes of Practice on a statutory basis 

and provide investigative powers to the FSR for quality failures (Home Office, 2013).  By 

October 2017 all digital forensic service providers (including those based within UK police 

forces) are required to be accredited (House of Commons, 2016). 

In addition to the above, a survey for the Chatham House report entitled Cybersecurity and 

the UK's Critical National Infrastructure (Cornish, Livingstone, Clemente & Yorke, 2011) 
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found that the participants agreed that for cybercrime: “Any analyses carried out must be 

subject to validation for appropriateness, completeness and accuracy.” 

1.1.8 Summary 

Given the reasons for the appointment of a Forensic Science Regulator and approaching 

statutory standards, it can be argued that the issues identified currently undermine the trust 

that can be placed in findings tendered in criminal proceedings. 

The production of electronic evidence therefore requires the use of reliable tools and 

competent operators.  This research explores both areas and focuses on the trust placed in the 

tools used. 

1.2 Research Question 

The previously identified miscarriages of justice, emerging regulatory controls, ethical 

considerations and a desire to promote awareness of the need to test the limits of tools and 

their results have led to the formulation of the following question in the context of malware 

forensics:  

Can a systematic basis for trusted practice be established for evaluating malware 

artefact detection tools used within a forensic investigation? 

In order to address this question fully, it is helpful to formulate a series of specific, more 

focused, sub-questions: 

1. To what extent is there a case for a lack of trusted practice? 

2. What are the requirements for evaluating malware artefact detection tools? 

3. Do the conditions under which tools and malware operate have an effect on 

the ability to observe malware behaviour? 

4. Are observations of malware behaviour impacted by the practitioner’s choice 

of tool? 

5. What factors can be used to evaluate the performance of the methodology 

and hence identify areas of improvement. 

Commencing with the first question above, the definition of trusted practice used within this 

research is derived from the Crown Prosecution Service (CPS) (2015), who state that expert 

evidence must be reliable, in other words trustworthy.  They go on to describe a characteristic 

of reliable expert evidence as having a “scientific basis”.  Furthermore, they also stipulate that 

reliable evidence should be such that it can be “reviewed by others”, i.e.: is repeatable and 

reproducible.  Hence the trusted practice in this context is deemed to be one that produces 
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evidence through a scientific methodology.  Repeatability and reproducibility are just two of 

several hallmarks of the scientific method.  Others include falsifiability, whereby a hypothesis 

is testable; controllability such that a single variable can be manipulated; and unbiased 

(Peisert & Bishop, 2007).  These are listed in Table 1-1. 

# Scientific method attribute 

1 Repeatability 

2 Reproducible 

3 Testable hypothesis 

4 Controllable 

5 Unbiased 

    Table 1-1 : Attributes of the scientific method 

It is helpful therefore, to establish to what extent there is a case to answer for a lack of trusted 

practice.  Consequently, current practice within the field of digital forensics, and more 

specifically within cases involving malware, is reviewed.  

Furthermore, given the focus of the research question is the evaluation of software tools, then 

the current practice and requirements for this are also reviewed (question 2 above).  To 

address any doubt that may be introduced as a result of operating such tools in a malware 

environment (thereby impacting on the trust placed in them), a study to explore the effect of 

different operating conditions is also undertaken (question 3 above).  By subjecting different 

tools to such scrutiny, the practitioner will be able to compare the observations reported by 

different tools, thereby informing their decision in the choice of tool to use (question 4 

above).  Finally, the methodology identified to address the above questions should itself be 

subject to review and critical reflection to identify areas of improvement (question 5 above). 

The principal themes of the research question are the concepts of trusted practice, tool 

evaluation and forensic investigation.  Therefore, these elements inform the underlying 

direction of the research and together with the sub-questions above, have been used to derive 

a series of research goals, see Table 1-2.  The chapters that address these goals are shown in 

the right-hand side of the table. 
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Goal Sub-questions Description See Chapter 
1 1 Determine if there is a problem with a lack 

of trusted practice in malware forensics 
2 

2 2 Identify the requirements for a solution 3 

3 3,4,5 Develop a methodology for evaluating 
malware artefact detection tools 

4 

Table 1-2 : Research Goals 

 

1.3 Research Contribution 

By achieving the goals listed above, the key contributions of this research are: 

1. Confirmation for case for a lack of trusted practice in the field of malware forensics  

2. A set of requirements for establishing trusted practice in the use of malware artefact 

detection tools 

3. An extensible framework to increase the level of confidence in the use of tools 

applied to malware analysis 

4. Empirical evidence identifying the optimal execution time for a given tool when 

observing malware artefacts 

5. Empirical evidence that the choice of tool can impact on the number of artefacts 

observed 

6. Empirical evidence of the performance of this framework. 

7. A systematic methodology for practitioners to specify operating parameters (such as 

how long the tool must be run for) when obtaining new or unfamiliar tools. 
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The following have been identified as potential beneficiaries of this research: 

Table 1-3 : Potential beneficiaries of the research 

 

 

  

Who Perceived benefits 
Practitioners • Road map of current state of research in field 

• Framework to empirically evaluate tools 

• Quantifiable means to compare tools 

• Ability to make informed decisions on choice of tool 

for malware analysis 

• Ability to customise test environment to evaluate a tool 

under different conditions 

Academics • Identification of key research groups and areas for 

academics seeking to undertake a further research 

• Supporting data for any subsequent research 

• Identification of risks/caveats in the research field 

Criminal Justice  

System 

 

• Cite gaps through authorities in field  

• Empirical data to validate methodology 

• Inform on the admissibility of evidence 

Public • Potential to reduce miscarriages of justice 

Software vendors • Identify gaps supported by authorities in field 

• Framework to test products against 

• Provide scientific underpinning to products 

Forensic Regulator / 

Standards bodies 

• Identify gaps supported by authorities in field 

• Empirical data to validate methodology 

• Methodology to inform testing/evaluation of tools 
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1.4 Research strategy 

The research process selected for this thesis largely follows the five-stage Action Research 

process (Cottrell, 2014, p. 102).  Cottrell states this research method is a valid approach that 

can be undertaken by “practitioners into an area related to their own work”.  The following is 

a brief description of each of the steps involved in Action Research as employed in this 

research.  

a. identifying a research question (diagnosing).  This process was largely exploratory in 

nature, where the research problem was articulated from gaps in available literature, 

regulatory requirements, presentations, blogs and discussions with peers within the 

digital forensic community and criminal justice system, etc. This step sought to 

answer research sub-questions 1 and 2 (see Section 1.2).  

b. developing an action plan (action planning).  This initially involved the development 

of a realistic timeline for each task that would eventually lead to answering the 

research questions identified in (a) above.  Much of the development stage concerned 

identifying the components of the framework and determining how they would 

interoperate (see Sections 4.1 and 4.2). 

c. implementing the plan (action taking).  This stage involved the instantiation of the 

framework through the development of the code that forms the components identified 

in (b).  In parallel to the code development, links were established to the malware 

source and online malware analysis providers to determine how the code would 

interface to their systems (see section 4.3). 

d. gathering and analysing the data (observing). Data in (c) above was collected and 

analysed to provide empirical evidence to test the research hypothesis. Steps (b), (c), 

and (d) all contribute to providing an insight into the solutions of research sub-

questions 3, 4 and 5 (see Section 1.2). 

e. reflecting on the findings of the investigation (evaluating).  The results of step (d) 

were used to further draw a conclusion on the significance of the contribution this 

thesis makes to tool evaluation in a malware forensic context.  
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1.5 Thesis structure 

This thesis is structured as follows: 

Chapter 2 surveys related literature and identifies the relatively small amount of groundwork 

that has begun to emerge to establish digital forensics on a scientific footing.  However, there 

is little empirical research to underpin malware forensic practice, which is based upon 

anecdotal and ad-hoc processes.  The chapter closes with a review of tool evaluation methods. 

Chapter 3 examines the gap between the state of the art in malware forensic practice and the 

technical, legal and regulatory requirements of such a process operating within the Criminal 

Justice system of the UK.  The chapter closes with a series of requirements reflecting the 

disparity between current and required practice. 

Chapter 4  opens with the aims of the design and proceeds to identify the main components of 

the framework to address the previously identified gap.  The latter half of the chapter 

examines the implementation of the framework and proposes a testing and analysis strategy. 

Chapter 5  reports on the results of a series of experiments conducted using the implemented 

framework.  An analysis and discussion section follows where it is found that the both the 

length of execution time and choice of tools impacts on the number of artefacts observed. 

Chapter 6  evaluates the framework from a number of different perspectives.  Early on in the 

chapter, an evaluation against the requirements and aims is undertaken. Performance is also 

evaluated, looking at the speed and resource utilisation.  How well the framework addresses 

the research question is also evaluated.  The chapter closes by identifying the limitations of 

the framework and then leading into further work proposals.  

Chapter 7  presents the conclusions of the research and in doing so, offers a critique of the 

thesis itself.  The contributions are identified before the chapter closes with a summary of the 

proposed further work.   
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Chapter 2  Literature search 
 

Chapter 1 outlined a number of issues that undermine the trust placed in forensic evidence.  A 

greater confidence in the tools used in practice is required as the discipline moves towards 

increased regulation (see section 1.1.7).   

In order to understand the context of where these tools are used and help identify the steps 

needed to address the trust issue, this background chapter is divided into three principal 

sections.  The first of these provides a review of digital forensic practice and identifies a 

relatively small amount of groundwork that has begun to emerge to establish digital forensics 

on a scientific footing.  The second section argues that there is even less empirical research to 

underpin malware forensic practice, which is based upon anecdotal and ad-hoc processes.  

The chapter closes with a review of tool evaluation methods. 

2.1 Digital Forensic practice workflow 

Digital forensic practice is a relatively young field and like any fledging field of study, it has 

attracted a number of attempts to model it.  Pollitt (2007) provides a useful summary of 

several early process models.  Among these the 2001 Digital Forensics Research Workshop 

(DFRWS) was one of the first significant initiatives to define the discipline by academics and 

practitioners alike.  With over 300 citations in 15 years (Google, 2016a) it resulted in a six-

stage process describing the entire lifecycle of a computer forensic investigation (Palmer, 

2001).  Carrier’s abstraction model (Carrier, 2003) is also widely cited (Google, 2016b);  it 

uses abstraction layers to form a model for digital data being examined during forensic 

analysis at a high level.   Alongside the input and output data of each layer, Carrier argues 

there is also a ‘Rule Set’ that defines the interpretation of the layer together with a ‘Margin of 

Error’, see Figure 2-1. Carrier provides an example of binary input data that has an ASCII 

mapping rule set applied to it.  The output of this would be the alphanumeric representation of 

the data.  This, he argues, could then be fed into another layer.  If the data were the contents 

of an HTML document, then the alphanumeric characters would become the input along with 

the HTML specification as a rule set to produce a formatted document as an output.  Carrier 

(2006) subsequently used abstraction layers to model a digital forensic investigation using 

finite state machine theory. 
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Figure 2-1 : Abstraction layer inputs and outputs, adapted from Carrier (2003) 

 

Carrier’s model has been criticised by Flandrin et al. (2014) as being too complex to 

implement as an “extensive digital forensics knowledge of the internals of the tool” would be 

needed but most tools used are closed source. 

More recently, Raghaven (2012) has provided a series of taxonomies that summarise the field 

from different perspectives, including attempts at modelling the forensic process.   

Kaur & Kaur (2012) suggest that despite the variety of models proposed, many of them are 

ad-hoc and hence have not been adopted by the practicing community.  However, they do not 

elaborate on why they deem them to be ad-hoc.  Brown (2010) suggests the lack of adoption 

by the community may be the result of the need for practitioners to adapt their workflow to be 

“general enough to be useful in an array of situations” and the fear of being challenged in 

court for not following a Standard Operating procedure (SOP). Vincze (2016) describes how 

this remains an open problem by citing Casey (2011a) and Pollitt (2010), pointing out that 

“after decades of discussion, the debate continues”.  This echoes the view that to date that an 

adopted comprehensive digital investigation process model simply “does not exist” 

(Montasari, Peltola & Evans, 2015). 

Despite this claim, Kent et al. (2006) previously published a report on behalf of the National 

Institute of Standards and Technology (NIST) in which a four-stage process model was 

presented.  The fact that a standards body has produced the model may bridge the gap 

between the academic and practitioner community and therefore increase the likelihood of it 

being adopted in practice.  It is perhaps for this reason that Zareen et al. (2013) give more 

emphasis to this model in terms of coverage over others and describes this model as an 

“established” procedure “accepted the world over”, see Figure 2-2.   
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Figure 2-2 : NIST Digital Forensic procedure, adapted from Zareen et al.  (2013) 

In the United Kingdom, there is a move to adopt the ISO 17025 Standard (ISO, 2005), which 

is incorporated into the Forensic Science Regulator’s Codes of Practice and Conduct (2016).  

Given the lack of consensus within the community it is not a surprise to note that the 

Regulator has laid down no formal model or recommended methodology for the discipline.  

The European Anti-Fraud Office (OLAF) published their updated standard operating 

procedures for conducting digital forensics investigations in February 2016 (OLAF, 2016).  

These guidelines are aimed at OLAF staff and agencies operating on their behalf.  

Furthermore, their focus is somewhat high level and designed to help ensure compliance with 

data protection provisions in the context of digital forensic operations.  The only other 

guidelines applicable to practice in the UK are the ACPO Good Practice Guide for Digital 

Evidence (Williams, 2012).  This document provides a recommended methodology for the 

acquisition of digital evidence, but not for the process as a whole.   

Kipling (2012) again echoes the lack of a standardised methodology for conducting a digital 

forensic investigation. However, unlike others, she extends this observation to the absence of 

a methodology for “searching for malware”.  She argues that existing methodologies focus on 

the defendant’s “actions on the computer to prove intent”, i.e.: mens rea.  This corresponds to 

the Analysis stage of the NIST procedure (see Figure 2-2) where the overall objective is to 

label evidence as either exculpatory or inculpatory.  Kipling points out that methodologies 

that focus on user activity are too limited in their scope where malware is involved. There is a 

requirement to differentiate the actions of a user with those of malware and to take into 

account anti-forensic measures such as tampering with file timestamps that may have 

occurred.   Approaches to this requirement will be explored in the next section.  
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2.2 Forensic analysis in a malware environment 

Malware analysis is typically undertaken by security researchers and generally seeks to 

answer one or more of four questions: can it be detected (Huda et al., 2016); can it be 

classified (Daly & Burns, 2010); can its behaviour be understood enough to comprehend its 

objective(s) (Zolkipli & Jantan, 2011); or can it be neutralised (Morales, Sandhu & Xu, 

2010).  The strategy taken to analyse malware is largely divided into static or dynamic 

analysis (Egele, Scholte, Kirda & Kruegel, 2012), whilst others adopt a hybrid approach of 

both (Shijo & Salim, 2015).  Egele et al. also identify three platforms for implementing such 

analysis; namely bare metal, virtualisation and emulation, see Figure 2-3.  

 

Figure 2-3 : Malware analysis - Aims & strategies 

A bare metal platform is one where the operating system on which the analysis is to be 

performed is installed on physical machine (like a regular desktop computer).  Malware 

analysis performed on a bare metal platform is the most authentic, as it most closely reflects 

what would happen on a computer, once infected with malware. 

On a virtualisation platform the privileged state of the physical machine (akin to root 

permissions access to hardware resources) is not directly accessible to a virtual machine 

running on the platform.  A Virtual Machine Manager (VMM) manages access to these 

resources.  Furthermore, both the host and guest machines must have same underlying 

instruction set architecture, such as the Intel based x86 or x64 instruction set (Intel, 2016). 

An emulation platform allows for the host and guest architectures to be different.  This means 

that a guest computer that uses a different underlying instruction set architecture, such as an 

older Apple Mac based PowerPC , could be hosted by a computer running the Windows 
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operating system.  Also, the host machine has full control over what the guest can see, so the 

analysis tools can remain undetected from the malware.  However, some malware can detect 

the side-effects of emulation, such as the features of an imperfectly emulated CPU (Egele, 

Scholte, Kirda & Kruegel, 2012).  These three implementation strategies are covered in more 

detail in section 2.2.4. 

From a forensic investigation perspective, the review of the literature has uncovered little 

published material documenting the procedure for conducting a malware forensic 

investigation or indeed for evaluating the tools to do so. The use of malware forensics is cited 

by Kim et al. (2014) who present a model to investigate fraud using “malware forensic” 

techniques.  General acceptance of the term is demonstrated by the fact that it is emerging 

within other sectors, such as education.  Techniques such as gamification are being deployed 

to teach malware forensics as part of a wider digital forensics course (Pan, Schwartz & 

Mishra, 2015).  Shosha et al. (2013) present an automated approach to reconstruct forensic 

actions from low-level code and determine a suspect program’s behaviour using a state 

analysis approach.  Their approach uses finite state machine theory and claims to be 80% 

effective at identifying the actions of malware. However, their evaluation of this approach is 

unclear; but seems to be reliant on the ability to reverse engineer the malware to determine 

how closely the predicted actions follow the underlying code.  Furthermore, no account for 

the changeable nature of malware appears to have been considered. 

This changeable nature issue is address by Provataki and Katos (2013) whose malware 

forensics framework extends the functionality of the Cuckoo sandbox (Cuckoo Foundation, 

2016) and provides a means to execute malware multiple times across different environments 

to gather an overall picture of it’s modus operandi.  The framework is designed to provide 

damage assessment following a malware breach and includes empirical results.  However, its 

purpose is to evaluate malware behavior and not to evaluate the tools used to study such 

behavior. 

Published strategies for performing malware analysis in support of law enforcement are few 

and far between. Ianelli et al. (2007) offer a discussion on the topic and suggest that the 

presence of malware can be addressed by examination of the network traffic logs.  However, 

this suggestion assumes that such logs are more likely to be found in a corporate than 

domestic environment.  Hence, a suspect accused of committing an offence via their home 

router will typically have far fewer logs and/or detail to assist their defense than in a 

commercial environment with what would likely be more sophisticated logging available.  
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Malin et al. (2008) present one of the few books on malware forensics, more recently split 

into separate Windows (2012) and Linux (2013) editions.  Carvey (2012) also provides some 

coverage of the topic across two chapters from an investigative perspective, as part of a more 

general digital forensics discussion.  Each of these texts presents a collection of tools and 

techniques to address various aspect of analysis, but none attempt to develop and evaluate a 

general-purpose framework for malware analysis. 

Notwithstanding this lack of a framework, Malin et al. does suggest five broad phases to a 

forensic investigation involving malware that is clearly aimed at the practitioner.   

• Phase 1 : Forensic preservation and examination of volatile data 

• Phase 2 : Examination of memory 

• Phase 3 : Forensic Analysis: Examination of hard drives 

• Phase 4 : Static analysis of malware 

• Phase 5 : Dynamic analysis of malware 

Malin et al. take the view that, “within each of these phases formalized methodologies and 

goals are emphasized”.  Taking Phase 4 as an example they present a file profiling 

methodology as a static analysis approach to studying malware, see Figure 2-4.  However, 

they offer no provenance on the methodology, no evaluation against any alternatives, nor any 

argument why this particular approach was selected. 
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Figure 2-4 : Steps in the File Profiling Process, adapted from Malin et al. (2008) 

Despite these shortcomings (and in the absence of viable alternatives), this structure was used 

as a starting point to divide up the discipline into different topics, as applied to evaluating the 

tools used in a forensic investigation involving malware.  The remainder of this section has 

been divided into subsections to consider the viability of each of these phases to the aims of 

the Research Question in section 1.2.  Phases 1 and 2 are quickly dismissed as not being 

viable, given the challenges and resources available within the context of the PhD.  A 

crowded research space, such as Farely (2015) who presents a method to perform automated 

forensic analysis of malware and Kim et al. (2014) who use automated malware forensic 

techniques to detect financial transaction anomalies, dismisses Phase 3, whilst Phase 4 is 

similarly dismissed on the grounds that such tools are unlikely to be used owning to the 

additional skills (such as assembly language and reverse engineering) needed to interpret their 

results.  A lack of support for a command-line interface and hence scripting capability also 

led to issues with automation of such tools.  This contributed to the decision to discount 

implementing this phase in the approach to this PhD.  The final phase proposed by Malin et 

al. is a more viable option for this PhD and is therefore given greater coverage in section 

2.2.4.  
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2.2.1 Phases 1 and 2: Preservation, volatile data and memory 

Arguably there is some overlap between some of the phases of this approach.  For example, 

elements of what you might expect to be in the preservation of volatile data (such as 

recording network port activity in Phase 1) would also be present in the dynamic analysis of 

malware, where the malware file is executed and studied (Phase 5).  Similarly, purists may 

argue that an examination of memory (Phase 2) should encompass both volatile data (secured 

in Phase 1) and paged memory, hibernated code or even crash dumps, all of which are to be 

found on storage media (Phase 3). 

Given these overlaps and the ephemeral nature of RAM data, the first two phases of the 

approach identified by Malin et al. have been excluded, on the basis that it is more 

challenging evaluating tools to meet the aims of the Research Question in section 1.2.  In 

addition, the nature of RAM acquisition brings challenges to the repeatability and 

reproducibility of its acquisition, thereby falling short of a scientific method, as defined in this 

research (see Table 1-1).  Furthermore, Malin et al. present the first phase very much from an 

incident response (as opposed to a forensic investigation) perspective. 

The remaining three phases are therefore all plausible candidates for the focus of this 

research.  What follows if a brief review of each of these. 

 

2.2.2 Phase 3: Forensic Analysis Examination of hard drives 

The third phase is aligned to a conventional digital forensic examination workflow and 

according to Malin et al., is concerned with the use of more established forensic analysis 

tools, such as EnCase.  Thus, temporal analysis of artefacts in the form of timelines can be 

generated.  

Malin et al. present an anecdotal methodology for this phase (see Figure 2-5) that they state 

“provides the greatest chance of finding the majority of evidence relating to malware on a 

computer”.  With no supporting evidence to back up this claim, it is presented very much as 

practitioner guidelines, rather than a scientifically tested and evaluated process.  Furthermore, 

no discussion on the order of the process steps shown in Figure 2-5 is presented, leaving the 

reader uncertain of any dependencies and thus the impact of changing this order.  Some steps 

(such as searching for known malware) would need to take place before others (such as 

inspecting an executable), whilst steps such as reviewing user accounts would not. 
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Implementation 

The steps presented by Malin et al. in Figure 2-5 can largely be completed using dedicated 

forensic analysis software, such as EnCase or SleuthKit.  As Malin et al. point out, there are 

steps in this phase where the practitioner is obligated to use tools not designed for forensic 

use:  

“The increasing use of malware to commit and conceal crimes is compelling more digital 

investigators to make use of malware analysis techniques and tools that were previously the 

domain of antivirus vendors and security researchers”.  

This practice of filling the void left by the dedicated forensic tools by using tools not designed 

for use in a forensic context is also recognised by Beckett (2007).  It presents an opportunity 

to challenge the integrity of the evidence produced using such tools.  

Tool evaluation opportunities 

To consider the inclusion of tools from this phase to be evaluated as part of this research, the 

ability to apply a high degree of automation to use of the tool was considered.  To form 

generalisations from statistical analysis, a high level of automation is required to gather 

sufficient quantities of data. Some tools/tasks are difficult to automate, as they require a 

degree of human interpretation.  For example, due to the transitional portfolio of software that 

is available to install, any scripted process to “Review Installed Programs” as indicated by 

Malin et al. in Figure 2-5 is likely to be quickly out of date.  Furthermore, attempts to 

evaluate tools that “Inspect Executables” face similar challenges in that where the files being 

inspected are malicious they will nearly always be obfuscated and designed to misdirect any 

analysis.  Bayer et al. (2006) point out that malware authors deliberately write their code to 

“thwart both the disassembly and code analysis”; others have presented similar views 

(Wagener, Dulaunoy & Engel, 2008) (Sikorski & Honig, 2012).   
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Figure 2-5 : Uncovering malware trace evidence, adapted from Malin et al. (2008) 

Furthermore, referring to Figure 2-5, the tasks to automate the various review steps, such as 

scheduled jobs or log files and applications set to start automatically on boot, can all easily be 

scripted within tools such as EnCase. However, it is much harder to automate any 

interpretation of the results to differentiate between the suspicious and the benign. 

Consideration was given to evaluating anti-malware scanners, which could conceivably be 

easily automated.  This idea was abandoned due to the level of work underway by other 

groups, such as Harley (2012) who discusses standards for testing anti-malware products; 

Košinár et al. (2010) who discuss an anti-malware testing methodology; as well as Shijo and 

Salim (2015) who present a combination of both static and dynamic analysis techniques to 

detect malware.  Harley (2012) also takes the view that not all of these groups are proficient 

in scientific testing methodologies.  The testing itself, he contends, is largely carried out 

and/or interpreted for wider dissemination by non-specialists.  Potter and Day (2009) present 

a discussion on the effectiveness of anti-malware testing (but provide no empirical data to 

support their position). This is in contrast to Sukwong et al. (2011) whose empirical study of 

six anti-malware products applied two stages of evaluation: file signature and behavior 

analysis.  Corregedor and Von Solms (2012) meanwhile, compare nine commercial anti-

malware products, which they evaluate against a series of requirements as part of a 

framework.  They conclude all nine products tested have several vulnerabilities that need to 

be addressed.  Ford and Carvalho (2014) share the concern for the lack of science in the 

testing anti-malware products by stating this deficiency actually “harms the industry”.  

In conclusion, the best opportunities for tool evaluation in this phase are limited to anti-

malware tools, but this area is somewhat crowded with a number of active research groups.  

Therefore, attention is turned to the fourth phase, the static analysis of malware.  
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2.2.3 Phase 4: Static analysis of malware 

Malin et al. describe the fourth phase as being the static analysis of malware.  The steps they 

identify for this phase are illustrated in Figure 2-4.  As previously stated, they do not provide 

any evaluation of these steps nor suggest any alternatives.  Similar criticisms can be levied 

against the process proposed by Elisan (2015) who defines static analysis as the process of 

collecting information from the file while it is not running.  From an investigative 

perspective, this is largely a metadata analysis that is akin to a forensic examination of the 

paper, ink, fibres and postmark of a physical suspect letter.  Elisan provides a breakdown of 

the “basic steps and techniques” that are needed to conduct an “effective static analysis”:   

• ID assignment 

• File type identification 

• Antivirus detection 

• Protective mechanisms identification 

• Portable Executable (PE) structure verification 

• Strings analysis 

• Static code analysis 

As with Malin et al., there is a lack of clarity on any dependencies that may (or may not) be 

present in this process.  A detailed comparison of these two approaches is outside the scope of 

this literature review, since the focus is on identifying the opportunities to evaluate the tools 

involved. 

Implementation 

A study by Namanya et al. (2015) evaluated three static analysis tools, namely Mastiff, Pyew 

and PEframe.  They identify these as being the “most popular open source malware static 

analysis tools”, though no supporting data or citation is provided to back up this claim.    

The framework offered by Kipling (2012) provides a methodology to determine if malware is 

or was on a system, from “Indicators of Compromise” (i.e.: artefacts) left behind. Although 

Kipling explicitly states the approach is aimed only at “finding malware”, many of the tools 

she cites (listed in Appendix C of her dissertation) can be used to inform the investigator 

about the behaviour and/or intentions of the malware. 
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Tool evaluation opportunities 

Static analysis is frequently hindered by the use of packers that encrypt a malware binary 

(Raphel & Vinod, 2015).  Hence, one of the first steps required during static analysis is to 

unpack the malware to produce a ‘plain text’ version of the file that can then be analysed.  

This can be done manually, but requires skill (and patience) in low-level assembly language, 

as well as a familiarity with the Portable Execution file format.   

Tools are available to simplify this process, but as Lyda and Hamrock (2006) point out, 

unpacking tools may inadvertently execute the packed code (so precautions need to be made 

in the event the file is malicious) and that many of the unpacking tools are poorly written and 

break due to bugs and errors. 

Furthermore, there are some forms of malware that do not unpack completely as an anti-

forensic measure (Royal, Halpin, Dagon, Edmonds, et al., 2006). Coogan et al. (2009) present 

a solution for unpacking code that has been secured using both custom and commercially 

available packers without executing the malware.  

In addition, it could be argued that findings, such the inclusion of network related dynamic 

link libraries (DLLs) could simply be circumstantial and may not mean that the file under 

analysis is or ever was capable of contacting the Internet, for example.  Malin et al. (2008) 

take this one step further and warn that string information, for example, can often be planted 

to “throw digital investigators off track”.  Knowledge of these caveats have the potential to 

undermine a case that advocates that malware was the cause of the Actus Reus during a trial.   

Regardless of the authenticity of the data examined, Provataki and Katos (2013) provide an 

important observation, particularly applicable to a forensic practitioner perspective.  They 

point out that while static analysis as a process has the potential of completely uncovering a 

malware’s inner structure and characteristics; it also requires extensive expertise, manual 

effort and time to perform.  This, they argue, might not always be feasible to perform due to 

extremely sophisticated obfuscation methods and multilayered packing mechanisms 

embedded within the malicious code.  As a consequence, the likelihood of this approach 

being used by Law Enforcement is arguably, quite small.  Consequently, the requirement to 

evaluate such tools is also small.  Furthermore, the required expertise and manual effort 

reported by Provataki and Katos (2013) inhibit the ability to automate the process and 

determine their reliability.  Executing the malware overcomes many of these issues in that it 

is unpacked and will typically (but not always) create artefacts on the disk and/or network 

that can be observed. 
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2.2.4 Phase 5: Dynamic analysis of malware 

Malin et al. describe their fifth phase as being the dynamic analysis of malware.  They define 

this as “executing the code and monitoring its behavior, including its interaction and effect on 

the host system”.  The definition offered by Egele et al. (2012) extends the interpretation of 

Malin et al. from monitoring to the act of verification of actions as they describe dynamic 

analysis as being “techniques that execute a sample and verify the actions this sample 

performs in practice”.  

The act of executing the malware offers significant advantages over static malware analysis.  

One such advantage is the increase in the speed of analysis (Provataki & Katos, 2013).  As 

argued by Seifert et al. (2007), this is likely to be as a result of how dynamic analysis 

simplifies and automates the analysis process.  Ross (2010) adds that dynamic malware 

analysis does not require specialist skills such as “an extensive understanding of assembler”.  

Elisan (2015) also suggests that such an approach “reveals most of its functionalities”.   

In contrast to Elisan, Provataki and Katos (2013) argue that the behaviour of a malware 

binary may vary subject to the conditions under which it was run and so only a portion of the 

malware’s behavior may be exhibited.  Sikorski and Honig (2012) pick up on this point 

declaring that “not all code paths may execute” when running malware.   

Implementation 

Dynamic malware analysis can be implemented using one of two broad approaches, namely 

transition and state based logging (Liao & Langweg, 2014), see Figure 2-6.  For this 

discussion, they will be referred to as Process states and Snapshots, respectively. 

 

Figure 2-6 : Transition vs State logging, adapted from Liao and Langweg (2014) 

State-based logging periodically samples the state of the system, gathering a much less 

granular record of changes than possible with transition-based logging. Transition-based 
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logging monitors for specific events which are typically more easily recorded. Both 

approaches require deciding in advance on the level of granularity to be recorded. 

Liao & Langweg point out that transition based logging has an advantage over state based 

logging in that if an incident occurs between two snapshots then the trace information for this 

incident will not be missed, as each change would be recorded as a new process state.  An 

example of this would be a file that is created after the initial snapshot, which is then deleted 

before the second snapshot is created. 

Malin et al. refers to these two approaches as Active (Transition based) and Passive (State 

based) monitoring, see Figure 2-7.  

 

Figure 2-7 : Active vs Passive monitoring, adapted from Malin et al. (2008) 

These two approaches follow on from a series of guidelines that Malin et al. recommend be 

followed as part of a dynamic malware process: 

1. Establishing the Environment Baseline  
2. Pre-execution Preparation  
3. Executing the Malicious Code Specimen  
4. System and Network Monitoring  
5. Environment Emulation and Adjustment  
6. Process Spying  
7. Defeating Obfuscation  
8. Decompiling  
9. Advanced PE Analysis 
10. Interacting with and Manipulating the Malware Specimen  
11. Exploring and Verifying Specimen Functionality and Purpose  
12. Event Reconstruction and Artefact Review  
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Thus the tools that would apply here would be largely designed to monitor changes to a 

computer system, either in real-time or as a comparison of before and after snapshot (Egele, 

Scholte, Kirda & Kruegel, 2012). 

Unlike previous phases, tools used for dynamic malware analysis also require an environment 

within which to operate.  Referring to Figure 2-3, the implementation strategies available for 

this are bare metal, virtualisation and emulation.  

Bare metal implementations such as Tomlin’s ‘Litterbox’ cited by Willems et al.  (2007) run 

the malware directly on physical hardware to achieve the most realistic conditions possible.  

However, such approaches are resource intensive and parallel processing is limited to the 

number of physical machines available.  Furthermore, the throughput of analysis is limited to 

the time it takes to restore the system to the pre-infection state (Grégio, Afonso, Filho, Geus, 

et al., 2015).  An interesting study named BareBox (Kirat, Vigna & Kruegel, 2011) seeks to 

address these limitations by restoring the entire physical memory of the target operating 

system with a clean one without rebooting the system.  However, according to Grégio et al. 

this approach fails to detect more privileged actions such as drivers loading.  A more efficient 

approach is to use virtualisation instead, as it requires fewer physical machines and can 

achieve greater scalability and throughput.  Furthermore, the time to reset a machine for a 

subsequent analysis is shorter.  

Virtualization is a process that involves simulating parts of a computer's hardware to a point 

where a guest operating system can run unmodified.  Most operations still occur on the real 

hardware for efficiency reasons.  However, both the guest and host operating systems must 

share the same architecture, with the host providing any required backwards compatibility, 

such as a 32-bit operating system hosted by a 64-bit operating system of the same instruction 

set family (Boley, 2014).  As Boley points out, this differs to emulation where the CPU, 

memory and other devices are all emulated in software and have no direct access to the host’s 

hardware.  

Until recently, a criticism of performing malware analysis on a virtual machine (VM) was 

that some malware is VM aware and so would not run in the same way as it would on a 

physical machine Krister (2009).  Martignoni et al. (2009) warned that as a result of using 

“synthetic” environments results would “very likely” be incomplete.  Chen et al. (2008) 

exploited this by implementing fake artefacts on a virtualised guest, thereby protecting it. 

However, following an empirical study comprising of 200,000 malware samples taken from 

2012 to 2014, Wueest (2015) argues that only a small number of these cases detected it was 

running within a VM. 
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This section has explored the process of dynamic malware analysis.  When applied to a digital 

forensic investigation, the Research Question (section 1.2) seeks to establish a methodical 

approach to elevating the level of trust placed in the tools used to perform this analysis.  

Hence a means to evaluate the tools is required. The next section will consider the elements 

that make up the tool evaluation process. 

2.3 Tool evaluation 

Given that forensic practitioners can be called to give evidence under oath of their findings 

and their interpretation of such findings, it is not unusual for practitioners to seek to evaluate 

their tools before trusting them.  However, recall from section 1.1 a variety of problems 

impacting on this trust, including the ad-hoc nature of this process and the need to more 

formally evaluate tools to meet the requirements of the FSR.   

Therefore, this section looks at the definition of tool evaluation, taking into account the 

overarching goals of the research.  It opens with a high level tour of the literature to highlight 

the main approaches and give context to the topic.  Following this, the criteria that can be 

used to determine what successful evaluation ‘looks like’ is discussed.  The benefits, risks and 

challenges of such an activity are also included, as well as a discussion on who is best placed 

to perform the evaluation.  Finally, the section concludes with a more detailed review of 

evaluation methodologies proposed by others.  

2.3.1 What is tool evaluation? 

The evaluation of software is an established process that is embodied in two fundamental 

scientific concepts in software engineering referred to as “Validation & Verification” (V&V), 

succinctly defined by Boehm (1989) to mean: 

• Verification: Are we building the product right? 

• Validation: Are we building the right product? 

It has become common practice for organisations to integrate these models into the normal 

working processes as part of their software development life cycle.  Beckett (2010) cites the 

US Department of Health Food and Drug Administration (FDA, 2002) and the Independent 

verification and validation facility for NASA (Asbury, 2015) as just two examples. 

Organisations that develop software will typically have documented procedures in place to 

maintain quality standards within the software development lifecycle from unit testing 

through to product testing. Beckett goes on to argue that despite an increase in the use of 

programming methods (such as agile and eXtreme programming) that incorporate testing as 
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part of the development lifecycle, no evidence of a published testing model could be 

identified for any forensic software product. This follows an earlier publication where Beckett 

& Slay (2007) argued that the evaluation of tools is “widely undocumented, and not proven 

publicly, except through rhetoric and hearsay on the bulletin boards of individual tool 

developers”.  This is in conflict with the repeatability and reproducibility attributes of the 

scientific method (see Table 1-1). They go on to suggest that one reason for this might be the 

difficulty, cost and resource challenges this poses.   

Flandrin et al. (2014) agree with this lack of published material on digital forensic tool 

evaluation, arguing that most of what is published tends to focus on methodologies rather 

than the tools used.  Furthermore, as a result of the literature review, no material at all has 

been identified regarding the evaluation of tools used to investigate malware. 

The Oxford English Dictionary (2016a) defines the term ‘evaluate’ as, “To ‘reckon up’, 

ascertain the amount of; to express in terms of something already known”.  The American 

centric Merriam-Webster dictionary (2017) defines the term as, “to determine or fix the value 

of; to determine the significance, worth, or condition of usually by careful appraisal and 

study”.  Both of these definitions make reference to quantifying a value. 

However, simply knowing the value of something related to malware artefact detection tools 

may be insufficient for their use in a legal context. Garfinkel et al. (2009) points out that in 

the USA the legal test that determines the acceptability of a forensic tool is that it must 

“reflect the data accurately”.  Rule 1001(3) of the US Federal Rules of Evidence sets out this 

requirement for accuracy, but does not offer a definition for the term. 

Until its repeal in 1999 by the Youth Justice and Criminal Evidence Act (1999) the United 

Kingdom took a similar stance using Section 69 of the Police and Criminal Evidence Act 

(1984) that stipulated that electronic evidence will not be admissible if it is “inaccurate”.   

This repeal effectively places digital evidence on the same footing as any other form of 

evidence, meaning it is presumed to be valid and thus may be admitted unless evidence to the 

contrary is provided (Lloyd, 2014).    

However, by October 2017 all practitioners operating within the Criminal Justice System in 

the United Kingdom will need to abide by the Forensic Science Regulator’s ‘Codes of 

Practice and Conduct’ (House of Commons, 2013).  These codes include the requirement that 

“measurement based methods” must be “accurate”.  This requirement supports the argument 

of Flandrin et al. (2014) that it is the method and not the tool that must be accurate.  Accuracy 

is defined in the same document as:  
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“The closeness of agreement between the mean of a set of results or 

an individual result and the value that is accepted as the true or 

correct value for the quantity measured.” 

Others argue that accuracy is not the only means by which to evaluate digital forensic tools.  

Ayers (2009) includes accuracy amongst seven metrics that are available to measure the 

“efficacy and performance” of digital forensic tools: 

• Absolute speed the time required by the tool to complete a task. 

• Relative speed compares the average processing evidence rate against the rate to read 

data from the original media. 

• Accuracy is the proportion of correct results. 

• Completeness represents the proportion of evidence found from the pool of evidence 

available in the forensics image. 

• Reliability measures how often the tool is likely to fail during an investigation. 

• Auditability defines if the results are fully auditable. 

• Repeatability measures the proportion of tests where the process employed was 

exactly as specified. 

Aside from the connotations of influence and bias in the term “efficacy”, there are 

ambiguities in these definitions provided by Ayers (2009).  For example, it is unclear what is 

meant by “fail” under the term “Reliability” whilst “Repeatability” is defined in terms of the 

similarity of processes, rather than the results.   In addition, neither of the definitions for these 

two terms aligns to the definitions based on the scientific method recognised by the CPS 

(2015), making them unsuitabile for this research.  Furthermore, Flandrin et al. (2014) point 

to the lack of clarity on the meaning of  “correct results” under the metric “Accuracy”.  

Liao & Langweg (2014) offer a review of process activity tracking systems from a forensic 

analysis and forensic readiness perspective.  Classifying the tools reviewed in terms of their 

implementation strategy (e.g.: kernel vs. user space monitoring), they claim to evaluate the 

tools in terms of soundness, completeness, timeliness, and cost of process activity tracking.  

Unfortunately, there is little detail in terms of the results for such analysis included in their 

review. 

One of the more quantifiable attempts to evaluate software tools is offered by Saleem et al. 

(2012) who use ratios of completeness of expected and observed artefacts coupled with 

statistical analysis to evaluate mobile phone acquisition software. This approach is 
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problematic when applied to malware artefact analysis, as the random nature of malware can 

mean that more artefacts are observed than were expected.  This results in ratios (used by 

Saleem et al. to calculate p-values) greater than 1. 

Where tools are used in a live environment, additional metrics related to the impact such a 

tool has on the systems, such as memory footprint, locally changed files, network or registry 

keys should also be considered (Sutherland, Evans, Tryfonas & Blyth, 2008).  Lempereur et 

al. (2010) argue that the metrics considered by Sutherland et al. are “inconsequential” and 

suggest the memory of two virtual machines run in parallel be compared instead, where one 

virtual machine is monitored and one is not.  

Boehm’s V&V concepts (stated above) were formally incorporated into the IEEE 1012-2004 

standard (IEEE, 2005) and subsequently the ISO 17025 (ISO, 2005, p. 17025).  Evaluation by 

V&V can be categorized into two groups: White box testing and Black box testing (Liang, 

2010).  White box testing is appropriate if the individual conducting the test has access to the 

source code.  However, as Liang points out this is not the case for mainstream forensic 

software tools, which are closed source.   

To overcome this problem, Black box testing can be employed to test the functionality of 

such products against expected outcomes.  The Computer Forensics Tool Testing (CFTT) 

programme (NIST, 2003b) have developed a series of specifications containing assertions of 

functionality that can be used to evaluate both software and hardware products.   

Forensic processes can be complex in nature and not easy to automate or otherwise define in a 

prescriptive enough way (Ayers, 2009).  Consequently, the processes defined by the CFTT 

project are quite limited in scope, with much of the work focusing on acquisition methods.  It 

is perhaps of little surprise then that much of the literature reflects this with independent 

testing of EnCase imaging (Byers & Shahmehri, 2009), a comparison of the imaging 

functionality of three tools (Cusack & Liang, 2011) and mobile phone acquisition (Kubi, 

Saleem & Popov, 2011). 

A more concerted effort to define the functionality of digital forensic tools is offered by the 

Defence and Systems Institute at the University of South Wales in a series of papers by 

Wilsdon and Slay (2005, 2006), Beckett & Slay (2007), Guo et al. (2009) and Guo & Slay 

(2010c, 2010a, 2010d, 2010b).  Through these publications, this group has attempted to map 

out the functionality of basic forensic processes, such as keyword searching.  However, not 

one of these publications actually implements their proposed framework to evaluate any tools.   
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What seems clear here is that there is no clear consensus in the literature on what tool 

evaluation is in a digital forensic context.   Furthermore, no mention at all has been found to 

defining the concept in a malware analysis context. A way forward from this dilemma might 

be to consider what criteria a digital forensic tool, in particular one used for malware analysis, 

can be assessed against.  

 

2.3.2 What criteria are tools evaluated against? 

The criterion against which digital forensic practice is measured is based on best practice 

guidelines and the international standards that have been produced.  A review of these follows 

below. 

Computer Forensic Tool Testing (CFTT) 

The Computer Forensic Tool Testing (CFTT) project at the National Institute for Science and 

Technology (NIST, 2003b) has undertaken a number of tests against carefully crafted 

specifications authored by them.  The testing methodology used is developed by a steering 

committee of law enforcement & NIST staff (NIST, 2003a).  Considered by some to be 

rigorous (Liang, 2010), the project has been credited with identifying at least one issue that 

might otherwise have been undisclosed by the vendor concerning the last sector on hard disk 

with an odd number of sectors that was not acquired using the tool dd.  Although 

subsequently found to be a Kernel and not a software tool issue (Flandrin, Buchanan, 

Macfarlane, Ramsay & Smales, 2014), it highlights both the benefits of a thorough testing 

regime and the risk of misinterpreting the results. 

Validity 

One of the biggest drawbacks of the CFTT project concerns its validity.  Critics of the project, 

argue that it is largely focused on acquisition (Guo & Slay, 2010a), (Newsham, Palmer, 

Stamos & Burns, 2007) and Sommer (2010) who points out the tests completed by CFTT are 

but a “tiny subset” of the functionality that needs to be tested.   Dykstra & Sherman (2012) 

agree, adding that in a climate of ever increasing cloud based forensics none of the enterprise 

versions of products (that include remote forensic capabilities) have been tested.  

Furthermore, it is not just the tested functionality of the CFTT project that is considered to be 

too narrow; Guo & Slay (2010c) point to inadequately sized test spaces, where there is a need 

for large reference sets to cater for possibly “thousands” of possible scenarios to validate just 

a single function. 
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Beyond concerns over the scope of what is tested, there are also challenges of validity 

surrounding the timeliness of the test specifications and the tests themselves.  For example, 

the data acquisition specification is in draft and is over ten years old (NIST, 2005).  The 

document states it’s scope is to cover “ATA, SCSI, USB, or Firewire interfaces”.  Therefore, 

no provision is made for more recent technology, such as Solid State Disks.  Furthermore, 

Flandrin et al. (2014) point out that many of the tests performed take too long to publish and 

so are on older, depreciated versions of software. 

Commercial vendors of products tested by the CFTT project seek to minimise the impact of 

this issue.  In 2011 Guidance Software Inc. (GSi), who produce of the forensic 

imaging/analysis application named “EnCase”, stated that the CFTT project demonstrates, 

“rigorous and comprehensive testing” of EnCase 3.20 (Guidance Software Inc., 2011).  The 

test results date from 2003 and the current release is of this product is v7.12.  GSi point out 

that “no substantial changes” to the imaging functionality of the product has taken place since 

v3.20 of the product.  Clearly, there is a potential challenge of bias here that contravenes the 

scientific method (see Table 1-1).  In addition, critics would argue that the meaning of 

‘substantial’ is unclear here.  Furthermore, the software for this functionality may have 

changed little over time, but the hardware it is interacting with has changed significantly.   

 

Field maturity 

The fledging nature of the digital forensics field and its rapid evolution has led to an ad-hoc 

development of the CFTT project.  According to Beckett (2010), the field has not been 

mapped out sufficiently prior to undertaking the project.  

 

Test results 

The overall aim of the CFTT project is to provide feedback to “improve tools” and for users 

to make “informed choices” in selecting a tool (NIST, 2003b).  However, it could be argued 

that the problem with assertion based tool evaluation (as advocated by the CFTT project) is 

that the outcome is either a pass or fail.  Such tests do not inform the reader if it was a bare 

pass or a substantive one (Peisert, Bishop & Marzullo, 2008).  Saleem et al. (2012) make the 

same observation and adds that no “comparative study is conducted to help an investigator in 

selecting a better tool”.  Furthermore, Byers & Shahmehri (2009) point out that results are 

reported without any deeper analysis as to why a given test has failed. 
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Scientific Working Group on Digital Evidence  (SWGDE)  

Unlike NIST who developed specifications, plans and assertions, SWGDE have developed a 

more relaxed approach to forensic tool testing by producing test guidelines and templates 

(Liang, 2010).  

However, a significant problem with this approach is that their test results are only available 

to US law enforcement agencies.  Flandrin et al. (2014) point out that this decision is contrary 

to the principle tenet of information sharing in science.  Hence, it could be argued that this 

lack of reproducibility (see Table 1-1) has rendered any results obtained from such tests to be 

non-scientific.  Ironically, the decision also runs contrary to SWGDE’s own advice, 

advocated in one of the few documents they have released publically, where they call for test 

results to be repeatable (SWGDE, 2012). 

Aside from the matter of reproducibility, the reasoning demonstrated by the group may be 

subject to challenge.  SWGDE (2008) have openly stated that in computer forensics “false 

positives are non-existent”.  However, the forensic product EnCase has previously been 

subject to a software bug that resulted in data in the first 4GB of unallocated clusters being 

duplicated (creating false positives) through to the last unallocated cluster (Sanderson, 2008).  

In another example, the Linux version of the EnCase imaging tool (named LinEn) was found 

to “insert sectors into the image that were not present on the drive” (Byers & Shahmehri, 

2009). 

Department of Defence Cyber Crime Center (DC3) 

As with the SWGDE, the DC3 circulate the results of their tool testing only to a closed group 

of individuals and not the wider scientific community, thereby once again rendering the 

scientific validity of such tests open to challenge on the grounds of reproducibility, see Table 

1-1.  A list of tools reportedly tested is published, which include commercial forensic tools 

such as EnCase.  The list of reported versions for this tool includes 7.09.02, 7.08, 7.06, 

7.05.02.03, 6.19.7, 6.18.0.59, 6.15.0.82, 6.13.0.43, 6.11 (DC3, 2016).  This is more 

comprehensive and up to date than the list published by CFTT.  Without access to the results 

or even the testing methodology employed by DC3, the approach is of little value to this 

research project.  

Forensic Science Regulator (FSR) Codes of Practice and Conduct 

As indicated in section 2.1, the United Kingdom is moving to adopt the BS EN ISO/IEC 

17025:2005 Standard (ISO, 2005), referred to hereafter as “the Standard”.  This Standard is 

incorporated into the Forensic Science Regulator’s Codes of Practice and Conduct (2016).   
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Traceability of reference data sets (FSR: 22 | Standard: 5.6)  

Becket (2010) refers to section 5.6.3.2 of the Standard, stating there is a “need” for forensic 

practitioners to demonstrate that “certified reference materials” have been used to evaluate 

their tools.  This is not quite accurate as the same section of the Standard states this should be 

done “where possible”. A small number of attempts over the years have been made by the 

scientific community to address this lack of standardised test data.  However, none of the 

following datasets have been labeled certified. 

To bridge the gap between the tests produced by the CFTT project and the needs of 

practitioners, Carrier developed a series of Digital Forensic Tool Testing (DFTT) images 

(2010).  The datasets are quite old and mostly date from 2003-2005, with one entry for 2006 

and a final entry in 2010.  The approach taken by Carrier is to fabricate the data with 

documented features.  A limitation of this is that variations that arise in normal operation are 

not present in the data (Casey, 2011b). 

A more comprehensive series of test images is provided by NIST for their Computer Forensic 

Reference Data Sets (CFReDS) project (NIST, 2016).  Different groups have developed the 

datasets and the supporting documentation is incomplete in some cases (Casey, 2011b). 

It is argued by others that both the DFTT and the CFReDS projects may be useful for 

teaching but less so for tool testing as not all functionality can be tested and their static nature 

means they cannot be extended (Flandrin, Buchanan, Macfarlane, Ramsay & Smales, 2014). 

Garfinkel et al. (2009) developed an extensive collection of both fabricated and real data, 

captured from physical devices purchased second-hand from around the world.  This material 

is intended to be used for “computer forensics education research” (Digital Corpora, 2017) 

and so is not intended for tool testing.  As before, Casey warns that the supporting 

documentation is incomplete in some cases. 

Further to the cited limitations above, none of the datasets above are specifically known to 

contain malware.  Hence they have not been included in this research.  

Estimate of uncertainty (FSR: 20.18 | Standard:5.4.6) 

In addition to the traceability of reference material, section 20.18 of the Standard states that a 

review of the uncertainty of measurement shall be made when procedures are modified (or 

initiated).  Also, section 25.2.1 (c) states that practitioners who provide reports to the CJS 

should be able to demonstrate the impact that a given measurement uncertainty has on a given 

conclusion.  
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Furthermore, Beckett argues that both the SWGDE and NIST test methodologies “ignore” 

this “critical” element of ISO17025.  He argues that both groups do not provide an estimation 

of uncertainty of measurement.    

Validation of software (FSR: 20.2 | Standard:5.4.5) 

Gallop and Brown (2014) argue that even if forensic labs achieve ISO 17025 accreditation as 

a minimum standard, it is insufficient to service the needs of the CJS. They further argue that 

the FSR is taking a “light touch” to the matter of accreditation.  Qualifying terms such as, 

“where possible” (see above) perhaps evidence this.  They conclude that the FSR Regulator 

“may not be sufficiently stringent” to sufficiently quality assure all forensic science activity. 

Marshall (2010) takes the view that to comply with ISO 17025, an organisation must be in a 

position to demonstrate that their tools, procedures and methods are fit for purpose.  To 

achieve that, he goes on, validation and verification would need to be applied.   Furthermore, 

he argues that validation and verification need clear requirements, which are not properly 

documented anywhere.  

Marshall is also the editor for the more recent ISO 27041 standard (ISO, 2015) which 

proposes using verification, validation and acceptance for evaluating digital forensic software.  

The standard seeks to overcome the problem of digital forensic software developers not 

releasing (or even producing in the first place) formal requirements specifications that would 

facilitate validation testing (Casey, 2012).  The standard places the onus on the developers of 

forensic software to provide evidence that their tools meet the prerequisite requirements set 

by accredited digital forensic laboratories.  Whoever sets the requirements, Flandrin et al. 

(2014) warns that the evolving nature of the field is such that the time to define the 

requirement for a single function “need to be counted in years”. 

With so many issues surrounding the criteria against which forensic software tools would be 

validated, it is worth taking a moment to consider the benefits that stand to be gained as a 

result of such a process. 

 

2.3.3 Benefits of evaluation 

As discussed in section 1.1.2, courts are moving away from a default position of trusting 

expert evidence.  The practice of naïvely accepting anecdotal assertions from experts on tool 

reliability is effectively discouraged by the FSR.  Furthermore, evaluating forensic tools 

should help to minimise flawed technical evidence, as identified in section 1.1.3, providing a 

mechanism for a sitting judge to assess reliability of expert evidence. 
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Providing a more scientific footing for the evaluation of forensic tools, especially if they are 

developed over time, could give evidence of a tool’s reliability.  If such evidence were shared 

amongst the community, this would contribute to a body of knowledge for that tool.  

Moreover, as discussed in section 1.1.5, a clear methodology and record of test results would 

also facilitate the repeatability of a tool’s behaviour under a given set of circumstances. This 

would assist in enhancing the scientific credibility of the tool from the CPS’s perspective, see 

Table 1-1. 

Whilst some testing has been documented for existing forensics tools, nothing has been 

identified for tools used for investigations involving malware. Such tools will be required to 

meet the statutory requirements just as much as conventional forensic tools.  A mechanism to 

evaluate such tools in accordance with the ISO 17025 standard would contribute to 

addressing this gap. 

It has been argued that international standards, such as ISO 17025 which underpin the 

statutory requirements set by the FSR, promote market efficiency and expansion, foster trade, 

encourage competition and lower barriers to market entry (Guttman, 2009).  These 

commercial benefits are perhaps less applicable within the Criminal Justice System, but are 

more relevant between forensic service providers competing for contracts with law 

enforcement agencies.  What is perhaps more important for digital forensic practice as a 

whole, is the need to minimise miscarriages of justice resulting from poor working practices. 

Implementing a tool evaluation strategy is not without its risks and challenges.  The next two 

sections will consider these in brief. 

 

2.3.4 Risks to tool evaluation 

The Oxford English Dictionary (2016b) defines the term risk as being the exposure to “the 

possibility of loss, injury, or other adverse or unwelcome circumstance; a chance or situation 

involving such a possibility”.  It could be argued here that the loss incurred amounts to 

anything that undermines the credibility of the results.  Perhaps the most significant of these 

is the risk of misinterpreting the true cause of an identified error in a tool’s output.   

Flandrin et al. (2014) cites a test report produced by NIST (2002) that indicated that the data 

acquisition tool dd had been unable to acquire the last sector from a disk containing an odd 

number of sectors.  It transpired subsequently that the cause of this anomaly was not a fault 

with the tool, but with the kernel of the Linux operating system where the test was performed.  

Mitigating against this type of risk is not easy.  For example, consider the possibility of 
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apparently perfect test results arising from a fault in a tool running on such a kernel, whereby 

the last sector acquired was a duplicate of an earlier sector.  The additional sector erroneously 

captured by the tool would cancel out the effect of the missing sector dropped by the kernel 

bug. 

Even if such a risk is mitigated, it is imperative that the individual conducting the test has 

specialist skills to ensure the tests are conducted in a scientifically valid and repeatable 

fashion to ensure consistency (Pan & Batten, 2009).  Lyle (2010) argues that many of the 

procedures followed by practitioners contain errors made that are systematic, rather than 

statistical in nature.  Furthermore, this argument is readily extended to include the reporting 

on the results of the test, which would typically require sufficient statistical skills.    

Deliberate attempts to invalidate the results obtained from tools are an objective for anti-

forensics.  Anti-forensics is the use of techniques to invalidate the findings of a forensic 

investigation.  Hence anti-forensics techniques are a risk to the validity of tool evaluation.  

Shanmugam (2011) considers the impact of such techniques and using a combination of the 

CFTT and DFTT frameworks, he develops a technique to apply what he terms “meta-

forensics” to recognise and thus counter anti-forensic techniques. 

Even if all of the above risks were mitigated, there remain a number of challenges to be faced 

for the evaluation of forensic tools, particularly when applied to a malware investigation 

context.  

2.3.5 Challenges of tool evaluation 

Bias 

The Forensic Regulator’s Codes of Practice and Conduct (Forensic Science Regulator, 2016) 

incorporate the principles of the ISO 17025 Standard (ISO, 2005). Section 5.4.5.3 of the 

Standard states that the range and accuracy of values “shall be relevant to the customers' 

needs”.  Hence an element of systematic bias is introduced into the implementation of the 

Standard, thereby opposing one of the attributes of the scientific method (see Table 1-1).  

This drawback is recognised in the Standard as a “balance between costs, risks and technical 

possibilities”.  Section 5.4.5 of the standard outlines the requirement for the testing laboratory 

to perform validation on “non-standard methods, laboratory-designed/developed methods, 

standard methods used outside their intended scope, and amplifications and modifications of 

standard methods”.  The pace of change of the technology surrounding digital data is such 

that this requirement would apply to almost any forensic investigation performed, as tools that 

have yet to be updated are applied to more recent (and untested) forms of the data under 

analysis.   
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Pace of change 

Although this pace of change is high, it is perhaps not as extreme as the rate at which 

malware evolves (Rieck, 2008), (Ashford, 2010).  One report (G Data Software AG, 2016) 

suggests that on “average” a new malware sample is identified at the rate of approximately 

one every six seconds.  Although the report does not make clear what is meant by “average”, 

it can be argued that few if any applications and technologies (such a new social media 

platforms) that need to be analysed for forensic artefacts evolve at such a rate.  It is not 

unreasonable to suggest that the tools used to analyse such malware could become deprecated 

equally as quickly. 

It is not just the tool’s capability that may be wanting; with a constantly developing field, 

another challenge faced by the profession is that the testing of such tools typically lags behind 

the current release of a given tool (Flandrin, Buchanan, Macfarlane, Ramsay & Smales, 

2014).  Part of the reason for this maybe the length of time it take to formally publish results 

from such tests (Sommer, 2011).  Another reason may be the sporadic nature of the field’s 

evolution.  

Ad-hoc evolution 

Some consider that the digital forensics field advances in a reactive and not a proactive 

manner and that it is conducted not to develop the field but to “quell criticism over a 

technique’s accuracy” (Cooley, 2004).  Others who suggest that it is crime that drives the 

field and not scientific enquiry echo this viewpoint.  Hence, they argue, digital forensics 

“follows the trend rather than leading it” (Raghavan, 2012). 

Reproducibility 

 

A tenet of a scientific method is that it is reproducible (see Table 1-1).  Wilson & Slay (2006) 

argue that the use of reference sets is “critical” to effectively evaluate a tool’s “correctness”.  

Garfinkel et al. (2009) agree and point out that without reference data sets such 

reproducibility is not possible, as others cannot validate the techniques developed and tested.  

In terms of sourcing the data for such data sets, they go on to warn of the problems of using 

real data, citing issues of privacy, copyright and other legally protected material.  To 

circumvent this issue, Garfinkel et al. offer both real and fabricated data for the teaching, 

research and the evaluation of tools. 
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Closed source issues 

However, Beckett & Slay (2007) argue the validation of the discipline is non-trivial and 

requires a structured framework that the ISO 17025 Standard does not address.  To illustrate 

this point, they highlighted the use of closed-source tools requires a subjective judgment on 

the part of the individual undertaking the test to produce a test plan that is sufficient on both 

coverage and depth to identify any validation issues.  Casey (2012) argues that this results in 

practitioners and tool testers making “educated guesses about how a given tool works”.  It is 

perhaps for these reasons, argue Beckett & Slay, that the definitions within the Standard 

describe only the outcome and not the tools or methodology taken to achieve it. 

2.3.6 Who does the evaluating? 

The question of who performs the evaluation of software for use in a digital forensic 

environment is addressed by the FSR in their Codes of Practice and Conduct in section 20.2.1 

which states that the forensic laboratory (provider), vendor or another provider may perform 

the validation: 

Validation should be conducted prior to implementation of the method. 

This may be performed by the provider, manufacturer or another 

provider. 

What follows is a brief review of each of these groups. 

The software vendor 

The closed-source nature of commercial forensic software may be one factor that has led to 

practitioners relying too much on software vendors testing their own software (Flandrin, 

Buchanan, Macfarlane, Ramsay & Smales, 2014).  However, this practice does not ensure the 

practitioner is compliant with the ISO 17025 standard, as the local environment under which 

the software and any equipment is used can impact on the results (Beckett & Slay, 2007).   

 

An interesting response to this is the emerging ISO/IEC 27041 (ISO, 2015) standard 

(discussed in section 2.3.2 above) which sees the forensic laboratories setting the 

requirements that software vendors must provide evidence of satisfying through testing.  In 

principle this makes sense, however a vendor would not be able to test any given software 

tool in every conceivable environment the product may be used in.   

 

In addition, section 21.1.3 of the FSR’s Codes of Practice and Conduct states that “User 

acceptance testing shall be performed prior to software and/or related equipment being placed 
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in service”.  Hence, compliance with the Codes of Practice and Conduct would still require a 

minimum level of testing to be performed by the Practitioner/Forensic laboratory. 

 

Furthermore, although multiple vendors would be required to meet the same standard under 

this scheme, the design, methodology and conditions of any testing they perform would very 

likely be different from one vendor to another.  There is therefore a risk that two similar 

products have not been tested under the same conditions.  Hence this poses a threat to the 

scientific validity in terms of reproducibility, see Table 1-1. 

 

Clearly, as a software developer, it would be unreasonable to expect a vendor to produce and 

ship code without any form of testing.  Hence, argues Dow (2007), the practitioner would be 

dependent on the vendor to a degree to undertake some form of testing.  The exact level of 

testing, he continues, would be subject to a level of cost needed to keep the tool affordable, 

thereby imposing practical limits in testing that can be done.  Dow concludes with a warning 

that a vendor testing their own product is subject to a conflict of interest and would be likely 

to be reticent to reveal problems.  Hence, the scientific validity in terms of bias could be 

impacted by this approach, see Table 1-1.  For these reasons, a more independent body would 

be a preferred solution. 

 

Independent body  

One approach to overcome the problem of inconsistent test conditions, is for the testing to be 

centralized and made accountable to one or a small number of independent testing bodies, 

such as CFTT, Underwriters Laboratory (2016) or the Common Criteria (2016).  The CFTT 

project was instigated with this purpose in mind, but as stated in section 2.3.2, is subject to a 

number of challenges, rendering it not viable for law enforcement agencies.  Dow (2007) 

points out that the funding for testing by such organisations is unclear and hence the viability 

of their ongoing testing commitment is uncertain.  Furthermore, Dow argues that until an 

official and funded resource is available practitioners have no choice but to do testing 

themselves.  However, practitioner based testing also poses a number of challenges as well. 

Practitioner 

When operating within the criminal justice system, it is the practitioner who tenders evidence 

and is therefore ultimately accountable for the reliability of such evidence.  Hence good 

practice dictates that as a practitioner you would test a new (or an established, yet unfamiliar) 

software tool on a known dataset to be satisfied that your conclusions are sound.  Such testing 

should be “regression testing” (Beckett, 2010) to account for any bug fixes or enhancements 
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made to the software.  This requires significant resource on the part of the practitioner.  One 

way to alleviate this pressure might be to centralise the test results within a team or 

organisation.  However, given practitioners are accountable for their own work (Fab4, 2011) 

and following a Supreme Court Judgment in the USA where they are now subject to being 

sued for professional negligence (Supreme Court, 2011), it is unlikely that many practitioners 

would feel comfortable relying on the work of others to underpin their evidence.  

Nevertheless, practitioners are busy people with heavy caseloads and the time for developing 

and executing extensive tests on tools would be a significant challenge for most of them 

(Dow, 2007).  Flandrin et al. (2014) agrees, adding that most practitioners have a limited 

number of resources.  As a result, they are not in a position to “test all tools along with all 

versions”.   

2.4 Chapter summary 

This chapter has briefly outlined current digital forensic practice and the elements of the 

regulatory requirements salient to this research.  The lack of publications on the impact of 

applying this to a malware investigation has also been highlighted, noting in particular the 

lack of a viable method for evaluating tools used in a forensic investigation involving 

malware.  A critique of the tools and techniques available to study malware as part of an 

investigation was explored and concluded with a discussion on how such tools can be 

evaluated to meet the criteria laid down by the Forensic Regulator. 

Evaluating tools against criteria set by the Forensic Science Regulator has several benefits.  

To start with, the approach proposed by this research would benefit from an established 

credibility, as it would potentially meet both the Regulator’s Codes of Practice and the 

underlying requirements of the ISO 17025 standard.  In addition, conformance to established 

evaluation criteria would arguably make the approach more familiar and easier to adopt into 

working practice.  Finally, alignment with the ISO 17025 standard would potentially make 

the approach scalable, as the validation process of the incoming ISO 27041 standard is 

“compatible” with ISO 17025 standard’s validation process (Marshall, 2011). 

Alongside the benefits this chapter also considered the risks in section 2.3.4.  The complexity 

of these risks means that not all of these identified risks will be addressed by this research.  

Alongside the benefits of speed, the use of automation would help to minimise the risks 

associated with a practitioner’s lack of skills in the fields of statistics and scientific research.  

The interpretation of results from a tool can also, of course, be impacted by the presence of 

any anti-forensic measures present in the malware.  Full mitigation against these measures is 
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complex and outside the scope of this research.  However, large scale testing and statistical 

reporting again offer a means to identify errors in the data, resulting from causes such as this. 

The challenges to evaluating tools were explored in section 2.3.5 and explored issues of bias, 

pace of change, the ad-hoc evolution of the field, reproducibility issues and the use of closed 

source tools.  To address the issue of bias in practitioners who may strive for a required level 

of accuracy, this research will report its findings with a stated level of statistical confidence 

and leave the rounding process for the consumer of the report.  

To counter the challenge concerning the pace of change, it is important the approach offered 

by this research has a relatively short test time. Hence, by providing the practitioner with an 

automated solution to evaluate a tool against a large bank of malware in a relatively short 

space of time the impact of changes in the technology can be minimised.  To address the 

reproducibility concerns, it is proposed that the Malware Analysis Tool Evaluation 

Framework (MATEF) together with the test data of binary malware files (as implemented, 

discussed later in section 4.3.2) be made available to the academic community. 

This chapter has identified varying criteria used to evaluate tools with particular focus on the 

FSR’s Codes of Practice and Conduct. The following chapter synthesises malware forensic 

practice with the FSR requirements, legal requirements and technical recommendations to 

develop a single set of requirements for tools used in a malware forensics environment.  
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Chapter 3  Malware tool evaluation requirements              
 

The previous chapter included a review of existing malware forensic practice and determined 

that there is little published research into the area.  Hence there is little support for any trust 

placed in such practice, see the first research goal of Table 1-2.  The chapter went on to 

identify the five-phase malware analysis model of Malin et al. (2008).  In this discussion, it 

was argued that despite the ad-hoc nature of the model, this was the most viable starting point 

for this research.  Furthermore, the fifth phase of this model (dynamic malware analysis) was 

selected as the basis for this research, as the use and analysis of the tools within this phase 

was deemed the most achievable within the constraints of the research.   

Given the lack of a scientific methodology to perform malware forensics, this chapter draws 

its attention to identifying the requirements of such a methodology in order to subsequently 

design a solution (see second research goal, Table 1-2). The approach taken is to start with 

identifying the themes that are apparent from the research question.  Hence the chapter opens 

with a section (3.1) that explores these themes before moving on in the next section (3.2) to 

determine the existing requirements; thereby providing a context.  These themes and 

requirements are then synthesised in the next section (3.3) to formulate a set of proposed 

requirements, designed to address both the research question and the existing requirements.  

The chapter closes with a discussion (see section 0) on the analysis and design methodology 

chosen. 

3.1 Interpretation of the Research Question 

To recap, the Research Question in section 1.2 stated: 

Can a systematic basis for trusted practice be established for evaluating malware 

artefact detection tools used within a forensic investigation? 

Three broad themes were apparent from this question, namely trusted practice, tool evaluation 

and forensic investigation. 

Trusted practice 

The first of these, trusted practice stems in part from the unfounded trust placed in tools.  The 

review of the current state of the field highlighted that a largely non-scientific and anecdotal 

approach is adopted by some practitioners who either rely upon repeated confirmation to 

establish truth and/or accept the results of digital forensic tools solely on the reputation of the 
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vendor (section 1.1.2).  Furthermore, this lack of trust is compounded further by problems 

with expert evidence and that the practice of withholding test results from the scientific 

community by groups such as SWGDE and DC3 do little to instil confidence in trusted 

practice (section 1.1.3). 

Turning from what a lack of trust looks like to how it is defined in this research, recall from 

section 1.2 that the definition of trusted practice applied in this research is derived from the 

Crown Prosecution Service (CPS) (2015), who state that expert evidence must be reliable and 

hence have a “scientific basis”.  As a result, five attributes of the scientific method were 

identified, i.e.: Repeatability, Reproducibility, Testable hypothesis, Controllable and 

Unbiased, see Table 1-1.  For a malware analysis tool to be evaluated in a manner that 

addresses the Research Question, the extent to which the evaluation methodology meets these 

five attributes of the scientific method should be assessed. 

Malware tool evaluation 

The second theme apparent from the research question was that of malware tool evaluation.  

One of the contributions of this research is to address the lack of material published on 

evaluating tools used to analyse malware (see section 2.2).  Specifically, there is currently no 

definition or criterion to describe tool evaluation in a malware context (see section 2.3.1). 

An important element of evaluation is to identify what exactly is to be evaluated.  Therefore, 

the sections that follow identify and develop the requirements and consider how best to meet 

them.  Furthermore, consideration has been given as to how this evaluation is reported.  The 

assertive pass/fail reporting of the CFTT (see section 2.3.2) lacks the granularity to 

distinguish between tools that pass a test with a narrow or comfortable margin.  Hence, it is 

not possible for the practitioner to choose the better of two tools evaluated in this way. 

To evaluate every aspect of malware analysis tools was outside the scope of this research. To 

keep things focused, consideration was only given to tools that identify malware artefacts that 

hence assist in the understanding of malware behaviour (see section 2.2) as part of a forensic 

investigation.   No documentation has been found to map out the functionality of tools used 

for investigating malware for this purpose.  Furthermore, no framework has been identified to 

systematically test such tools.  

Forensic investigation 

The final theme identified from the research question was forensic investigation.  Therefore, 

the trusted practice identified above relates to work undertaken within the criminal justice 

system, which carries with it various implications.  For example, the processes applied to 
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undertake investigations are subject to legal requirements.  For instance, steps should be taken 

during an investigation to ensure that malware is not permitted to gain unauthorised access to 

resources or to exfiltrate personal data.  Furthermore, the output of such an investigation is 

subject to legal admissibility requirements.  A lack of scientific principles and provenance in 

expert evidence could lead to expert evidence being deemed inadmissible (Law Commission, 

2011).  

Therefore, another implication for operating within the criminal justice system is the growing 

need to operate within regulatory requirements (see section 1.1.7).  The current regulatory 

requirements are the Forensic Science Regulator’s Codes of Practice and Conduct (2016).  

Not all police forces are committed to meeting the required standards, leading the Forensic 

Science Regulator to warn that the “integrity of the criminal justice system in England and 

Wales is under threat due to the quality of forensic science work” (Toner, 2017). 

3.2 Existing requirements  

The legal and regulatory implications outlined in the previous section can be managed by 

identifying the requirements to operate both lawfully and in a manner that maintains a 

minimum standard of quality.  A minimum level of quality would in turn help to instil a 

greater level of trust in the evidence produced.  To implement these requirements, controls in 

the form of technical measures are needed.  Hence the remainder of this section is divided 

into three sub-sections to explore the technical, legislative and regulatory requirements 

associated with the forensic analysis of malware behaviour.   

3.2.1 Technical recommendations  

A review of the literature determined that little published or otherwise formal requirements 

for a technically valid malware analysis lab have been proposed (see section 2.2).  The closest 

there is to such a requirement is the phased series of guidelines offered by Malin et al. (2008), 

presented in section 2.2.  However, Malin et al. recommend “flexibility and adjustment of the 

methodology” to cater for the needs of each case under investigation.  Hence it is difficult to 

stipulate that a specific series of processes should be followed to perform malware analysis.  

Nevertheless, several recommendations that could be applicable to almost any malware 

forensics investigation were identified.  The first of these is the use of virtual machines.  

Virtualisation 

The use of virtual machines (VMs) is recommended by Ligh et al.  (2010) who also stipulate 

that such software should be updated frequently to minimise the risk of exploits being used to 

enable the malware to break out of the virtual environment onto the host.  They also advise 
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that shared folders on the host be either disabled or read-only.  They further suggest that 

access to resources such as a network or removable media be disabled.  Sikorski & Honig 

(2012) agree suggesting that VMs should be configured to be a ‘host only’ network, meaning 

the virtual network on which they reside should be isolated from the physical network on 

which the host resides.  Szor (2005) points out the need to reset a test system to a clean state 

and hence promotes the VMs for their speed at resetting.  The use of VMWare (VMWare, 

2016) is cited by Szor as a good choice for this, though little mention is made of any other 

virtualisation solutions other than a passing mention of Microsoft’s Virtual PC.   

Binu and Kumar (2011) evaluate two alternative virtualisation solutions, based on the 

hypervisors KVM (https://www.linux-kvm.org/) and Xen (http://www.xenproject.org), 

concluding Xen to be superior in terms of performance and stability.  

Network service provision 

Isolating malware from a network or even the Internet could limit the behaviour exhibited. To 

counter this, it is a good idea to provide the malware with as many services as possible that it 

is likely to rely upon, such as SMTP, HTTP and DNS.  Wagener, Dulaunoy & Engel (2008) 

reply upon trapping DNS queries from malware using a local DNS server.  Sikorski & Honig 

(2012) suggest the use of INetSim (Hungenberg & Eckert, 2016) to simulate a broader range 

of network services. Palkmets et al. (2014) also deploy INetSim but additionally provide a 

route to the Internet via an onion router network. 

Although the exact services needed would be dictated by the malware that is executed, a 

simpler requirement would be to provide as many services as possible. 

Resource Monitoring 

Given the provision of network services highlighted above, Malin et al. (2012) advise that 

network monitoring be put in place to observe any attempts by the malware to resolve DNS 

queries or to connect to remote IP addresses.  They also advise monitoring the access made to 

processes, files, API and the Windows Registry.  As a starting point to identify monitoring 

tools, Liao & Langweg (2014) review a number of systems for both Windows and Linux 

environments, designed to perform monitoring in a variety of ways. 

Szor (2005) also recommends monitoring file, registry, network, system calls and process 

monitoring, but warns that only a combination of monitoring and detailed disassembly will 

reveal the entire functionality of malware.  This warning is not applicable to this work, as the 

scope of the research does not include malware analysis; what is in scope is the evaluation of 

the tools used to do such analysis, see section 1.2. 
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Vulnerable environments 

Similar to the provision of a networked environment, Szor (2005) also argues that many 

malware threats are vulnerability dependent and so failure to provide a suitable fertile 

environment could lead to a failure in the malware activating.  To this end, Szor advises that 

unpatched, older versions of software be used.  Arguably, this could be extended to include 

recent but not current versions of operating systems as well.  

Malware handling procedures 

Malware is like a hazardous substance and needs careful handling to avoid unwanted 

contamination of an organisation’s production/corporate network.  Szor (2005) warns that 

some analysis tools can result in the unexpected execution of malware as part of the analysis.  

Tools such as PEiD (Aldeid.com, 2017) which detect packers used to obfuscate malware and 

IDA Pro (Hex-Rays, 2015) used to disassemble/debug binary code both execute the binary 

under analysis as part of their normal operation.  Szor adds that the source of some tools also 

means that either the website they are obtained from or even the tool itself can be laden with 

malware. 

3.2.2 Legal Requirements 

The primary focus of this research is UK practice, hence the requirements directly applicable 

to this jurisdiction are considered over and above those of other jurisdictions.   The legal 

requirements surrounding tools used to evaluate malware can be divided into two broad areas.  

The first is the legislation concerning the risks associated with handling the tool’s test data 

(ie: malware).  The second concerns the admissibility requirements of the output produced by 

the tool under evaluation. If submitted as evidence to the Criminal Justice System, the tool’s 

output must adhere to these strict criteria. 

Handling malware 

To evaluate malware analysis tools the test data used should ideally be real malware.  Further 

to the technical recommendations identified in section 3.2.1, the handling of malware is also 

subject to legal restrictions that impose tight controls on the handling of such malware. 

Without appropriate precautions to limit the reach of the malware, execution of such malware 

could result in unauthorised access to a system, thereby breaching the Computer Misuse Act 

(1990).  Furthermore, such malware may also scan the local network and harvest personal 

data with a view to the exfiltration of this data to a third party.  Such behaviour may land the 

data controller of the victim network liable under the Data Protection Act (1998).  Even with 
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these controls in place, there are also requirements in place for the material produced from a 

software tool to qualify it as admissible evidence. 

Admissibility 

For the output of a malware analysis tool to be to be tendered as evidence, the output itself 

needs to be admissible.  As mentioned in section 2.3.1 digital evidence is presumed to be 

valid and thus may be admitted unless evidence to the contrary is provided (Lloyd, 2014).  

Superficially, this may seem to suggest that there is no need to prove the validity of the data 

produced by a software tool used to analyse malware.   

However, Lloyd goes on to argue that the general precept on the ‘hearsay’ rule is that 

evidence must relate to actual knowledge rather than what has been told to a witness (which, 

argues Lloyd, can be a human or machine).  Hence any data produced by a computer could be 

deemed hearsay and (in line with section 129 of the Criminal Justice Act 2003) can only be 

admissible if proven to be accurate by a suitably qualified expert.   

Lloyd further argues that because of R v Shepard [1993] AC 380, this heavy standard of proof 

is reduced when a person familiar with the expected output of a computer is available to give 

evidence.  However, it could be argued few persons would be familiar with the expected 

output of a tool used to analyse malware, which typically produces random artefacts.  Hence, 

such tools perhaps should not be used without relevant expert testimony.  This makes it 

important to test these tools in a robust way that can demonstrate their reliability so that the 

expert testimony is more credible. 

Reliability 

Guidance on expert evidence from the Crown Prosecution Service (CPS) (2015) states that 

expert evidence will be admissible under common law where: 

• It will be of assistance to the court 

• The expert has relevant expertise 

• The expert is impartial 

• The expert evidence is reliable 

The first of these requirements concerns the forming of a judgement on the relevance of the 

evidence tendered, whilst the second and third concern a judgement on the expert.  The last 

requirement concerns both the evidence and the manner in which it was produced.   

Recall from the section 3.1 that in this guidance the CPS state that reliable expert evidence 

must have a “scientific basis” and that five attributes of the scientific method were identified, 
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i.e.: Repeatability, Reproducibility, Testable hypothesis, Controllable and Unbiased, see 

Table 1-1.  Therefore, for a malware analysis tool to be evaluated in a manner that addresses 

the theme of trusted practice in the Research Question, the extent to which the evaluation 

methodology meets these five attributes of the scientific method should be assessed. 

The fast evolving nature of the IT field make it particularly susceptible to challenges on the 

reliability of evidence produced using fledgling techniques. Despite these concerns, in R v 

Clarke (RL) [1995] 2 Cr. App. R. 425 Lord Justice Steyn concluded that it would be “entirely 

wrong to deny to the law of evidence the advantages to be gained from new techniques and 

advances in science”.  Subsequent to this ruling, the CPS produced guidance on the use of 

novel evidence that is based on the judgement of R v Lundy ([2013] UKPC 28) and is set out 

in Table 3-1: 

# Guideline  

1 Whether the theory or technique can be or has been tested 

2 Whether the theory or technique has been subject to peer review and publication 

3 The known or potential rate of error or the existence of standards 

4 Whether the theory or technique used has been generally accepted 

          Table 3-1 : R v Lundy Guidelines 

These guidelines have been woven into regulatory requirements that are slowly becoming 

mandatory for forensic practitioners who wish to submit evidence to the Criminal Justice 

System in the UK. 

3.2.3 Regulatory Requirements 

Regulation is still within its infancy within the UK, hence the Codes of Practice and Conduct 

(2016) of the Forensic Science Regulator have yet to be fully implemented.  The Codes state 

that “irrespective of whether the provider is public, police or commercial” all digital forensic 

providers will be required to demonstrate they are accredited to ISO/IEC 17025 and the 

Codes of Practice by October 2017.  This deadline applies to imaging, data recovery using 

Commercial Off The Shelf (COTS) products, extraction and analysis of data. 

Some of the regulatory requirements are linked to legal guidance.  As previously stated, the 

Codes contain the guidelines set out in R v Lundy ([2013] UKPC 28).  Guideline 1 (see Table 

3-1) can be linked to section 20.1.5 of the Codes  which states that for novel techniques the 

provider “should have validated the method, product or service”.  The second guideline from 

Table 3-1 concerns peer review which is addressed by section 20.16.1 of the Codes.  Section 

25.2.3(e) of the Codes address the fourth guideline on the level of peer acceptance for a 
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technique.  However, the third guideline concerning the rate of error is not addressed either 

by the Codes, the associated draft guidance tailored to the validation of digital forensic 

methods (Forensic Science Regulator, 2015) or the underlying ISO/IEC 17025 standard.  Part 

of the reason for this may be a lack of understanding of the term, a lack of sufficient training 

in statistics and the scientific method, or even the concern that “current methods will be 

exposed as lacking an empirical basis” (Christensen, Crowder, Ousley & Houck, 2014). 

Furthermore, it is worth noting that the Forensic Science Regulator warns against validating 

only a tool rather than the method it is part of in section 13.3 of their Consultation document 

(2015).  However, as reported in 2.3.1, what little that has been published to date focuses on 

methodologies and not tools.  This leaves a gap in the validation process, which forms the 

basis of this research.  Hence, the focus of this research is to provide a framework to evaluate 

the tools as part of a wider method evaluation. 

The following section examines technical, legal and regulatory requirements oulined in this 

and the previous two sections to synthesise a set of proposed requirements. 
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3.3 Proposed requirements  

Recall from Chapter 2  that studies concerning the impact of regulatory requirements on 

malware forensic practice are lacking.  In particular, there is a clear need for a methodology 

to evaluate tools used in digital forensic investigations involving malware (see section 2.4).  

This section will explore strategies for satisfying the Research Question in light of the 

existing requirements identified in section 3.2.   

The Research Question (see section 1.2) requires that a level of trusted practice be 

established.  Fundamentally, trust can be considered to involve “willingly acting without the 

full knowledge needed to act” (Duranti & Rogers, 2012).  In the context of the Criminal 

Justice System involving expert evidence, this arguably translates to a Court coming to a 

decision on the reliability of a given piece of such evidence based upon two forms of trust.   

The first of these is the trust in the interpretation or impact of the evidence provided to the 

court.  This trust is placed upon the expert presenting the evidence.  To assist the court in its 

deliberations, the expert provides an interpretation on the meaning and impact of the evidence 

tendered. The outcome of such deliberations ultimately considers the bearing such evidence 

has on the case as a whole.  Given this and that such trust is based upon the expert’s 

knowledge and skills as well as their ability to communicate these effectively, this form of 

trust is outside the scope of this research. 

The second form of trust is that placed on the reliability of the evidence tendered.  Since the 

repeal of section 69 of the Police and Criminal Evidence Act 1984, any evidence produced by 

a computer is presumed to be reliable; hence it is therefore admissible (CPS, 2014), see also 

section 3.2.2.  However, the motivations for this research identified in section 1.1.1 indicate 

this trust has been undermined.  The Forensic Regulator’s Codes of Practice and Conduct 

(2016) provide an independent vehicle to instill a level of assurance in such trust.  Hence as a 

requirement, trusted practice has moved from inherent and internal to external in nature. 

Forensic investigation also forms an element of the Research Question and therefore, given 

the motivation for the research sits within the Criminal Justice System (see sections 1.1.1 and 

1.1.3), is subject to externally set admissibility requirements (see section 3.2.2) and regulatory 

requirements (see sections 1.1.7 and 3.2.3). 

The Research Question also requires the evaluation of tools for malware artefact detection.  

However, this is not currently subject to externally set criteria.   For example, both sections 

20.2 (validation of methods) and 20.8 (validation of measurement-based methods) of the 

Codes of Practice and Conduct (2016) make no requirement for accuracy.  The latter of these 
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two sections does state the results must be “consistent, reliable, accurate, robust and with an 

uncertainty measurement” but this does not specify the level of accuracy required.  

This differs to fields such as engineering where the specification drafted by the client might 

require a component to have a property that is within a tolerance of a given specified value.  

Hence, the evaluation of tools for malware artefact detection is an internally set requirement. 

From the body of existing requirements in section 3.2, candidate requirements were 

considered for inclusion in the proposed requirements list based on the methodology 

illustrated in Figure 3-1. This procedure is analogous to the ‘Quality Gateway’ process used 

by requirements engineers to assess whether individual requirements identified for a system 

should be included in the final requirements specification (Robertson & Robertson, 2012) 

 

Figure 3-1 : Proposed requirements assessment methodology 

 

By separating requirements as either external or internal, it facilitated the process of 

identifying those requirements that were more easily defined. The sections that follow will 

examine these external and internal requirements in more detail.  
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3.3.1 External requirements 

The rationale applied to selecting what requirements to include started with the inclusion of 

what were deemed to be mandatory requirements, as indicated in section 3.2.2 (Legal) and 

3.2.3 (Regulatory).  Hence the requirements described in these sections were included in the 

proposed list. 

Beyond these mandatory requirements, the technical recommendations outlined in section 

3.2.1 were all included in the proposed list for a variety of reasons.  The reasoning applied to 

each of these was as follows. 

Use of Virtual Machines (VMs) were included as these were cited in Section 2.2.4 as having 

several benefits for malware analysis.  In addition, by hosting these on a Linux-based host in 

an isolated network, the risk of malware escaping from the VM and migrating elsewhere is 

minimised (Pearce, Zeadally & Hunt, 2013).  Furthermore, an implementation using VMs 

allows the testing environment to be scaled up to run multiple tests simultaneously.  This 

means that larger quantities of data can be generated quickly.   

Simulated network services were also included in the proposed requirements, as it is 

relatively easy to implement through open source software and provides the benefits outlined 

in section 3.2.1.   Specifically, implementing simulated network services will provide an 

environment that maximises the observable activity of malware. 

For similar reasons, the use of a vulnerable operating environment, as recommended in 

section 3.2.1, was included in the proposed list of requirements.  As with the network service 

provision, this would provide a more fertile environment for malware to operate. 

As indicated in Section 2.2, the research focuses on the evaluation of tools used to perform 

dynamic malware analysis.  Of the two broad approaches to dynamic malware analysis 

(transition based and state based) identified in section 2.2.4, transition based logging was 

selected as it has the advantage of capturing more trace information, such as a file that is 

created and subsequently deleted between two machine states.  Therefore, the tools that will 

be evaluated will be those that follow the Active Monitoring approach presented by Malin et 

al. (2008), see Figure 2-7. 

Finally, the safe handling of malware recommendations cited in section 3.2.1 were included 

in the proposed requirements largely because these recommendations are aligned to the 

conditions of use for the VM environment available for this research. 
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The above external requirements are summarised in Table 3-2 below: 

# Requirement Rationale 

1 (Legal) Handling of malware and what it may access 

should be controlled. 

See section 3.2.2 above 

2 (Legal) Output of tested tool must be admissible. See section 3.2.2 above 

3 (Legal) Malware analysis tool output must be 

reliable 

See section 3.2.2 above 

4 (Regulatory) Novel methods must be validated See section 20.1.5, Forensic 

Science Regulator (2016) 

5 (Regulatory) The theory/technique should be peer 

reviewed or published 

See section 20.16.1, Forensic 

Science Regulator (2016) 

6 (Regulatory) Method should be a generally accepted See section 25.2.3(e), Forensic 

Science Regulator (2016) 

7 (Technical) Use a VM See section 3.2.1 above 

8 (Technical) Network service provision See section 3.2.1 above 

9 (Technical) Use vulnerable environment See section 3.2.1 above 

Table 3-2 : Proposed external requirements 

Alongside the above externally set requirements, several internally set requirements were 

developed to facilitate the achievement of the externally set requirements.  

3.3.2 Internal requirements 

The internally set requirements were governed by the research gaps identified by the 

Research Question (see sections 1.2 and 3.1). 

Pass/fail thresholds 

Part of the evaluation of a software tool could be to assign a pass or fail threshold to a tool 

following a test, but this was rejected because it is not required by any external requirement.  

Furthermore, such a requirement is not part of the Research Question, see section 1.2.  In 

addition, the general-purpose nature of the framework would be to apply different tools to the 

framework for testing, however each type of tool may have a different threshold level, 

making meaningful pass/fail comparisons difficult. 

Also, given that there are no published pass/fail rates on any metric for any tool used for 

malware analysis that have been identified to date, deriving and justifying such a threshold 

would be difficult to defend and therefore a risk to the validity of the research.  One 

manifestation of this could be that due to the lack of official guidance on the matter, the 
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acceptance threshold could vary between users.  Another could be that if the level of the 

threshold were to change over time, the framework’s relevance would quickly become dated.  

Black box testing 

Moving beyond the setting of thresholds to evaluate a software tool, the matter of how the 

tool is evaluated was considered to identify associated evaluation criteria.  The use of black 

box testing (as discussed in section 2.3.1) is more viable than white box testing.  This is due 

to the closed source nature of most of the software tools that are used by forensic practitioners 

and the time (and skills) that would be required to review source code.  

Malware lab requirements 

Having previously established that the research is to focus upon the more viable approach of 

evaluating tools used for dynamic malware analysis (see section 2.2.4), an initial requirement 

was to consider the construction of the lab used to perform the analysis.  As discussed in 

section 3.2.1, there are no existing formal requirements for a technically valid malware 

analysis lab.  Malin et al. (2008) offers some high level advice in terms of the environment 

itself, stating that a virtualised lab should be used (giving little consideration to alternatives). 

Elisan (2015) goes further and anecdotally suggests a malware lab used for dynamic analysis 

of malware should consider: 

a) Analysis on both bare metal and virtual machines (VMs) 

b) Observe how the malware behaves on different operating systems 

c) Implement ‘malware friendly’ measures such as: 

i. Assigning administrator rights to the default user account 

ii. Disabling auto updates 

iii. Disabling User Access Control (UAC) 

iv. Setting the Internet browser to the minimum security level 

v. Install commonly exploited software 

vi. Creating honeypot files, eg: salaries.xls 

d) Isolate the lab from the main network  

The first of these (item [a]) was not fully adopted for this framework, as bare metal 

implementations are resource intensive and parallel processing is limited to the number of 

physical machines available (see section 2.2.4).  Furthermore, the throughput of analysis is 

limited to the time it takes to restore the system to the pre-infection state.  Instead a VM only 

approach is taken, as the resource for this is already in the research environment available.  

Furthermore, the ability to manage this remotely and in shorter timeframes renders a VM only 
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approach more practical for this research.  The use of both platforms will be subject to further 

work (see section 7.4).  The impact of this decision is that there is a risk to the validity of the 

results.  This is, argues Martignoni et al. (2009), because when the malware is executed it 

may detect the “synthetic” environment.  However, there is an increasing use of virtualised 

servers in modern I.T. environments and a study of 200,000 malware samples taken from 

2012 to 2014, Wueest (2015) argued that only a small number of these cases detected it was 

running within a VM (see section 2.2.4). 

In order to keep the scope of the research focused, the use of multiple operating systems (item 

[b]) was also not adopted.  Although this is relatively easy to adopt, more recent operating 

systems implement tighter security controls that hinder the use of many of the 

security/malware analysis tools.  This decision has little impact on the framework itself, as 

this is more of an implementation decision and is readily addressed by including additional 

VMs with disparate operating systems.  As before, this is placed on the list of further work 

(see section 7.4).  

The first four of Elisan’s ‘malware friendly’ measures (item [c] i to iv inclusive) were all 

adopted into the framework as these are easy to implement and contribute to establishing a 

fertile environment for malware to activate.  

The last two of Elisan’s ‘malware friendly’ measures (item [c] v and vi) were not adopted into 

the framework, as the intention is to establish the minimum behaviour of any malware 

subjected to the framework.  Furthermore, with regard to commonly exploited software (item 

[c] - v), not all users will have a given version of software installed or even at all.  In addition, 

placing files with suggestive filenames, such as ‘salaries.xls’ (item [c] - vi) is reliant upon 

guessing what a malware binary is looking for on a host. The last of Elisan’s 

recommendations (item [d]) has been adopted as it helps to address the legal requirements 

outlined in section 3.2.2. 

Sourcing malware 

To be as widely adaptable as possible, the framework was designed to accept malware from 

any source.  Each source (where appropriate) can have an import module written to obtain 

local copies of malware binaries.  For the purposes of this research a single source module 

linked to a feed provided by the website VirusTotal (2010) was used.  This was done to 

simplify the import process and to provide a large number of malware binaries from the wild 

as quickly as possible. 
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Storing and handling malware 

The storage of live malware for testing against software tools in the framework required a 

number of measures to be put in place.  The university, for example, have set specific 

requirements to permit the storage of malware on their I.T. systems (see section 3.3.1).  In 

addition, there was a need to minimise any cross-contamination between malware binaries; it 

is important that each malware binary cannot easily be accessed (or executed) by a user 

operating an implementation of the framework or by other malware binaries. 

Conversely though, the ability to extract a malware binary, place it within the appropriate test 

area and execute it in an automated fashion was required for automated testing. 

Finally, access to the library holding the malware binaries was restricted to a small number of 

users to minimise the risk of accidental or deliberate misuse. 

Metrics 

Section 2.3.2 identified several criteria that digital forensic practice is measured against.  

From these the Forensic Science Regulator’s Codes of Practice and Conduct (2016) 

highlighted and discussed the following measures: 

• Estimate uncertainty (Section 20.18 of the Codes) 

• Traceability of reference data sets (Section 22 of the Codes) 

• Validation of methods (Section 20.2 of the Codes) 

An estimation of uncertainty is partly achievable in the form of a statistical confidence 

interval when comparing distributions of results from two tests conducted under different 

conditions.  However, due to the complexity of calculating this measure, particularly when 

malware is involved, it was decided to not include this as a requirement within the scope of 

the PhD.  

The traceability criterion is also difficult to address, as no existing standard and generally 

accepted malware corpora has been identified. The work of Garfinkel et al. (2009) has 

produced a corpus of realistic data, but this is not specifically tailored to housing malware for 

the purposes of testing malware analysis tools.  However, a notable aspect of this research is 

that the framework was implemented and tested using a large population of real-world 

malware binaries (in excess of 350,000).  This is relatively large when compared to other 

research groups who use fewer numbers of malware binaries and will be made available to 

others seeking to undertake research on the same dataset.  
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The last of these criteria (validation of methods) is partly viable within the timeframe for the 

research.  Addressing the gap in the validation process identified in section 3.2.3, it is the 

validation of a software tool (and not the entire method surrounding its use) that is the focus 

of this research. 

Validation is defined within the glossary of the Codes of Practice and Conduct (Forensic 

Science Regulator, 2016) as a means to demonstrate that a “method, process or device is fit 

for the specific purpose intended”.  Although not specifically mentioned, the meaning of 

‘device’ could readily be applied to a software device or tool. However, it is not clear how 

such validation is performed or what measures should be used, e.g., accuracy, repeatability, 

etc.    

One measure readily available is that of error, i.e.: the difference between the expected and 

observed values.  Given the random nature of the data to be examined artefact values such as 

filenames are expected to vary much more than the quantity of artefacts produced each time a 

malware binary is executed.  Hence, the framework should compare the quantity of expected 

and observed values, rather than the values themselves.   

Validation of a tool measuring artefacts produced by malware is complicated by the fact that 

malware employs anti-forensic techniques to obfuscate the truth.  Hence ’ground truth’ is 

difficult to establish. The next best step is to compare what is reported by a tool against an 

independent and trusted source or ‘oracle’.  This will require the framework to (a) determine 

the expected value from an independent source and (b) be capable of retrieving the observed 

number of artefacts from a variety of tools applied to the framework for testing. 

The internal requirements discussed above that have been included in the framework are 

summarised in Table 3-3. The internal requirements that were not included are summarised in 

Table 3-4. 
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# Requirement Rationale 
1 Black box testing approach Use of closed source software. 

2 Malware lab requirements: 

• VM Only approach 

Resource available, shorter test times, ease of 

automation and remote control. 

3 Malware lab requirements: 

• Single operating system 

Maximise results on single, older operating 

system. 

4 Malware lab requirements: 

• Configure the OS to be malware 

friendly 

Provide a fertile environment to provide ‘best 

case’ results for tools analysed. 

5 Accept real-world malware from any 

source 

Maximise the universality of the framework 

6 Storing & handling malware:  

• Avoid cross contamination 

Minimise risk to validity of results 

7 Storing & handling malware:  

• Extract via automation 

Facilitate automation of framework for tool 

testing 

8 Storing & handling malware:  

• Restrict access to malware 

Minimise accidental or deliberate misuse 

9 Metrics: 

• Determine the expected quantity 

of artefacts from an independent 

source 

In the absence of ground truth, provide an 

independent and authoritative measure to 

compare a tool against. 

10 Metrics: 

• Read observed number of 

artefacts from a variety of tools 

under test 

Focus upon quantities rather than values to 

counter anti-forensic approach of random 

values being used. 

11 Metrics: 

• Validate tool by measuring 

difference of expected and 

observed numbers of artefacts 

Provide measure of error.  Provide an informed 

measure that addresses the confidence aspect of 

the Research Question 

Table 3-3 : Proposed internal requirements  
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# Excluded Requirement Rationale for being out of scope 
1 Pass/fail threshold • Not part of the Research Question 

• Maximise general purpose aim of framework 

• No published thresholds to compare against 

• Could change over time, quickly dating the framework  

2 White box testing • Most commercial tools are closed source 

• Insufficient skills/time of practitioners to review code 

3 Bare metal & VM 

environment 

Regarding the bare metal side of this requirement: 

• Resource intensive (multiple physical machines) 

• Slow cycle time to reset machine between tests 

• Limited throughput in a given timeframe 

• No remote management capability 

4 Multiple operating 

systems 

• More recent operating systems have tighter security 

• Fewer malware analysis tools supported 

• Less fertile environment for malware to operate  

5 Use commonly exploited 

software 

• Anticipated that not all users will have a given version 

of exploitable software, reducing validity of tests 

6 Use of honeypot 

filenames 

• Assumes the malware is looking to harvest files 

• Requires guessing what the malware is looking for 

7 Estimate of uncertainty • Partially implemented in terms of statistical confidence 

• High number of variables, so too complex to calculate  

8 Traceability • No existing standard or malware dataset identified 

9 Validation of method • Partially implemented through validation of tool 

• Including validation of process/method requires skills in 

malware analysis techniques, which the researcher does 

not have 

Table 3-4 : Excluded internal requirements 
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3.4 Analysis and design methodology 

The Waterfall model (Royce, 1970) has been applied to the analysis and design of the 

solution to address the Research Question.  The approach, argues Balaji and Murugaiyan 

(2012), works well where the requirements are clear beforehand.  In the case of the MATEF, 

the requirements are reasonably fixed and clear (see section 3.3).  Furthermore, the level of 

resources required to implement the model is minimal.  This is particularly beneficial, as it 

was anticipated there would be little access to or response from the practitioner community on 

an on-going basis while the framework was under development.  This would have been 

required if we used an alternative approach, such as the Agile development methodology 

(Collier, 2011). 

 

 

 

         Figure 3-2 : Waterfall analysis and design model 
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3.5 Chapter summary 

This chapter has identified two gaps in the field of malware forensics, namely: the lack of any 

definition of tool evaluation for malware analysis and the lack of any formal requirements for 

a technically valid malware analysis lab. 

A review of existing technical, legal and regulatory requirements was explored and where 

feasible and relevant these have been adopted into the framework as a list of requirements set 

by third parties.  We refer to these as external requirements.   

A closer examination of the research question identified several requirements, which we refer 

to as internal requirements.  

Collectively, both sets of requirements (external and internal) are chosen to both address the 

research question and set the scope of the PhD to keep it viable in the time and resources 

available. Hence, having identified these requirements, it is now possible to formulate a 

design and implementation for a Malware Analysis Tool Evaluation Framework, which is 

described in the next chapter. 
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Chapter 4  Designing and implementing a framework 
 

In the previous chapter the requirements for a framework to test malware analysis tools were 

developed from the research question alongside a series of existing technical, legal and 

regulatory requirements.  This chapter takes these requirements and translates them into a 

design for a framework named the Malware Analysis Tool Evaluation Framework (MATEF). 

Although requirements determine the constraints and minimum expectations of the 

framework, the aims of the framework define what it is to achieve.  Hence, starting with the 

requirements identified in the previous chapter, section 4.1 takes these requirements and 

identifies a number of aims for the framework.  The major components to achieve these aims 

are identified in section 4.2 before a discussion of their implementation is given in section 

4.3.  To evaluate how well the framework operates, the hypotheses are reviewed to assist in 

developing a testing strategy in section 4.4. This strategy is then used to inform the 

experiment design in section 4.5.  Section 4.6 concludes the chapter with a discussion of the 

analysis strategy adopted. 

4.1 Aims of the framework 

Many tools can be used during the course of a malware investigation.  Some of these tools 

make claims to be suited for malware analysis, while others do not.  The MATEF aims to 

provide a mechanism to evaluate these tools by quantifying their ability to detect artefacts 

produced by real-world malware samples (see Aim 1, Table 4-1).  

How such tools are employed for malware analysis is, according to Malin et al. (2008), 

subject to three broad analysis techniques: temporal, relational and functional analysis.  

Temporal analysis concerns the timeline of events surrounding reported activity, while 

relational analysis refers to the interaction between components of the malware and its 

environment.  Finally, functional analysis relates to the actions the malware is reported to 

have performed.   

Much of the temporal and relational analysis required with malware investigations can be 

achieved using conventional forensic analysis tools.  It is the functional analysis that the 

MATEF sought to underpin by evaluating the ability of the tools used to detect the artefacts 

produced by the behaviour of malware (see Aim 2, Table 4-1).   This behaviour typically 

manifests itself in the form of file, registry, process and network based artefacts. 

Unlike regular software that is largely predictable, malware is typically unpredictable in 

nature and routinely implements anti-analysis methods. These methods include obfuscation 
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techniques designed to give misleading results under analysis. Hence mitigation against such 

risks should be considered when drawing conclusions obtained from tool testing using 

malware, see Aim 3, Table 4-1. 

For the final research goal (see Goal 3, Table 1-2), the research needed to yield a software 

product that allowed a user to supply a candidate tool for malware analysis.  The software 

product would then assess the candidate tool against pre-defined criteria; see Aim 4, Table 

4-1.  The results of this assessment aim to inform the practitioner’s decision in the choice of 

tool used to perform malware analysis during a forensic investigation and provide 

quantifiable confidence in the reliability of the findings presented to a court of law. 

Having identified the aims of the framework, consideration was then given as to how to 

achieve these aims.  Hence, the following section seeks to identify the main components of 

the framework.  

# Aim 

1 Use real-world malware 

2 Evaluate a tool’s ability to detect malware artefacts 

3 Mitigate against anti-forensic techniques 

4 Produce software product to test tools 

Table 4-1 : Aims of the framework 

4.2 Identifying & selecting the main components of the framework 

One of the aims discussed in section 4.1 was for the framework to evaluate a software tool’s 

ability to detect artefacts, and thus monitor malware behaviour (see Aim 2, Table 4-1).  Hence 

the MATEF needed access to malware, the software tools to monitor the behaviour of such 

malware, a test environment suitable for executing the tools and malware and a management 

back-end to automate the whole process and record and analyse the results.  Furthermore, in 

order to evaluate a given tool, a means of determining the expected number of artefacts for a 

given malware binary needed to be known (see Requirement 9 Table 3-3) and easily 

retrievable, ideally from a database. 

Each of these elements is explored in the following sections, starting with the malware 

binaries themselves. 

4.2.1 Malware sample source 

In order to provide realistic results, the malware used to evaluate a given software tool needed 

to be real-world malware (a.k.a. malware ‘in the wild’), as opposed to fabricated malware 
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(see Aim 1, Table 4-1). The stored malware employs password protected zip files to minimise 

contamination risk during handling (see Requirements 6 & 8 Table 3-3).  

To satisfy the requirement to work offline (see Requirement 1, Table 3-2), malware obtained 

from any source needed to be imported locally to and stored in a malware library. 

4.2.2 Malware library 

In addition to satisfying the need to work offline (thereby providing readily available copies 

of the malware) and to simplify automation, each malware binary was to be accessible 

through a consistent file naming convention (see Requirement 7 Table 3-3). Also, in line with 

these requirements, access to this library was restricted to authorised users of the framework 

only.   

In addition to the malware binary file, information on its expected behaviour also needed to 

be stored locally as well (satisfying requirement 9 from Table 3-3).  To be made readily 

available, this information was stored in a malware database. 

4.2.3 Malware database 

The malware database needed to contain details of each malware binary held in the malware 

library (see section 4.2.2).  As a minimum, the details stored included the hash value of the 

binary and the number of artefacts created as a result of creating, modifying or deleting files 

or registry keys.  In addition, the number of ports opened and processes spawned as a result of 

executing the malware were also stored. 

To facilitate stratification of the data, the database stored Boolean properties of each malware 

binary (where available), such as whether the malware configures itself to start automatically 

upon boot or if it disables anti-virus software. 

The database itself was to be open source to ensure it is readily deployed with the framework 

and can be built and managed using automated scripts.  The management of the database, 

including the importing of malware and the testing of software tools was to be controlled by 

management scripts to facilitate automated testing across many malware binaries. 

4.2.4 Manager scripts 

The manager scripts were to perform two fundamental roles, namely overseeing the testing of 

software tools and the interaction with the malware database itself.   

The first of these required a script to initially construct the database tables and perform basic 

database management operations.  This included the capability to import details of the 
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artefacts produced when executing malware and to retrieve them during subsequent analysis 

on provision of an identifier, such as a hash value.   

The second fundamental role was to enable a user to initiate a test that operates and manages 

a bank of virtual machines (see Requirement 7, Table 3-2).  The script was to also 

automatically execute the tool under test and then the malware for a specified length of time 

before resetting the virtual machine (see Requirements 2 & 5, Table 3-3).  Following a given 

test the management script was also to extract a given tool’s log file and write it to a specified 

location in a consistent and standard format (to facilitate subsequent analysis), regardless of 

the original log file format. 

These two roles are dependent on two additional components, namely an independent source 

of malware behaviour data (referred to as the ‘Oracle’) and an environment within which to 

test the software tools.  The former is discussed in the next section (4.2.5), whilst the latter is 

addressed in section 4.2.6. 

4.2.5 The Oracle 

Due to the lack of any theoretical or easily determined ‘ground truth’, the MATEF needed to 

determine the expected quantity of artefacts from an independent source (see Requirement 9, 

Table 3-3).  The random nature of the data (malware) is such that the reported expected value 

is little more than an approximation of the ‘ground truth’.  This source, referred to as the 

‘Oracle’ could be conceivably be any one of a number of online environments, such as 

Anubis (2010), F-Secure (2011) and ThreatExpert (2011) (see Table 4-5 for a more 

comprehensive list).  The ability to determine the number of expected artefacts for a given 

malware binary when it is executed was the main requirement; see Requirement 9 in Table 

3-3. 

An important point to make here is that MATEF’s purpose was to evaluate analysis tools and 

not to submit new or ‘zero-day’ malware to any of these sandboxes.   Malin et al. (2008) 

point out that files submitted to such systems may be automatically shared with other vendors 

and third parties.  The impact of this is two-fold: First, an investigator may be submitting a 

malware sample that is targeted to the victim.  The impact of this is that hard-coded details 

such as usernames, passwords, or internal IP addresses may be inadvertently distributed.  

Secondly, the attacker who planted the malware will likely be alerted to the discovery and 

change their tactics.   Hence the use of such sandboxes for live investigations may not be 

deemed an acceptable risk.  Another significant problem with calling upon third-party 

sandboxes to identify malware behaviour is the lack of control the investigator has over the 

conditions under which the malware is executed.  
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In light of the above, the MATEF provided two key benefits for the forensic investigator: the 

ability to make an informed decision on which tool to use to perform offline malware analysis 

and the ability to customise the test environment to evaluate how the tool performs under 

different conditions, e.g.: operating systems and execution time.   

With the source of Oracle information in place providing details on the expected behaviour of 

a malware binary, it was down to the tool under test to establish what behaviour can be 

observed executing the binary.  To do this a safe and controlled environment needed to be 

provided in order to operate the tool and the malware. 

4.2.6 Test environment 

The test environment of the MATEF is one that will need to be managed via an automated 

script and have sufficient capacity to enable multiple tests to be run in parallel.  In this way 

the data collection capacity of the MATEF will increase, helping to reduce the time required 

for large scale tool testing.   

The anticipated variability of the malware under analysis may impact on the statistical power 

of the results (Smith, 2012).  Hence, by increasing the number of malware binaries analysed 

from the library the statistical power (and hence the statistical significance) of the results 

should increase. 

Closely linked to the test environment is the Internet simulation component, providing a 

networked environment containing common network services. 

4.2.7 Internet simulation 

The provision of network services (see Requirement 8, Table 3-2) provides the MATEF with 

an added level of realism to malware running within the Test Environment.  Bayer et al. 

(2009) report that over 45% of malware they examined engaged in TCP traffic, which is not 

possible without an endpoint to initiate a connection to. 

It is important this network provision is simulated to minimise any risk of the malware 

stealing any data or committing any unauthorised access to other networks (see Requirement 

1, Table 3-2).  Requests and responses are passed to and from common network services that 

are exposed to the test environment through the component. 

A significant product of the test environment (assisted with the Internet simulation) is the log 

file from a given tool under test.  To form any conclusions on a given tool, the log file it 

produces must be analysed. 
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4.2.8 Analysis component 

In order to undertake analysis of a software tool, the analysis component needed to establish 

four things.  The first of these was to establish what the tool is to be compared against.   

Previously, it was argued this should be the expected quantity of a given artefact, as opposed 

its value (see section 3.3.2). In this research, this is referred to as the Expected value.  This 

value needed to be determined by an independent source (see Requirement 9, Table 3-3).  

Secondly, the analysis component needed the capability to extract the number of artefacts 

observed (referred to as the Observed value) by the tool under test from a log file bearing a 

filename that can be determined programmatically, thus allowing multiple log files from 

different VMs and tests to coexist (see Requirement 10, Table 3-3). 

A third analysis requirement was that the analysis components must establish an assessment 

of the difference between the Expected and Observed values (see Requirement 11, Table 3-3).    

This is a critical value and subject to the aims of a given test, forms the basis of the 

comparison between tools or multiple executions of the same tool to evaluate repeatability. 

The final analysis requirement was a structured test design that was informed by one or more 

hypotheses that determined the aim of the analysis.   

Test Design 

As discussed previously (section 4.2.6) the malware to be studied using a given tool was 

anticipated to be highly variable.  In order to isolate any observed changes as a result of a test 

control measure over variability of the malware itself, the analysis process needed to separate 

the malware selected for test runs into two groups.  The first of these groups contained a list 

of the malware that exhibit variability in the numbers of artefacts observed when run under 

the same conditions.  The second group would comprise a list of the malware that produced 

the same number of artefacts when run under the same conditions, and is hence repeatable.  It 

was anticipated that any subsequent analysis would then focus upon the latter group to 

effectively filter out false positives in the data. 

From a legal perspective, the overall aim of the analysis was to identify software tools that 

were ‘reliable’ (see Requirement 3, Table 3-2).   Although open to interpretation, this can be 

pinned down a little more if the regulatory requirement for validation is also considered (see 

Requirement 4, Table 3-2).  The focus of this research was to validate a software tool as part 

of the process of validating a method. The difference between the Expected and Observed 

values was selected as the metric for this analysis, as discussed in section 3.3.2.   
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Online sandboxes for malware analysis typically offer no control over the parameters of the 

test, such as the length of time that the malware is executed.  This parameter is one that was 

easily adopted as a control measure for the test process to determine if different execution 

times produce more or fewer artefacts.  If a practitioner can determine an execution time 

beyond which there is little added benefit to their findings, this would save valuable analysis 

time.  Furthermore, the ability to quantify the impact of different execution times on the 

findings provides information to the practitioner where previously there was none.  Hence, 

the hypothesis to determine the impact of the execution time is presented in Table 4-2: 

H1.0 Changing the execution time of malware has no significant impact on the number of 

malware artefacts observed by a given tool.  

H1.1 Changing the execution time of malware has a significant impact on the number of 

malware artefacts observed by a given tool. 

Table 4-2 : Hypotheses 1 – Does changing the execution time affect how many artefacts 

are observed? 

As well as the question of how long to run a tool for before concluding no further artefacts 

will be observed, the practitioner will seek to justify their choice of tool to the court.  Hence, 

the hypothesis to determine which (if any) of two tools is able to detect a greater number of 

artefacts under the same operating conditions is presented in Table 4-3: 

H2.0 There is no significant difference on the number of malware artefacts observed by 

Tool A when compared to Tool B, under the same conditions.  

H2.1 Tool A is able to detect a significantly greater number of artefacts when compared to 

Tool B, under the same conditions. 

H2.2 Tool B is able to detect a significantly greater number of artefacts when compared to 

Tool A, under the same conditions. 

Table 4-3 : Hypotheses 2 - Which tool observes more artefacts? 

Figure 4-1 shows how the components described above are configured into the MATEF, 

together with the information flows between components.  Note boxes in grey are external 

components that sit outside the MATEF. At present the statistical analysis component is 

performed using an independent statistical analysis tool.  It is envisaged that future 

development of the MATEF will include a statistical component within the MATEF.  
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Figure 4-1 : MATEF components 

Given that statistical analysis is currently performed outside of the MATEF, the analysis 

component produces an output that can be analysed statistically by third-party software. 

In order to test and hence evaluate the MATEF design an implementation was undertaken, as 

discussed in the next section. 
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4.3 Implementing the MATEF framework 

4.3.1 Malware sample source 

Referring to requirement 7 in Table 3-3, the MATEF should be capable of accepting malware 

from a variety of sources.  Elisan (2015) identifies several sources from which malware may 

be freely obtained. These were considered as a source for the MATEF, but were rejected on 

the basis that the numbers of binaries available from these sources are relatively small and not 

easily extracted in large numbers.  Enthusiasts typically run such sources on a voluntary basis, 

resulting in sporadic support. 

Other sources of malware include Honeypots (Gashi, Sobesto, Stankovic & Cukier, 2013), 

but this approach was again discounted on the grounds that it takes time to build a large 

collection of samples. Furthermore, a solution for the MATEF is sought that minimises the 

effort on the part of data collection.  The requirement to build and commission a honeypot to 

initially gather malware binaries may discourage others from adopting the MATEF. 

A more viable approach was offered through contact with security research organisations, 

such as VirusTotal (2010).   VirusTotal provide a mechanism to feed malware submitted to 

their scanning platform through a specified email address.  Each email contains a single 

malware file attachment encrypted in a password protected zip file bearing a filename 

matching the file’s MD5 hash value.  The use of VirusTotal as a source conveniently satisfies 

requirements 6, 7 and 8 from Table 3-3.  Malware delivered via email attachments to the 

MATEF in this way is then extracted and stored in the Malware Library. 

4.3.2 Malware library 

The simplest approach to storing the malware binaries was to store them in a folder structure 

on disk with access permissions set to limit access to the files by unauthorised personnel.  

Using hash values as filenames to identify the malware, each file could also be encrypted with 

a password to both limit access and minimise accidental or deliberate cross-contamination.  

Malware located in the library was periodically sent to the Oracle (see section 4.3.5) where 

the results returned were then stored in the Malware database. 
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4.3.3 Malware database 

Implemented in SQLite (https://sqlite.org/), the Malware database is comprised of the tables 

represented in Figure 4-2 below. 

 

Figure 4-2 : MATEF Malware Database 

The database schema follows a relational database approach to model the artefacts associated 

with malware.  The rationale for organising the tables into ports, files and registry keys is that 

the framework’s aim is to evaluate tools used to detect the artefacts that typically manifest in 

the form of file, registry, process and network based artefacts (see section 4.1).  By organising 

the artefacts into these groups (tables) it simplified the process of selecting appropriate 

malware binaries to a given tool that may, for example, only be designed to detect port 

activity.  Each of the fields is summarised in Table 4-4.  



Chapter 4  - Designing and implementing a framework  Page 92  

 

 

Table 4-4 : MATEF database field list 

The one-to-many relationship between the samples table, the properties table and each of the 

artefact tables (ports, files and regkeys) meant that when a new malware binary was added to 

the database multiple properties and artefacts could be recorded against a given binary.  The 

design is extensible in that if a new artefact group were to be added, eg: remote IP addresses 

that are contacted, then a new table with the associated fields may be added to accommodate 

this new group. 

As previously mentioned in section 4.2.3, the management of the database was controlled by 

management scripts to import new samples and to facilitate automated testing across many 

malware binaries. 

  



Chapter 4  - Designing and implementing a framework  Page 93  

 

4.3.4 Manager scripts 

The manager scripts were implemented in Python as there is an extensive library of existing 

code available to build upon, such as provided by Ligh et al. (2010). The three main scripts 

are as follows: 

dbmgr.py The database manager script, builds on code developed by Ligh et al. (2010).  

The script manages the import of new malware binaries, the storage and 

retrieval of malware aretfacts and files. 

pms.py The Program Manager Script (PMS) divides the test between multiple VMs, 

each independently managed by a management script (mgr.py, see below). 

On start up, PMS determines if previously used hashes have been requested 

(for repeatability testing) or if new, randomly selected ones belonging to an 

artefact type group are to be used, see Pseudocode 1. 

mgr.py Multiple instances of this script (see Pseudocode 2) are generated by the PMS 

(see above) to oversee the operation of a single VM.  Each of these instances 

parses a hash list file associated with the VM, identifying a hash on each pass.  

Artefacts associated with this hash are identified from the malware database 

and stored in files for later analysis.  The script then copies batch files to a 

network share visible to the VM, which is then booted.  The batch files 

control the operation and timing of the tool under test.  On completion the 

tool’s log file is copied to network share before the VM is reverted in 

readiness for the next test.  

  



Chapter 4  - Designing and implementing a framework  Page 94  

 

========================================================= 
PMS.PY 
Arguments: ArtefactTypes, HashListFolder, NumBins 
 
========================================================= 
 
vmFirst  = 1 // Number of first VM to use 
vmLast  = 60 // Number of last VM to use 
 
// Get list of hashes for test 
// If HashListFolder is null, pick new hashes 
// Otherwise, uses hash files from supplied folder 
IF HashListFolder == "" 
  // Randomly select NumBins hashes, based on Artefact 
 HashList = GetSamples(ArtefactTypes, NumBins)  
 
 // Create separate hash list files, one for each VM 
  CreateHashListFiles(HashList,vmFirst,vmLast) 
ENDIF 
 
 
// Divide the testing between multiple VMs 
FOR vmNum = vmFirst to vmLast 
   
  // Filename of hash list file 
  hlFile = HashListFolder + “hashList-vm” + vmNum   
  
  RUNSCRIPT 'mgr.py' 
    WITH vmNum, hlFile, ArtefactTypes 
  
  // Stagger the VM startups to minimise load 

Sleep 10 seconds 
ENDFOR 
 
 
//Wait for all VMs to finish running 
VMRunning = Number of VMs running 
WHILE VMRunning > 0 
 VMRunning = Number of VMs running 
ENDWHILE 
 
// Preserve results 
COPY ToolLog files from TestFolder to DataFolder 
COPY List of hashes used for test to DataFolder 
Pseudocode 1 : Program Manager Script (PMS.PY) 
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========================================================= 
MGR.PY 
Arguments: vmNum, hlFile, ArtefactTypes 
========================================================= 
// Set path to a network share specific to the vmNum 
BaseFolder  = A network share location 
ShareFolder = BaseFolder + "/" + vmNum 
Count    = 0 
FOR each hash in hlFile 
 // Store artefacts of used hashes for later analysis 
  IF ArtefactTypes includes REGISTRY artefacts 
  regArtefactList = Registry artefacts for hash 
  Filename = vmNum+Count+“regArtefacts”  
   WriteToFile(Filename, regArtefactList) 
 ENDIF 
 IF ArtefactTypes includes PORT artefacts 
  portArtefactList = Port artefacts for hash 
   Filename = vmNum+Count+“portArtefacts” 
   WriteToFile(Filename, portArtefactList) 
 ENDIF 
 IF ArtefactTypes includes FILE artefacts 
  fileArtefactList = File artefacts for hash 
  Filename = vmNum+Count+“fileArtefacts” 
   WriteToFile(Filename, fileArtefactList) 
 ENDIF 
 
 Path = GetSamplePath(hash) // Get library path to MW 
  
 Copy Client batch files from Library to ShareFolder 
 Extract malware binary from Path to ShareFolder 
  
 Start VM number vmNum  
 // Wait for VM to complete booting or timeout 
 // Returns 0 if complete or -1 if timed out 
 Result = CALL WaitVmStart() 
 IF Result == 0 
  CALL WaitVMStop() // Wait for shutdown  
 Revert the VM  
 Rename Tool Log file to include the VM & Test number 
 Copy ToolLog file from VM share to TestFolder 
 Clear files from VM share 
  Increment Count 
ENDFOR 
Pseudocode 2 : Manager Script (MGR.PY) 
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4.3.5 The Oracle 

Two of the proposed requirements for the MATEF that inform the choice of Oracle were the 

need to automate the process (see Requirement 7, Table 3-3) and the ability to determine 

expected quantity of artefacts (see Requirement 9, Table 3-3).  Thus, the former required the 

Oracle to accept automated submissions of malware to its system as well as providing an 

interface to programmatically collect the results.  Furthermore, the report produced by the 

Oracle needed to be of a form to facilitate parsing by a script so the findings could be 

imported into the malware database.  The latter requirement meant that the Oracle should 

report an indication on what it observed, thereby enabling the quantity of observed artefacts 

to be calculated. 

Further to the above requirements of the MATEF, the design of the database (section 4.3.3) 

meant that the Oracle report should also include artefacts identified as either file, registry, 

network or process related artefacts (see Figure 4-2).  In addition, the design of the database 

suggested that the actions performed on these artefacts should also be reported. 

In selecting a sandbox source for use as the Oracle in this research implementation of the 

MATEF, the sandboxes listed in Table 4-5 were considered. 

The ThreatExpert (2011) sandbox was initially considered as an Oracle source for the 

MATEF, but repeated reliability issues at the time were considered a threat to the progress of 

the research.  Like ThreatExpert, the Anubis (2010) sandbox also provided a readily available 

and convenient interface to upload multiple malware samples via a script.  The ability to add 

a new module to interface to a given sandbox demonstrates the flexibility of the MATEF to 

use more than one source for the Oracle (see the database table named source in Table 4-4).  

This is important as online sandboxes can be transitory in nature and therefore not guaranteed 

to be available in the future. 

 

  



Chapter 4  - Designing and implementing a framework  Page 97  

 

Table 4-5 : Online malware analysis sandboxes 

4.3.6 Test environment 

The research environment provided a VMWare (VMWare, 2016) resource, available to enable 

multiple virtual machines (VMs) to be operated remotely and via a scriptable interface.  This 

allowed for the deployment of multiple VMs, each meeting the need for the use of a VM in 

the MATEF (see Requirement 7 in Table 3-2 and Requirement 2 in Table 3-3).   

Name Description 

Anubis (2010) Online malware analysis system. Enables individual executable files 

to be uploaded via a web form or bulk quantities via FTP.  Results 

are sent to a designated email address. 

Comodo Valkyrie 

(Comodo Group, n.d.) 

Provides ‘File Verdict Service’ employing different methods to 

analyse a given file. 

F-Secure (2011) Online malware analysis system. Enables executable files to be 

uploaded via web form or uploaded via FTP.  Files sent via FTP 

must also have an associated text file uploaded via the web form, 

limiting the ability to automate.  

Joebox (Joe Security, 

2017) 

Commercial online malware analysis system with a free license 

option.  Uses filtered Internet access to malware under analysis.  

Free account license does not allow different environments (eg: 

operating systems) to be specified and is limited to 10 submissions 

per day. 

Malwr (Malwr, 2016) Online system that uses the offline Cuckoo (2016) sandbox 

environment.  No option to configure test environment.  No facility 

to automate submissions available. 

Payload Security 

(Payload Security, 

n.d.) 

Online malware analysis system that can be purchased for offline 

analysis of large quantities of data.  No bulk analysis is available for 

online platform.  Environment and even user actions can be scripted 

for analysis. 

ThreatAnalyzer 

(ThreatTrack Security, 

2016) 

Online malware analysis system, formally run operated as the 

academic programme known as ‘CWSandbox’.  Now a commercial, 

subscription service. 

ThreatExpert (2011) Online malware analysis system. Enables individual executable files 

to be uploaded via a web form.  Early trials with this as an Oracle 

source found it to be unreliable at delivering reports. 
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To provide as fertile an environment for the malware as possible (to satisfy Requirement 9, 

Table 3-2 and Requirement 4, Table 3-3), the operating system needed to be subject to a 

number of vulnerabilities. Sikorski and Honig   (2012) recommend Windows XP for this 

reason.  Thus, this was selected as the operating system for the MATEF implementation. 

Each VM needed to be configured to operate on a closed network with no Internet access (see 

Requirement 1, Table 3-2).  However, to meet Requirement 8 of Table 3-2 (network service 

provision) simulated Internet services needed to be available as well. 

4.3.7 Internet simulation 

Malware typically exploits one or more Internet based protocols such as Hypertext transfer 

protocol (HTTP) (Traore, Awad & Woungang, 2017, p. 2), Domain name system (DNS) 

(Wang, Lin, Cheng & Chen, 2017) and Internet relay chat (IRC) (Angrishi, 2017) to exhibit 

more behaviour post-infection of the host computer.  Tools such as ApateDNS (FireEye, 

2017) used for responding to DNS queries and MockServer (Bloom, 2017) used for 

responding to HTTP requests can be used to provide a simulated Internet environment.  

However, the disparity of these tools makes it harder to manage them collectively as a single 

entity in a test environment. 

A more integrated solution known as iNetSim (Hungenberg & Eckert, 2016) has been selected 

for inclusion in the MATEF as the Internet simulator.  Hungenberg and Eckert describe the 

tool as “a software suite for simulating common internet services in a lab environment, e.g. 

for analysing the network behaviour of unknown malware samples”.  The tool provides 

simulated services for several services including HTTP, Simple Mail Transfer Protocol 

(SMTP) and File Transfer Protocol (FTP). 

4.3.8 Statistical analysis 

Previously, it was identified that, for a given malware binary, the Analysis component (see 

section 4.2.8) would need to establish (a) the expected quantity of artefacts; (b) the observed 

number of artefacts and (c) the difference between the expected and observed values.   

These requirements were most readily made available via a script that meets the requirements 

of (a) and is able to interrogate the malware database (via the management script).  To 

address (b), the script examines the raw log files produced by a given tool under test.  Given 

the disparity in the formats of log files from different tools, functionality such as identifying 

and counting the number of network ports opened by a tool has been abstracted in the script.  

The specifics of interpreting a given log file format were implemented in a separate script 

(termed a wrapper) that forms a plug-in for each tool under analysis.  Thus, to facilitate 
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extensibility, the introduction of a new tool requires only that the smaller wrapper script is 

produced for that tool whilst the functionality and logic of the process as a whole is held in a 

single master script (analyseMATEF.py), see Pseudocode3 below 

========================================================= 
analyseMATEF.PY 
Arguments: logFileFolder  // Folder containing log files 

  analysisType  // Type of analysis to perform 
========================================================= 
 
BASEDATA  = A network share location for all results 
CSVFNAME = “analysisCSV.csv” 
LOGPATH  = BASEDATA + logFileFolder  
CSVPATH  = BASEDATA + logFileFolder + CSVFNAME 
 
vmFirst  = 1 // Number of first VM to use 
vmLast  = 60 // Number of last VM to use 
 
csvFile = createCSVFile(CSVPATH) 
  
// Get the Log file from each VM used 
FOR vmNum = vmFirst to vmLast 
   
  // Call readTooLogFile, returning 3 values: 
  //   Res.hash   MD5 hash of binary file 
  //  Res.Expeceted  Expected number of artefacts 
   //  Res.Observed   Observed number of artefacts 
  Res = readTooLogFile(logFileFolder, vmNum, analysisType)  
  
  WriteToCSV(csvFile, Res.hash, Res.Expected, Res.Observed) 
ENDFOR 
 
 
---------------------------------------------------------- 
FUNCTION readToolLogFile(logFileFolder , vmNum, analysisType) 
 
SWITCH analysisType: 
  CASE 1: 
   // Examine each log file for a specified VM  
   // Return the MD5 hash, expected and observed 
   // number of files created by the malware 
    Result = analyseFiles(vm, logFileFolder) 
 CASE 2: 
    // Examine each log file for a specified VM  
   // Return the MD5 hash, expected and observed 
   // number of ports opened by the malware 
   Result = analysePorts(vm, logFileFolder) 
  // etc.  
ENDSWITCH 
 
RETURN Result 
Pseudocode 3 : Analyse MATEF Script (anayseMATEF.PY) 
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Regarding the difference between the expected and observed values (item (c) above), it is 

envisaged that at a later date this script will also undertake statistical analysis on this data and 

report its findings from simply running the script.  However, given the constraints of the 

research, this analysis is currently undertaken using external statistical tools, such as SPSS 

(http://www.ibm.com/spss). 

  

4.4 Testing strategy 

The discussion on test design (section 4.2.8) identified two hypotheses (see Table 4-2 and 

Table 4-3) that address the aims of this research.  Taking each of these as a control measure, 

the following statistically independent variables (IV) were identified: 

IV1 Execution time 

IV2 Analysis tool 

             Table 4-6 : Independent variables 

IV1 Execution time 

One item of metadata provided by the Oracle (see section 4.2.5) is the execution time for 

which each instance of malware is executed.  As discussed in section 4.2.8, variation of the 

execution time may result in a variation of the number of artefacts produced by the malware. 

Depending on the design and aims of the malware, different artefacts can be produced at 

different times. It is impractical to expect to observe every single artefact that might be 

produced by the malware, thus the focus here is to determine the number of initial artefacts 

created by the malware.   

The Oracle reports that the execution time varies between each malware binary, but has an 

average value of around 5 minutes.  The strategy therefore, was to deviate from this execution 

time by both increasing and decreasing the length of time each malware binary is run to 

address Hypothesis 1 (see Table 4-2). 

IV2 Analysis tool 

Two tools commonly used to study port activity on a computer under investigation are 

Process Monitor (Russinovich, 2016) and TCPVCon (Russinovich, 2011), the command-line 

version of the TCPView tool.    



Chapter 4  - Designing and implementing a framework  Page 101  

 

These two tools  were selected to address Hypothesis 2 (see Table 4-3), as they can both be 

controlled from the command-line.  The framework is designed to work with analysis tools 

that operate on a Windows operating system and are capable of being managed via a 

command-line interface. Hence the ability to start and terminate the tool via the command-

line as well as the ability to programmatically export a log file of the observed artefacts was 

required.  Therefore, the testing strategy chosen is to compare the number of artefacts 

detected by two software tools that meet the above requirements.   

With the testing strategy in place, the design of the experiments could then be formulated. 

4.5 Experiment design 

The MATEF implementation used for this research has 60 identical VMs available that can 

operate in parallel.  A total of eighty (80) malware binaries were applied to each VM, giving a 

total test space of 4,800 (60 x 80) malware binaries. 

These malware binaries were initially selected at random from a subset of malware binaries in 

the Malware Library that exhibit some form of network activity.  This initial random dataset 

was then applied to each of two tools for 1 minute, 5 minutes and 10 minutes and 10 seconds 

to explore the impact of this variation around the reported average execution time of the 

Oracle (see discussion on Execution time in the previous section). 

Early testing of the data collection process identified that a number of malware binaries 

produced highly variable numbers of artefacts on each execution.  To minimise the impact 

this ‘random noise’ had on the objective to measure a given tool’s ability to detect malware 

artefacts, each execution time was repeated twice.  This lead to the creation of three datasets 

of observations for a given tool; each for the same length of execution time.  Any malware 

binary that did not produce the same observed value in all three datasets was then filtered out, 

leaving a dataset of observations of malware behaviour that is considered repeatable.  This 

decision was made to minimise any error resulting from executing the malware and to 

improve the repeatability of the process, thereby aligning it more to a scientific methodology 

(see Table 1-1).  Whilst it is acknowledged that the impact of this decision is to evaluate a 

tool on only a subset of malware samples, it is argued that this does not impact on the validity 

of the framework, which remains unchanged.  However, this issue is included in the 

discussion on the limitations of the research (see section 6.5). 

As discussed earlier, Process Monitor and TCPVCon were applied to Hypothesis 1 (impact of 

execution time, see Table 4-2) and Hypothesis 2 (comparison of one tool with another, see 
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Table 4-3), as indicated in Table 4-7.  Each Test was comprised of two data collection runs, 

each running for different lengths of time. 

Experiment Test Description Hypothesis 

Experiment 1 

 
1.1 Comparing 1 minute to 5 minute 

execution times 
1 

Comparing Process Monitor at 

different execution times 
1.2 Comparing 1 minute to 10 minute 

execution times 
1 

 1.3 Comparing 1 minute to 10 second 

execution times 
1 

Experiment 2 

 
2.1 Comparing 1 minute to 5 minute 

execution times 
1 

Comparing TCPVCon at 

different execution times 
2.2 Comparing 1 minute to 10 minute 

execution times 
1 

 2.3 Comparing 1 minute to 10 second 

execution times 
1 

Experiment 3 

 
3.1 Process Monitor vs TCPVCon, 

run for 10 seconds 
2 

Comparing two tools at the 

same execution time 
3.2 Process Monitor vs TCPVCon, 

run for 1 minute 
2 

 3.3 Process Monitor vs TCPVCon, 

run for 5 minutes 
2 

 3.4 Process Monitor vs TCPVCon, 

run for 10 minutes 
2 

Table 4-7 : List of Experiments 

 

With the experimental design established, the analysis strategy was then considered. 
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4.6 Analysis strategy 

The previous section established the design of the experiments to be run.  Before considering 

how to analyse any results obtained through this method it was necessary to gain a clearer 

understanding of the nature of the data to be collected and analysed, as this informed the 

choice of applicable analysis methods available. 

4.6.1 Describing the data to analyse 

Stevens (1946) identified the relationship between what is being measured and the numerical 

values they represent.  This has since developed into what is commonly known as the Levels 

of Measurement, see Figure 4-3. 

 

    Figure 4-3 : Levels of measurement 

Each level inherits the properties of the preceding, meaning it is able to accommodate the 

type of data of the levels below it.  Furthermore, each level has associated with it a number of 

valid operations, see below.    

Level Examples Operations 

Nominal Port number,  Filename,  Registry key name =, <> 

Ordinal  Threat level of malware (eg: Low, Medium, High) =, <>, <, > 

Interval  Number of ports opened by malware =, <>, <, >, +, - 

Ratio File size of malware =, <>, <, >, +, -, *, / 

Table 4-8 : Measurement levels 
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Under this scheme, the port number of each opened port on a computer and the name of a file 

or registry key created are all examples of nominal data, based on the properties identified by 

Panik (2005).  The names and the number (in the case of port numbers) are nothing more than 

labels that refer to the artefact it represents.  There is, for example, no inherent difference 

between the network port 80 and port 443.  Although the former is commonly used for 

unencrypted web browser traffic and the latter for encrypted traffic, there is little else that can 

be determined from comparing them.  To state that one is greater than the other is or there is a 

‘difference’ of 363 between them is meaningless, as the port numbers do not represent a 

quantity.  

Both Hypothesis 1 (Table 4-2) and Hypothesis 2 (Table 4-3), examine ‘the number of 

malware artefacts’ to determine an outcome.  Hence, although the individual malware 

artefacts are nominal in nature, a count of their numbers represents a quantity.   

The quantities of artefacts produced by different malware binaries can be compared not just in 

an ordinal fashion (eg: one binary produces more artefacts than another) but also in terms of 

how much they differ (eg: one binary produces 10 more artefacts than another). Panik (2005) 

identifies this type of property as being interval data.   

Under this scheme differences on a scale are meaningful and can be compared to other 

differences on the same scale.  However, Panik points out that the zero point on the scale is 

deemed arbitrary; hence ratios of interval scale values are meaningless.  To illustrate his 

point, Panik describes the issue of comparing the skill level of two golf players.  This 

example has been adapted below to compare two software tools.  

Consider the number of ports opened by a malware binary, as observed by two tools tested 

using the MATEF.  Suppose the malware is programmed to open 3 ports on each execution 

and that the Oracle states that 2 ports are opened when the malware is executed.  When tested, 

Tool A reports that 4 ports were opened, whilst Tool B states that 5 were opened.  To answer 

the question of how good is Tool A at detecting open ports compared to Tool B depends on 

the point of reference or zero point.   If the zero point is taken to be the Oracle, then the 

absolute difference between what was expected and what was observed is 2 for Tool A and 3 

for Tool B.  It might be tempting then to suggest that Tool A is one and one-half times as 

good as Tool B at observing open ports.   

Alternatively, if the zero point is taken to be the programmed number of ports to be opened, 

then the absolute difference between what was expected and what was observed is 1 for Tool 

A and 2 for Tool B.  In this scenario, one might argue that Tool A is now twice as good as 

Tool B at observing open ports. 
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Hence, the action of observing the number of artefacts produced by malware operates at the 

interval level of measurement.  This conclusion has implications for the statistical tests that 

can be applied to this data (see section 4.6.2) and identifies the valid operations that can be 

performed upon it, see Table 4-8.    

The comparison of a pair of observed values (one for each execution time, for Hypothesis 1) 

would only provide a measure of how similar the distribution of observations are at different 

lengths of execution.  By also including the expected number of artefacts for each data point 

and calculating the absolute difference of the corresponding observed value from this, it 

becomes possible to gain a measure of the error in each observation.  Note that ‘error’ in this 

context is defined as the difference between an estimated ‘ground truth’ (as provided by the 

Oracle) and the observed value.  Plotting the frequency of these errors then produces a 

distribution of the absolute error of the observations between two execution times. 

The error value is of no relevance to either Hypothesis 1 (Table 4-2) or Hypothesis 2 (Table 

4-3).  This is because both these hypotheses seek only to compare the quantity of artefacts.  

However, recording the magnitude of the error additionally provides a measure of how well 

the tool is performing against the Oracle.  Thus each tool tested can be compared to both the 

approximated ground truth as well as other tools. 

 

4.6.2 Deciding how to analyse it 

The aim of any analysis to be performed is to address both hypotheses and ultimately the 

Research Question for this work.  Both hypotheses are concerned with ‘paired observations’, 

where the subject (in this case a malware binary) is measured before and after a change of the 

independent variable. 

Statistical tests that work with paired observations are generally divided into parametric and 

nonparametric tests.  Parametric tests are applied to data that have a known (e.g.: normal) 

probability distribution, making it relatively easy to predict a future observation.  Such data 

has fixed parameters, meaning that it is symmetrical about a central tendency and has a 

predictable spread of values.  

Where the distribution of the data is not symmetrical, such as when the data is skewed to the 

left or the right, then nonparametric tests may be more appropriate. 

A well known parametric statistical tests is the Student’s t-Test.  Field (2013, p. 165) 

describes the use of this test as being based on the assumption that the data to be analysed is 

normally distributed. 
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This assumption was not readily determinable a priori for the data in this research.  Hence 

initial pilot studies were undertaken post-hoc to perform exploratory tests to address this 

assumption prior to performing any further statistical analysis. 

4.6.3 Pilot studies to test for normality 

To determine if the distribution of the data is normally distributed, the following post-hoc 

methodology was undertaken. 

Methodology 

To mitigate any anti-analysis technique in place (see section 4.1) the initial stage of the 

methodology sought to differentiate highly variable malware binaries from those that were 

less variable and hence more repeatable.  

The approach taken follows that outlined in the section 4.5 (Experiment Design). In summary, 

the entire population in the malware library was examined by an online malware analysis 

platform, referred to in this research as the Oracle.  All the malware binaries reported to 

exhibit network port behaviour were allocated to a group.  From this group, 4,800 distinct 

malware binaries were chosen at random and allocated to a sub-group.  The malware binaries 

in this sub-group then became the subjects of the test.  This will be referred to as Dataset A. 

The following procedure was then applied, first using the Process Monitor tool to record the 

observations (Pilot Study 1) and then using the TCPVCon tool to record the observations 

(Pilot Study 2). 

Test procedure 

Each malware binary in the sub-group was executed three times for the duration of ten 

seconds, recording the number of observed ports opened by the malware.  Each binary was 

then again executed three times for the duration of one minute, again observing the opened 

ports.  This resulted in two groups of three datasets, see Figure 4-4 and Table 4-9. 
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Figure 4-4 : Pilot study dataset structure 

 

Pilot 

Study 

Test 

Run ID 

Dataset 

ID 

Description # of Malware 

Samples 

1 114 A Process Monitor, run for 1 minute 4091 

1 126 A Process Monitor, run for 1 minute 3726 

1 127 A Process Monitor, run for 1 minute 3794 

1 147 A Process Monitor, run for 10 seconds 3924 

1 148 A Process Monitor, run for 10 seconds 3743 

1 149 A Process Monitor, run for 10 seconds 3804 

2 115 A TCPVCon, run for 1 minute 3395 

2 128 A TCPVCon, run for 1 minute 3756 

2 129 A TCPVCon, run for 1 minute 3593 

2 150 A TCPVCon, run for 10 seconds 4046 

2 151 A TCPVCon, run for 10 seconds 3795 

2 152 A TCPVCon, run for 10 seconds 3958 

Table 4-9 : Pilot studies - Initial datasets 

 

Malware binaries that did not exhibit the same number of observations in all three datasets 

when executed for ten seconds were then filtered out; compare Malware 01 and Malware 04 

in Figure 4-4 and Figure 4-5.  Similarly, malware binaries that did not exhibit the same 

number of observations in all three datasets when executed for one minute were also filtered 

out; compare Malware 01 in Figure 4-4 and Figure 4-5.  Duplicate observations were then 

discarded to leave a single dataset of observations for each of the two execution times, see 

Figure 4-5 and Table 4-10. 
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Figure 4-5 : Deduplicating repeatable observations 

 

ID Dataset Name Description # of Malware 

Samples 

1 127_126_114 Process Monitor, repeatable values for 1 minute 2803 

2 149_148_147 Process Monitor, repeatable values for 10 seconds 416 

3 129_128_115 TCPVCon, repeatable values for 1 minute 1259 

4 152_151_150 TCPVCon, repeatable values for 10 seconds 632 

Table 4-10 : Pilot Studies - Repeatable datasets 

 

With the variability in the malware minimised, a post-hoc assessment was performed to 

determine if the assumption of normality is violated or not. 

To do this, each pair of datasets in Table 4-10 (grouped by tool) was combined into a single 

dataset of ‘paired observations’. This meant that all of the malware binaries with observations 

in BOTH datasets (i.e.: binaries with observations for 1 minute and 10 seconds) were copied 

to a new, combined dataset for each tool, see Figure 4-6. 

 

Figure 4-6 : Paired dataset for a tool 

At this point each tool (Process Monitor and TCPVCon) each has a single dataset of paired 

values, containing observations from execution times of 10 seconds and one minute, see 

Table 4-11. 
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ID Dataset Name Description # of Malware 

Samples 

1 ProcessMon_1min10sec Process Monitor, paired 1 min and 10 sec 333 

2 TCPVCon_1min10sec TCPVCon, paired 1 min and 10 sec 274 

Table 4-11 : Pilot studies - Tool paired observations datasets 

 

Checking for Normally distributed data 

An absolute error value was calculated from the expected and observed number of artefacts in 

each dataset.  A bi-modality was identified in both of the datasets listed in Table 4-11, see 

Figure 4-7 and Figure 4-8 of Pilot Study 1; also see Figure 4-9 and Figure 4-10 of Pilot Study 

2.  The datasets were therefore each split into two groups, above and below the threshold of 

this bi-modality (Absolute Error of 50).  Each of the resulting subsets of data was then tested 

for Normality using the standard Kolmogorov-Smirnoff (K-S) and Shapiro-Wilk (S-W) 

tests.   

Study Pilot Study 1 

Process Monitor 

Pilot Study 2 

TCPVCon 

Dataset K-S S-W K-S S-W 

Execution time: 1 min 

Absolute Error >=50 
0.000 0.000 0.000 0.000 

Execution time: 1 min 

Absolute Error <50 
0.065 0.015 0.200 0.024 

Execution time: 10 sec 

Absolute Error >=50 
0.000 0.000 0.000 0.000 

Execution time: 10 sec 

Absolute Error <50 
0.200 0.037 0.173 0.027 

Table 4-12 : Pilot studies - Normality test results showing levels of significance 

The K-S and S-W tests work by comparing the distribution against a normalised distribution.  

Hence, as Field (2013, p. 187) states, a significance value of less than 0.05 indicates a 

statistically significant deviation from a Normal distribution.  Therefore the distribution 

producing such as result can be considered to not follow a Normal distribution. 

Field goes on to argue that the S-W test has more power to detect a difference from normality 

than the K-S test.  This may account for the difference of significance values in Table 4-12. 
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Referring to Table 4-12 it can be seen that for both the 1 minute and 10 second distributions 

where the absolute error is below 50 (shown in bold in the table) the resulting distribution 

does not follow a Normal distribution, according to the more powerful S-W test.  This 

phenomenon occurs for both tools (Pilot Study 1 and 2).  This would indicate that for on-

going analysis parametric tests are not suitable and therefore nonparametric tests should be 

used instead. 

Selecting an appropriate statistical test 

Having established the need to use a nonparametric test, there remained the decision on which 

test to apply to compare these distributions.  Recall the data is comprised of dependent 

observations, i.e.: numbers of artefacts observed for a given subject at different execution 

times.  Hence, consideration needed only to be given to nonparametric tests that operate on 

dependent (as opposed to independent) samples.   

The next question to consider was how many distributions were to be compared.  Comparing 

multiple distributions together avoids familywise errors, whereby multiple Type I errors are 

introduced as a result of combining the results of multiple independent tests (Field, 2013, p. 

68).  However, tests that combine multiple distributions simply report that the distributions 

either are or are not the same.  In other words, such tests do not identify which distributions 

are different.  Hence, although such a test would address H1 (Does changing the execution 

time affect how many artefacts are observed?), it would not highlight at what execution time 

this happens.  Furthermore, the multi-modal nature of the data (see above) highlighted a 

difference in the parametric nature of the data above and below the absolute error of 50.  This 

change in the nature of the data would be lost if multiple distributions were used collectively 

instead. 

In addition, a test comparing multiple distributions would not address H2 (Which tool 

observes more artefacts?) as this hypothesis must compare distributions taken under the same 

conditions, i.e.: a single execution time. 

In conclusion therefore, a nonparametric test that compares two distributions of interval-based 

dependent variables is required. 

The Wilcoxon Signed Rank test (Sheskin, 2011, p. 809) was selected to perform the analysis.  

This is because it is an established and appropriate statistical test for comparing distributions 

containing paired observations that are not normally distributed; or where one or more of the 

assumptions for the equivalent t test are saliently violated.  The test accepts either ordinal or 

interval data. 
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An alternative considered was the binomial sign test (Sheskin, 2011, p. 823) as this is similar 

to the Wilcoxon Signed Rank.  However, it only operates on the direction of differences and 

so ignores the magnitude of the differences.  Hence this test has less power, meaning it is less 

capable of detecting changes compared to the Wilcoxon Signed Rank test. 

Another alternative to the Wilcoxon Signed Rank test commonly considered is the McNemar 

test (Sheskin, 2011, p. 835).  This test was discounted as it only supports nominal data and so 

would only indicate if one tool observed greater or fewer artefacts than another.  It would not 

report by how much one tool was better (or worse) than another.  Furthermore, as with the 

binomial sign test, this test has less power when compared to the Wilcoxon Signed Rank test, 

meaning it is less capable of detecting changes.  
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Pilot study 1 – Data produced by Process Monitor 

A dataset of observations obtained using the tool Process Monitor v3.01 was selected.  This 

data contains paired observations for malware binaries executed for both 10 seconds and 1 

minute.  The dataset contains 333 paired observations for malware binaries (N=333). 

An initial analysis of the frequency distribution was produced for each condition 

(execution time) to explore the distribution of the data in each case, see  

Figure 4-7 and  

Figure 4-8. 

 

 

Figure 4-7 : Initial Frequency Distribution (Process Monitor - 1 min) 
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Figure 4-8 : Initial Frequency Distribution (Process Monitor - 10 sec) 

 

In both cases there is a clear bi-modality in the data for absolute errors of approximately 50 or 

less.  This was confirmed by examining the frequency table produced for each of the two 

distributions. 

The dataset was therefore split into two groups, subjects with an absolute error less than 50 

and those with an absolute error of 50 or more.  Each of the four resulting subsets of data 

were then tested for Normality using the standard Kolmogorov-Smirnoff (K-S) and 

Shapiro-Wilk (S-W) tests.  See the discussion on Checking for Normally distributed data, 

above. 
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Pilot Study 2 – Examining data produced by TCPVCon 

A dataset of observations obtained using the tool TCPVCon v3.01 was selected.  This data 

contains paired observations for malware binaries executed for both 10 seconds and 1 minute.  

The dataset contains 274 paired observations for malware binaries (N=274). 

An initial analysis of the frequency distribution was produced for each condition (execution 

time) to explore the distribution of the data in each case, see Figure 4-9 and Figure 4-10. 

 

Figure 4-9 : Initial Frequency Distribution (TCPVCon - 1 min) 
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Figure 4-10 : Initial Frequency Distribution (TCPVCon - 10 sec) 

 

As before, both cases demonstrate a clear bi-modality in the data for absolute errors of 

approximately 50 or less.  This was confirmed by examining the frequency table produced for 

each of the two distributions. 

As with the Process Monitor data, the dataset was split into two groups, subjects with an 

absolute error less than 50 and those with an absolute error of 50 or more.  Each of the four 

resulting subsets of data were then tested for Normality using the standard Kolmogorov-

Smirnoff (K-S) and Shapiro-Wilk (S-W) tests.  As before, see the discussion on Checking 

for Normally distributed data, above. 
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4.7 Chapter Summary 

This chapter has identified the aims of the MATEF design by linking back to the previously 

identified requirements.  With the design aims established, the main components of the 

framework were conceptualised to meet each of the design aims.  The main components 

identified include a source for real-world malware to provide a greater element of validity to 

the results as possible.  Also included is a component that acts as a source of ground truth 

about the malware is referred to as the Oracle.  This Oracle would determine the expected 

behaviour of a given malware binary. 

Once ingested, a malware binary is passed to two further components, namely a library to 

house the malware binaries and a database to store details concerning each binary.   

Management scripts form another significant component of the MATEF design and are 

responsible for managing the database and library along with the tests themselves, producing 

standardised log files ready for analysis. 

The component that forms the test environment is a collection of virtualised operating 

systems running in parallel.  The choice of operating system is such that it provides a fertile 

an environment as possible for malware to operate and hence provide the ‘best case scenario’ 

for tools under analysis. 

The final component is the analysis part of the MATEF.  The design of this component is 

informed by the aims of the framework as a whole (see section 4.1).  Hence the choice of 

metrics to monitor, the design of the test runs performed and the statistical analysis performed 

are all determined by the objectives.  As a result, two pairs of hypotheses have been identified 

which ask two fundamental questions: “Does changing the execution time affect how many 

artefacts are observed” (see Table 4-2) and “Which of two tools observes more artefacts 

under the same conditions” (see Table 4-3). 

The next chapter applies the methodology outlined and presents a more detailed analysis of 

the results relating to these hypotheses.   
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Chapter 5  Results and analysis 
In the previous chapter the MATEF was designed from the requirements and implemented to 

meet the identified aims using resources available to the research project.  To demonstrate its 

utility, a series of experiments were designed together with an associated analysis strategy. 

This chapter presents the results and subsequent analysis of these experiments to demonstrate 

the analysis and conclusions that can be drawn from data collated using the MATEF.  It 

should be noted that these experiments and subsequent analysis are only examples of what 

can be achieved using the MATEF.  The results of these experiments show how the choice of 

tool can determine the optimum execution time used to monitor malware. 

The chapter opens with some worked examples on how the analysis was performed (5.1).  

After this a summary of the results is presented (5.2), which is then followed by a discussion 

(5.3).  Conclusions are then drawn (5.4) and finally the chapter is summarised (5.5).  

5.1 Worked examples of analysis 

With the Wilcoxon Signed Rank test selected in the previous chapter, what follows are two 

worked examples to demonstrate how the Wilcoxon Signed Rank test was applied to the 

output of two different tools.  The data for these worked examples is taken from the Pilot 

study (see section 4.6.3). 
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5.1.1 Worked example of analysis for Process Monitor 

The paired observation data for the Process Monitor tool (Dataset ID 1 in Table 4-11) was 

loaded in SPSS (IBM, 2016), see Table 5-1 for a sample of the data.  Note the hash values 

here have been shortened for brevity.  

MD5 Hash Expected  Observed 

(1min) 

Abs. Error 

(1min) 

Observed 

(10sec) 

Abs. Error 

(10sec) 

fe40…271d 751 0 751 0 751 

05b4…3ae1 3 3 0 1 2 

7ccf…e04e 9 0 9 0 9 

183e…b7a4 7 0 7 0 7 

Table 5-1 : Sample of data from dataset ProcessMon_1min10sec 

Recall from section 4.2.8 that Hypothesis 1 (H1) is stated as: 

H1.0 Changing the execution time of malware has no significant impact on the number of 

malware artefacts observed by a given tool.  

H1.1 Changing the execution time of malware has a significant impact on the number of 

malware artefacts observed by a given tool. 
 

The two absolute error values from the ProcessMon_1min10sec dataset were supplied to a 

Wilcoxon Signed Rank test.  This produced a rejection of the Null Hypothesis (H1.0):  

 

Figure 5-1 : Worked example 1 (Process Monitor) 
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The effect size (r) is given by: 

!  =  !!   =    2.530333   =   0.1386 

  Equation 5-1 : Effect size for Process Monitor (Pilot study) 

This means that for the Process Monitor tool, the differences between the expected and 

observed number of ports opened during a 1 minute execution time (Median=427) were 

significantly different to the differences between the expected and observed number of ports 

opened during a 10 second execution time (Median=427), T = 28, p = 0.011, r = 0.1386. 
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5.1.2 Worked example of analysis for TCPVCon 

The paired observation data for the TCPVCon tool (Dataset ID 2 in Table 4-11) was loaded in 

SPSS, see Table 5-2 for a sample of the data.  As before, the hash values here have been 

shortened for brevity.  

MD5 Hash Expected  Observed 

(1min) 

Abs. Error 

(1min) 

Observed 

(10sec) 

Abs. Error 

(10sec) 

ff18…e59a 483 0 483 0 483 

4832…3537 10 2 8 0 10 

4c43…af0c 8 7 1 7 1 

5313…688e 1 1 0 1 0 

Table 5-2 : Sample of data from dataset TCPVCon_1min10sec 

As before, the two absolute error values from the TCPVCon_1min10sec dataset were 

supplied to a Wilcoxon Signed Rank test.  This produced a failure to reject the Null 

Hypothesis (H1.0): 

 

Figure 5-2 : Worked example 2 (TCPVCon) 

Calculating the effect size (r) gives: 

!  =  !!   =    1.342
274

  =  0.0811 

    Equation 5-2 : Effect size for TCPVCon (Pilot study) 

This means that for TCPVCon the differences between the expected and observed number of 

ports opened during a 1 minute execution time (Median=456.5) were not significantly 

different to the differences between the expected and observed number of ports opened during 

a 10 minute execution time (Median=456.5), T = 3.0, p = 0.180, r = 0.0811. 

Having described the analysis process with these two worked examples, what follows is a 

more comprehensive summary of the results. 
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5.2 Experimental results 

Prior to presenting a summary of these results here it is worth recapping the hypotheses (H1 

and H2) presented respectively in Table 4-2 and Table 4-3 within section 4.2.8: 

H1.0 Changing the execution time of malware has no significant impact on the number of 

malware artefacts observed by a given tool.  

H1.1 Changing the execution time of malware has a significant impact on the number of 

malware artefacts observed by a given tool. 

Hypothesis 1 

H2.0 There is no significant difference on the number of malware artefacts observed by 

Tool A when compared to Tool B, under the same conditions.  

H2.1 Tool A is able to detect a significantly greater number of artefacts when compared to 

Tool B, under the same conditions. 

H2.2 Tool B is able to detect a significantly greater number of artefacts when compared to 

Tool A, under the same conditions. 

Hypothesis 2 

Recall the malware dataset has been partitioned into binaries identified as repeatable and non-

repeatable (see section 4.2.8).  These hypotheses are only applicable for repeatable malware. 

The experiment results follow and are summarised in Table 5-3 below: 

Table 5-3 : Results relating to Hypothesis 1 and Hypothesis 2 

 

Experiment Test Description Result 

1 1.1 Comparing 1 minute to 5 minute execution times 
of Process Monitor Retain H1.0 

 1.2 Comparing 1 minute to 10 minute execution times 
of Process Monitor Retain H1.0 

 1.3 Comparing 1 minute to 10 seconds execution 
times of Process Monitor 

Reject H1.0 
Propose H1.1 

2 2.1 Comparing 1 minute to 5 minute execution times 
of TCPVCon Retain H1.0 

 2.2 Comparing 1 minute to 10 minute execution times 
of TCPVCon Retain H1.0 

 2.3 Comparing 1 minute to 10 seconds execution 
times of TCPVCon Retain H1.0 

3 3.1 Process Monitor vs TCPVCon, 
run for 10 seconds Retain H2.0 

 3.2 Process Monitor vs TCPVCon,  
run for 1 minute Retain H2.0 

 3.3 Process Monitor vs TCPVCon,  
run for 5 minutes Retain H2.0 

 3.4 Process Monitor vs TCPVCon,  
run for 10 minutes Retain H2.0 
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5.2.1 Experiment 1 - Comparing Process Monitor at different execution times 

To address Hypothesis 1 in Table 4-2 and determine the impact of execution time (if any) on 

the number of artefacts observed by the Process Monitor tool, the distributions were analysed 

in pairs, 1 minute vs 5 minutes and 1 minute vs 10 minutes.  The Wilcoxon signed-rank test 

was applied to each pair of samples and produced the following results: 

Test 1.1 – Comparing 1 minute to 5 minutes of execution time 

The results for the 1 minute vs 5 minutes execution time are as follows:  

 

Figure 5-3 : Test 1.1 Hypothesis Test Summary 

 

Figure 5-4 : Test 1.1 Results summary 

 

The effect size (r) is given by: 

!  =  !!   

Equation 5-3 : Calculating the effect size 

      

where z is the Standardised Test Statistic and N is the number of observations. 

Thus, for Test 1.1, the effect size (r) is 
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!  =  !!   =    1.826829   =   0.0634 

    Equation 5-4 : Effect size for Test 1.1 

These results mean that for Process Monitor the differences between the expected and 

observed number of ports opened during a 1 minute execution time (Median=390) were 

identical to the differences between the expected and observed number of ports opened during 

a 5 minute execution time (Median=390), T = 10, p = 0.068, r = 0.0634. 

 

 Test 1.2 – Comparing 1 minute to 10 minutes of execution time 

The results for the 1 minute vs 10 minutes execution time are as follows:  

 

Figure 5-5 : Test 1.2 Hypothesis Test Summary 

 

Figure 5-6 : Test 1.2 Results Summary 

 

 

 

 

 



Chapter 5  - Results and analysis  Page 124  

 

Applying Equation 5-3, for Test 1.2 mutatis mutandis, the effect size (r) is 

!  =  !!   =    1.357
1056

  =   0.0418 

    Equation 5-5 : Effect size for Test 1.2 

These results mean that for Process Monitor the differences between the expected and 

observed number of ports opened during a 1 minute execution time (Median=386.5) were 

identical to the differences between the expected and observed number of ports opened during 

a 10 minute execution time (Median=386.5), T = 22, p = 0.175, r = 0.0418. 

 

Observation 

Although both Test 1.1 and 1.2 produced a result where the null hypothesis is retained, there 

is a drop in the significance from 0.175 (Test 1.2) to 0.068 (Test 1.1), which is not far above 

the threshold of 0.05. 

In light of this observation, Process Monitor was again used to gather observations on the 

same malware, but this time executing the malware and tool for a period of 10 seconds.  The 

results are presented in Test 1.3. 
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Test 1.3 – Comparing 1 minute to 10 seconds of execution time  

The two absolute error values from the ProcessMon_1min10sec dataset were supplied to a 

Wilcoxon Signed Rank test.  This produced a rejection of the Null Hypothesis (H1.0):  

 

Figure 5-7 : Test 1.3 Hypothesis Test Summary 

 

Figure 5-8 : Test 1.3 Results Summary 

Applying Equation 5-3, for Test 1.3 mutatis mutandis, the effect size (r) is 

!  =  !!   =    2.530333   =   0.1386 

    Equation 5-6 : Effect size for Test 1.3 

These results mean that for Process Monitor the differences between the expected and 

observed number of ports opened during a 1 minute execution time (Median=427) were 

significantly different to the differences between the expected and observed number of ports 

opened during a 10 second execution time (Median=427), T = 28, p = 0.011, r = 0.1386. 
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5.2.2 Experiment 2 - Comparing TCPVCon at different execution times 

Again, to address Hypothesis 1 in Table 4-2 and determine the impact of execution time (if 

any) on the number of artefacts observed by a different tool (TCPVCon), the distributions 

were analysed in pairs, 1 minute vs 5 minutes and 1 minute vs 10 minutes.  The Wilcoxon 

signed-rank test was again applied to each pair of samples and produced the following results: 

Test 2.1 – Comparing 1 minute to 5 minutes of execution time 

The results for the 1 minute vs 5 minutes execution time are as follows:  

 

Figure 5-9 : Test 2.1 Hypothesis Test Summary 

 

Figure 5-10 : Test 2.1 Results Summary 

Applying Equation 5-3, for Test 2.1 mutatis mutandis, the effect size (r) is 

!  =  !!   =    −0.447
675

  =  −0.0172 

    Equation 5-7 : Effect size for Test 2.1 

These results mean that for TCPVCon the differences between the expected and observed 

number of ports opened during a 1 minute execution time (Median=421) were significantly 

different to the differences between the expected and observed number of ports opened during 

a 5 minute execution time (Median=421), T = 1.0, p = 0.655, r = -0.0172. 
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Test 2.2 – Comparing 1 minute to 10 minutes of execution time 

The results for the 1 minute vs 10 minutes execution time are as follows:  

 

Figure 5-11 : Test 2.2 Hypothesis Test Summary 

 

Figure 5-12 : Test 2.2 Results Summary 

Because the Standard Error (SE) is zero, the Test Statistics (z) cannot be calculated and thus 

the effect size cannot be determined.  Furthermore, an SE value of zero indicates the median 

of the differences between the two distributions (the 1 minute and 10 minute execution times) 

is also zero, i.e.: there is no change between the two distributions. 
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Test 2.3 – Comparing 1 minute to 10 seconds of execution time  

The results for the 1 minute vs 10 seconds execution time are as follows:  

 

Figure 5-13 : Test 2.3 Hypothesis Test Summary 

 

Figure 5-14 : Test 2.3 Results Summary 

Applying Equation 5-3, for Test 2.3 mutatis mutandis, the effect size (r) is 

!  =  !!   =    1.342
274

  =  0.0811 

    Equation 5-8 : Effect size for Test 2.3 

These results mean that for TCPVCon the differences between the expected and observed 

number of ports opened during a 1 minute execution time (Median=456.5) were not 

significantly different to the differences between the expected and observed number of ports 

opened during a 10 minute execution time (Median=456.5), T = 3.0, p = 0.180, r = 0.0811 
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5.2.3 Experiment 3 - Comparing Process Monitor and TCPVCon  

To address Hypothesis 2 in Table 4-3 and inform the practitioner’s choice of tool, 

distributions for the same execution time from each tool were analysed for the execution 

times of 10 seconds, 1 minute, 5 minutes and 10 minutes.  The Wilcoxon signed-rank test was 

again applied to each pair of samples and produced the following results: 

Test 3.1 – Comparing Process Monitor and TCPVCon for 10 seconds of execution time 

The results for the 10 seconds of execution time are as follows:  

 

Figure 5-15 : Test 3.1 Hypothesis Test Summary 

 

Figure 5-16 : Test 3.1 Results Summary 

Because the Standard Error (SE) is zero, the Test Statistics (z) cannot be calculated and thus 

the effect size cannot be determined.  Furthermore, an SE value of zero indicates the median 

of the differences between the two distributions (Process Monitor and TCPVCon run for 10 

seconds of execution times) is also zero, i.e.: there is no change between the two distributions. 
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Test 3.2 – Comparing Process Monitor and TCPVCon for 1 minute of execution time 

The results for the 1 minute of execution time are as follows.  Note in the Summary below, 

the field AbsDiff_127 refers to the absolute differences observed by Process monitor and field 

AbsDiff_129 refers to the absolute differences observed by TCPVCon.  

 

Figure 5-17 : Test 3.2 Hypothesis Test Summary 

 

Figure 5-18 : Test 3.2 Results Summary 

Applying Equation 5-3, for Test 3.2 mutatis mutandis, the effect size (r) is 

!  =  !!   =    −1.908994   =  −0.0605 

    Equation 5-9 : Effect size for Test 3.2 

These results mean that when comparing Process Monitor to TCPVCon, the differences 

between the expected and observed number of ports opened during a 1 minute execution time 

were not significantly different to each other, T = 63.5, p = 0.056, r = -0.0605.  Note however, 

the significance value (p) is close to being significant, i.e.: < 0.05 in value. 
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Test 3.3 – Comparing Process Monitor and TCPVCon for 5 minutes of execution time 

The results for the 5 minutes of execution time are as follows. Note in the Summary below, 

the field AbsDiff_135 refers to the absolute differences observed by Process monitor and field 

AbsDiff_131 refers to the absolute differences observed by TCPVCon.  

 

Figure 5-19 : Test 3.3 Hypothesis Test Summary 

 

Figure 5-20 : Test 3.3 Results Summary 

Applying Equation 5-3, for Test 3.3 mutatis mutandis, the effect size (r) is 

!  =  !!   =    1.414496   =  0.0635 

    Equation 5-10 : Effect size for Test 3.3 

These results mean that when comparing Process Monitor to TCPVCon, the differences 

between the expected and observed number of ports opened during a 5 minute execution time 

were not significantly different to each other, T = 3.0, p = 0.157, r = 0.0635 
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Test 3.4 – Comparing Process Monitor and TCPVCon for 10 minutes of execution time 

The results for the 10 minutes of execution time are as follows.  Note in the Summary below, 

the field AbsDiff_137 refers to the absolute differences observed by Process monitor and field 

AbsDiff_133 refers to the absolute differences observed by TCPVCon.  

 

Figure 5-21 : Test 3.4 Hypothesis Test Summary 

 

Figure 5-22 : Test 3.4 Results Summary 

Applying Equation 5-3, for Test 3.4 mutatis mutandis, the effect size (r) is 

!  =  !!   =    −1.0
554

  =  −0.0425 

    Equation 5-11 : Effect size for Test 3.3 

These results mean that when comparing Process Monitor to TCPVCon, the differences 

between the expected and observed number of ports opened during a 10 minute execution 

time were not significantly different to each other, T = 0.0, p = 0.317, r = -0.0425 

  



Chapter 5  - Results and analysis  Page 133  

 

5.3 Analysis and discussion 

Experiment 1 comprised of three tests relating to Hypothesis 1 (see previous section), which 

sought to determine the impact of execution time (if any) on the number of artefacts observed 

by the Process Monitor tool.  For the Process Monitor tool, the results indicated that 

execution time has no statistically significant effect on the differences between the expected 

and observed number of ports opened during execution time until the execution time is 

reduced below one minute to ten seconds.  Hence the optimal execution time to observe ports 

opened by malware using Process Monitor is between 10 seconds and one minute.  

Furthermore, there is no perceived benefit in executing Process Monitor to observe the 

number of ports opened by malware for more than one minute.  

This result contrasts with the TCPVCon tool (Experiment 2) whose results indicated that 

execution time has no statistically significant impact on the outcome under the same range of 

execution times. Hence, Hypothesis 1 cannot be generalised to all tools, as it is subject to the 

tool being used.  However, this result demonstrates that the MATEF has provided an 

empirical methodology to compare the impact of execution time on different tools.  The 

knowledge gleaned from such tests can be therefore be used by a practitioner to inform their 

choice of tool when conducting malware analysis.  Furthermore, this result means that when a 

practitioner obtains a new tool, the MATEF can be used to specify parameters, such as how 

long the tool must be run for to obtain the optimal number of artefacts. 

 

The results for Experiment 3 (Hypothesis 2) indicated that there is no statistical difference 

between using Process Monitor over TCPVCon as a tool to capture port related artefacts. 
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5.4 Conclusions 

It has been demonstrated that the MATEF can provide a systematic approach to observing 

malware artefacts under different conditions with different tools.  Several control variables 

were used during the tests conducted.  These include the operating environment, the malware 

binaries, the tools tested and the variability due to random anti-forensic techniques.  By 

controlling these variables it has been possible to isolate variations in the results reported by 

tools due to execution time.  The results identify an optimal execution time for a tool used to 

study malware artefacts as well as comparing two such tools.   

The results also indicate that changing the execution time of a tool used to monitor activity 

resulting from malware can, depending on the tool used, have an effect on number of artefacts 

observed.   

The impact of execution time on the results obtained from tools used for malware forensics 

has not been studied previously. For example, the five-phase model proposed by Malin et al. 

(2008) makes no reference to execution time (see section 2.2).  In the absence of any 

guidance or knowledge on this, practitioners would be selecting and running tools without 

any knowledge of the impact their choice of tool or execution time could have on their 

results. 

Therefore, identifying an appropriate tool can reduce the time required to observe the effect 

of malware and hence contribute towards reducing the time required to undertake a malware 

forensic investigation. 

5.5 Chapter summary 

This chapter outlined the results obtained from applying the analysis strategy presented in the 

previous chapter and presented the overall results obtained from using the MATEF.  It 

concluded that the choice of tool used could have an effect on the execution time used to 

monitor malware.  Furthermore, by formulating additional hypotheses regarding different 

aspects of malware analysis tools, the MATEF can be used to provide a basis for trusting 

malware forensic analysis. 

The next chapter will define the success criteria for the MATEF and apply this to evaluate the 

MATEF against a variety of criteria, such as the aims and requirements of the project. 
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Chapter 6  Evaluation of the MATEF 
 

In the preceding chapters the need for trusted practice in the use of software tools used in 

malware forensics has been identified.  The requirements to address this gap have been 

specified and a framework has been designed and implemented.  In addition, the use of the 

framework has been demonstrated to evaluate certain aspects of the malware analysis method 

(i.e. the impact of changing the tools used and their execution times).  It still remains to 

evaluate the framework itself both from a functional perspective against the requirements and 

a quality perspective in terms of performance and resource utilisation. 

Therefore, this chapter evaluates the MATEF against the original aims, requirements and 

research question.  The chapter opens by identifying the evaluation criteria (6.1) and defining 

what success looks like before moving on to evaluate the MATEF against the requirements 

and aims (6.2).  Evaluations in terms of performance (6.3) and the Research Question (6.4) 

are also considered before providing a discussion on the limitations of the framework (6.5).  

Conclusions and further work are presented (6.6) prior to a summary of the chapter (6.7). 

6.1 Evaluation criteria 

Prior to evaluating the framework it is useful to consider what criteria can be used to evaluate 

the level of success attained by the MATEF.  Hence, understanding what criteria should exist 

in a successful framework will be considered prior to examining each of these criteria in turn. 

A starting position to evaluate the MATEF is to consider how well it has met the 

requirements of the framework (see section 3.3) and further, how well it has achieved the 

aims of the framework (as set out in section 4.1).   

A further measure is to consider how well the MATEF has addressed the fundamental 

motivation for the research, expressed through the Research Question.  In addition, an 

assessment on the performance of the framework can be applied in terms of the speed and 

resource utilisation.  Finally, an exercise in identifying any areas of improvement in the 

design and implementation of the MATEF will be undertaken.  Wherever possible, 

mitigations for these are presented.  Each of these criteria is considered in the sections that 

follow. 
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6.2 Evaluate against framework requirements and aims 

Requirements 

The requirements for the MATEF are divided into external and internal requirements (see 

sections 3.3.1 and 3.3.2 respectively).  The MATEF has been evaluated against these 

requirements, the conclusions of which are summarised in Table 6-1 and Table 6-2 

respectively. 

 

# Requirement Met / Not 

met 

Rationale for decision 

1 Handling of malware and 

what it may access should 

be controlled. 

Met Malware binaries are handled via scripts on 

an internal network, isolated from the rest 

of the University/outside world. 

2 Output of tested tool must 

be admissible. 

Not met This is untested as the MATEF has not yet 

been applied to a live case. 

3 Malware analysis tool 

output must be ‘reliable’ 

Met The results of the analysis performed on the 

MATEF output are based on established 

statistical techniques. 

4 Novel methods must be 

validated 

Not met Given there is no ground truth, this is not 

easily achieved. 

5 The theory/technique should 

be peer reviewed or 

published 

Met The MATEF design, implementation and 

results are published in this dissertation 

6 Method should be a 

generally accepted 

Not met It is too early in the project’s lifecycle for 

the MATEF to have been accepted by 

others yet. 

7 Use a VM Met Virtual machines are used extensively in 

the MATEF 

8 Network service provision Met Network services are provided through a 

open source simulated network services. 

9 Use vulnerable environment Met The Windows XP operating system is used 

to provide a fertile environment for the 

malware. 

Table 6-1 : External requirements evaluation 
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# Requirement Met / Not 
met 

Rationale for decision 

1 Black box testing approach Met Closed source software tools have been 
used throughout. 

2 Malware lab requirements: 
VM Only approach 

Met Virtual machines are used extensively in 
the MATEF 

3 Malware lab requirements: 
Single operating system 

Met A single operating system has been 
implemented throughout. 

4 Malware lab requirements: 
Configure the OS to be 
malware friendly 

Met The Windows XP operating system is used 
to provide a fertile environment for the 
malware. 

5 Accept real-world malware 
from any source 

Met The MATEF can accept malware from any 
source as it simply requires the binary 
file(s) to be placed in a specified folder 

6 Storing & handling 
malware:  
Avoid cross contamination 

Met Malware files are stored in encrypted 
password protected ZIP files.  Prior to 
running a test a folder accessible to the VM 
is cleared and the malware file is decrypted 
an dcopied into this folder. 

7 Storing & handling 
malware:  
Extract via automation 

Met Malware submissions to the Oracle for 
analysis and the decryption process referred 
to above are automated via scripts. 

8 Storing & handling 
malware:  
Restrict access to malware 

Met Malware is stored in a folder with restricted 
permissions.  Furthermore, as stated above, 
each malware binary is encrypted in a 
password protected ZIP file. 

9 Metrics: 
Determine the expected 
quantity of artefacts from an 
independent source 

Met Each malware binary is submitted to the 
Oracle for analysis.  This analysis provides 
(amongst other things) the expected 
number of artefacts. 

Table 6-2 : Internal requirements evaluation 

Commencing with the external requirements summarised in Table 6-1, six of the nine external 

requirements were met.  These were achieved largely through the design of the framework.  

For example, the handling requirement (Requirement 1) is satisfied through the automated 

handling via a script (minimising the effects of human error) and the network configuration.  

Other requirements met by the design include the use of VMs (Requirement 7), network 

services provision (Requirement 8) and a fertile and vulnerable environment for malware 

(Requirement 9).   
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The design of the framework also contributed to the integration of the scientific method, 

satisfying number three of the external requirements (see Table 6-1).  The rationale of how 

this requirement has been met is outlined in Table 6-3 

# Attribute Rationale for attainment 

1 Repeatable • Tests can be re-run with the same data 

• VMs are reverted to same state 

• Use of automation minimises human error in repetition 

2 Reproducible • Framework published in this research 

• Malware library can be made available (subject to any restrictions) 

• Source code to be place on Open Research Data archive 

3 Testable • Artefacts are measurable (i.e.: quantifiable observations) 

• Malware with properties relevant to hypothesis can be selected 

4 Controllable • Test design can select: Tool, Network services, Execution time, 
Malware by property (e.g.: Network aware, Autostart on boot) 

• Design allows for use of different VM guest operating system 

5 Unbiased • Malware is randomly selected (with/without a specified property) 

• Malware can be imported from different sources 

• Modular design allows for use of different Oracle  

Table 6-3 : Rationale for trusted practice attainment 

The reproducibility attribute also satisfies the requirement that the theory/technique should be 

peer reviewed or published (Requirement 5). 

Nonetheless, three of the nine external requirements have not been met.  Arguably, this 

renders the implementation of the MATEF only a partial success.  However, a counter 

argument is that the reasons for this are primarily as a result of matters of scope and the 

fledgling nature of the MATEF as a research project, which we discuss below. 

Concerning scope, the validation (Requirement 4, Table 6-1) of any software tool used to 

examine malware is difficult, but not impossible to achieve.  Establishing ground truth 

concerning the artefacts produced by malware requires multiple forms of analysis concerning 

the capabilities of malware.  Traditionally, this is a labour intensive process and usually 

reserved only for malware that warrants a deeper understanding of its behaviour, such as seen 

with Stuxnet (Falliere, Murchu & Chien, 2011). Hence, this level of knowledge about a 

malware binary (arguably closer to ground truth) is not easily accomplished fully at scale on 

large numbers of malware, despite attempts to automate the process (Farley, 2015).  

Therefore, establishing the ground truth concerning malware behaviour is beyond the scope 
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of the MATEF, which is not a malware analysis tool but instead a framework to evaluate the 

tools used to perform malware analysis. 

The fledgling state of the research impacts on the requirement for admissibility (Requirement 

2, Table 6-1), as the MATEF is too new to have been applied to a live investigation that has 

subsequently gone to court.  Consequently, this is not a failing of the framework; it simply 

remains to be evaluated once the MATEF is applied to evidence submitted to court. 

Similarly, it is too early in the project’s lifecycle for the MATEF to have been accepted by 

other practitioners or academics within the community.  Hence, the requirement for general 

acceptance (Requirement 6, Table 6-1), is one that can only be evaluated once there has been 

an opportunity for the MATEF to be adopted for use by others. 

Turning to the internal requirements, summarised in Table 6-2, it can be seen that each of the 

internal requirements have been met.  Almost all of these requirements were satisfied through 

the design.  The framework assumes zero knowledge about the internal operation of the tools 

tested, thereby satisfying Requirement 1.  Other requirements met by design include the 

extensive use of VMs (Requirement 2), limiting the framework to a single operating system 

(Requirement 3), providing a malware friendly environment (Requirement 4) and being able 

to accept malware from any source by simply importing samples from a specified folder 

(Requirement 5).  The need to avoid cross-contamination of malware binaries (Requirement 

6) is also met through the design by using encrypted zip files and using scripts to automate 

the process of deleting all the files in a folder prior to decrypting the binary for use 

(Requirement 7).  The design of the framework also stipulates the folder structure that houses 

the malware binaries (the Malware Library, see section 4.3.2) has restricted permissions 

allocated to it.  Furthermore, the encrypted zip files containing the malware are also password 

protected (Requirement 8). 

The final internal requirement to determine the expected number of artefacts is achieved 

through both the use of an external system (the Oracle, see section 4.3.5) and a design feature 

whereby an alternative Oracle can be used in the event the chosen one is no longer available. 

The above requirements were developed to address the aims of the framework.  Hence it is 

worthwhile also considering how well these aims have been addressed.   
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Aims 

To recap, the aims from section 4.1 were: 

1. Use real-world malware 

2. Evaluate a tool’s ability to detect malware artefacts 

3. Mitigate against anti-forensic techniques 

4. Produce software product to test tools 

The first of the aims was to use real-world malware.  This aim is achieved, as the design of 

the MATEF includes the use of such malware sourced from VirusTotal (2010) (see section 

4.3.1).   

The second aim was that the MATEF should evaluate a tool’s ability to detect malware 

artefacts.  It is argued that the framework also achieves this aim, as it records a given tool’s 

observed number of artefacts against the expected number of artefacts, producing a measure 

of ‘error’.  The results from this research indicate that subsequent statistical analysis can also 

provide a measure of statistical significance when comparing errors from one set of operating 

conditions to another, e.g.: different execution times. 

Consideration for the mitigation against anti-forensic techniques forms the third aim.  Whilst 

completely meeting this aim is outside the scope of this research (see section 2.4), there has 

been room to mitigate this in part.  The discussion on proposed metrics (section 3.3.2) 

identified the use of quantities of artefacts rather than their values to avoid variation down to 

random behaviour.  Examples include counting the number of files created, instead of 

recording randomly generated filenames; and counting the quantity of ports opened instead of 

recording the number (identifier) of the port, which is again highly variable.  Hence this aim 

has been partially met. 

The final stated aim of the framework is to produce a software product to implement the 

framework into a useable product that can be put into practice.  This aim has also been met, 

due to the existence of the code and the research results, available in the Open University 

Research Data Archive.  

Having considered the requirements and aims, it is useful to identify a number of 

opportunities to develop and improve the MATEF.  The first of these is performance. 

6.3 Performance evaluation of the MATEF 

Two areas where the performance of the MATEF could be evaluated are its speed and 

resource utilisation.    
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Speed 

The MATEF has been developed from a functionality perspective and so has room to improve 

the speed with which it produces results.  For example, selecting 4,800 malware binaries to 

run in parallel across 60 VMs translates to each VM being prepared, booted, run and reverted 

80 times to execute each malware binary just once.  A list of test runs performed is provided 

in APPENDIX B where it can be seen that executing the malware for 1 minute with Process 

Monitor, for example, took an average of 15 hours and 26 minutes (or 926 minutes) to 

complete a Test Run (see Tests 127, 126 and 114).  A Test Run is defined here as the process 

of completing the testing of all selected malware binaries, which in this example is 4,800 

binaries.  This time is reproduced in column 2 of Table 6-4.  

To distribute the load on the virtual machine manager, each VM was initially started in a 

staggered fashion, using an initial delay made up of multiples of 10 seconds (denoted by ‘D’ 

in Figure 6-1).  This means that VM60 was subject to the longest delay in starting, which was 

(60-1)*10 = 590 seconds or approximately 10 minutes. 

 

Figure 6-1 : Test Run space for executing 4,800 binaries 

The time to complete the Test Run is comprised of this initial maximum delay of 10 minutes 

plus the time to execute the 80 tests that follow.  By subtracting this delay from the total Test 

Run time, it is possible to calculate the length of each of these individual tests (referred to 

here as a ‘VM Test’), see column 3 of Table 6-4. 

To illustrate this, return to the example of using Process Monitor running on VM60 to 

observe the malware for 1 minute; the Test Run (TR) time is 926 minutes (see above).  Hence 

the time to complete all 80 tests (Test time) is 926 – 10 = 916 minutes, see Figure 6-2. 

Given there are 80 VM Tests run sequentially in the Test time, each VM Test therefore 

requires 916 / 80 = 11.45 minutes to complete, see Row 3, Columns 3 and 4 of Table 6-4. 
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Figure 6-2 : Example timings for Process Monitor on VM60 running for 1 min 

 

Breaking this time down further, each VM Test comprises five high level stages, see Figure 

6-3.    

 

Figure 6-3 : Breakdown of VM Test 

 

The three phases identified in Figure 6-3 are described as follows: 

Pre-Test phase (A): This is the time taken to complete the Prepare Test and Power on VM 

stages.  The former of these identifies the artefacts for the malware 

under test, locates the folder where the malware is stored in the 

Malware Library, copies this to the working folder and finally copies 

the batch files to be used by the VM to control the tool under test (see 

Pseudocode 2 in section 4.3.4).  The latter Power on VM stage simply 

considers the time taken to power on the VM. 

Duration phase (B): This is the execution time of the malware, as specified by the user, see 

column 1 of Table 6-4.   

Test 60.1.............................. DD D

Process Monitor running for 1 min on VM 60

Test 60.80.....................................

(VT) VM Test

(TR) Test Run 

Key
D = VM Start delay

10 s 10 s 10 s

Delay time = (60-1)*10 s = 590 s = 10 min

TR time = 15 hr 26 min = 926 min

Test time  =  TR time - Delay time  =  926 - 10  =  916 min

VT = Test time / Num VMs = 916 / 80 = 11.45 min

Prepare Test Power on VM Execute Tool then 
malware Revert VM Copy log data

Start of Test End of Test 

(B) Duration (A) Pre-Test (C) Post-Test 
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Post-Test phase (C): This is the time taken to complete the Revert VM and copy log data 

stages.  The former stage (Power on VM) simply considers the time 

taken to revert the VM.  The latter stage accounts for the time taken to 

rename the log file (to a name that identifies the VM and test number) 

and copy this log file to another folder for subsequent analysis (see 

Pseudocode 2 in section 4.3.4). 

 

Subtracting the malware execution time (marked ‘B’ in Figure 6-3) from the VM Test time 

results in the time required to complete the Pre-Test and Post-Test phases (i.e.: the sum time 

for A+C in Figure 6-3).  Applying this to the example of Process Monitor being used to 

observe the malware for 1 minute gives an elapsed time of 11.45 - 1 = 10.45 minutes for this 

sum time of A+C; see row 3, column 5 of Table 6-4.   

 

	 	 1	 2	 3	 4	 5	

	 Tool	
Execution	
time	of	
malware	

Avg	Test	
LENGTH	
(HH:MM)	

Avg	Test	
LENGTH	
(mins)	

VM	Test	
Time	
(mins)	

Pre+Post	
Time		
(mins)	

1	 Process	Monitor	 10	sec	 13:31	 801	 10.01	 09.85	

2	 TCPVCon	 10	sec	 13:11	 781	 09.76	 09.59	

3	 Process	Monitor	 01	min	 15:26	 916	 11.45	 10.45	

4	 TCPVCon	 01	min	 13:09	 779	 09.74	 08.74	

5	 Process	Monitor	 05	min	 21:44	 1294	 16.17	 11.17	

6	 TCPVCon	 05	min	 20:37	 1228	 15.34	 10.34	

7	 Process	Monitor	 10	min	 22:48	 1358	 16.98	 06.98	

8	 TCPVCon	 10	min	 24:17	 1447	 18.09	 08.09	
Table 6-4 : Average test times 

 

Note: See the next page for a description of these column headings. 
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Meaning of column headings: 

Column Description 

1 The time duration the malware binary was executed for, depicted by stage B in 

Figure 6-3. 

2 The average of the time taken to complete THREE Test Runs under the same 

conditions.  Represented in HH:MM. 

3 As column 2, but accounts for (subtracts) the longest delay in starting VM60, i.e.: 

10 minutes.  Represented in minutes. 

4 The average time taken to complete ONE VM Test, depicted by the sum of the 

time taken to complete stages A, B and C in Figure 6-3. 

5 The time taken to complete stages A and C in Figure 6-3.  Calculated by 

subtracting column 1 from column 4.  Represented in minutes. 

The Pre-Test and Post-Test processing time (column 5 of Table 6-4) identifies what is 

approximately a 10 minute overhead per VM Test, which in Test Runs with large samples, 

adds a significant cost to the processing time.  In the best-case scenario with a zero overhead 

for a sample size this large, the Test Run time for a 1 minute VM Test would be the initial 

maximum delay of 10 minutes plus the time to execute the 80 tests (each lasting 1 minute) 

that follow, ie: 10 + (80 * 1) = 90 minutes.  

There are two areas where the VM Test time could be reduced.  The first of these would be by 

reviewing the Prepare Test stage, see Figure 6-3.  The code that operates in this stage makes 

multiple calls to the malware database to retrieve artefact information (see Pseudocode 2 in 

section 4.3.4).  The code also has a high level of logging in operation that inevitably will have 

an impact on the speed of code execution.  This code could therefore be reviewed and 

optimized. 

The second area where the Test Run time could be reduced would be to increase the number 

of VMs available for the test.  The MATEF is designed to be extensible and could thus be 

configured to use a larger number of VMs, thereby changing the testing space depicted in 

Figure 6-1.  For the same number of malware binaries to be examined, fewer than 80 VM 

Tests would need to be conducted if there were more than 60 VMs available. 

Alongside these speed issues, recall from above that the MATEF can also be evaluated in 

terms of its resource utilisation.    
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Resource utilisation 

For the MATEF to operate effectively it requires several resources. In the first instance, it 

requires a virtualised environment in which to operate.  The MATEF uses an open design to 

make it as portable as possible.  Hence although it is currently implemented within a 

VMWare solution (see section 4.3.6), any virtualised environment that can be automated via 

scripts will suffice.  The MATEF is also extensible, as subject to available resources, 

additional VMs can be added to improve performance.  

Disk space 

The disk space requirements for the MATEF are largely subject to the given implementation 

in place.  The installation used for this research consumes disk space as summarised in Table 

6.5.  

 

The artefact files comprises a list of all the artefacts expected for all of the malware in a Test 

Run and the sample path files contain the full path to the malware binary to be extracted.  

These are generated at the commencement of a Test Run and are formed from multiple 

queries made to the Malware Database.  Originally, this data was queried during the 

individual VM Tests, but this was found to slow the testing process down, hence these queries 

are now made in advance of the individual VM Tests.  

Element Disk space (Total) Disk space (per VM Test)1 
Malware binaries2	 61 GB - 
Malware artefacts DB 310 MB - 
MATEF scripts < 1 MB - 
Oracle Reports 5.1 GB - 
Tool log files3 120 GB 100 MB 
Artefact files4 - 22 MB 
Sample Path Files5 - 18 MB 
TOTAL 186.4 GB  
Table 6-5 : MATEF disk space usage 

Notes for Table 6-5: 

1 Figures based upon a 10 second VM Test using TCPVCon 

2 Refers to entire population (over 350,000) held in gzipped files 

3 Refers to the gzipped text based log files produced by each tool 

4 List of all the artefacts expected for all of the malware in a Test Run 

5 Files that contain the full path to the malware binary to be extracted 
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The Oracle 

Another resource the MATEF is dependent on is an Oracle to provide the point of reference 

for the tools under evaluation.  Again, the design of the MATEF is such that it is modular, so 

if one Oracle becomes unavailable another can be ‘plugged in’ as an alternative. 

Despite this flexibility, the supply of Oracle reports feeding into the MATEF is outside the 

scope of the MATEF design.  The Oracle provider dictates both the rate at which malware 

binaries can be submitted and the subsequent reports are provided.   This is anticipated to be 

more of a challenge when implementing a fresh installation of the MATEF where the 

malware used is such that it has not been previously stored on a MATEF framework and 

hence is not available to be shared.  This is less of an issue for an on-going and established 

implementation with a large population of malware and associated Oracle reports.  

However, this issue can be addressed either by developing an in-house Oracle or by 

integrating an existing solution, such as the Cuckoo Foundation (2016) sandbox.  

Furthermore, it may be conceivable to establish a Service Level Agreement (SLA) with an 

existing online malware analysis platform provider.   

Maintenance 

The MATEF requires several fundamental maintenance operations to perform a test and 

undertake analysis.   

From a testing perspective, there are three fundamental maintenance operations to perform a 

test and one maintenance operation to undertake analysis.  Malware must first be sourced, 

then submitted to the Oracle and finally imported into the MATEF for subsequent 

deployment during testing.  Depending on any arrangements with the source and the security 

policy in place at the organisation where the MATEF is implemented, all three of these steps 

can be automated.   

The implementation used for the first of these three operations was such that a feed of 

malware from the source VirusTotal (2010) was manually enabled for a limited time period 

and upon request only.   Furthermore, delivery of the feed was only possible via email to an 

externally hosted account, due to security restrictions in place at the University. 

Uploading the malware to the Oracle for the second operation was even more challenging for 

this research, as this essentially meant that the University would effectively be distributing 

malware outside of its own network, potentially making it liable for any issues that might 

arise if appropriate measures were not put into place.  Hence controls implemented included 
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the use of encrypted files copied to an Internet facing computer located outside the main 

network on the University’s demilitarised zone (DMZ).  Access to this location was restricted 

via credentials supplied over an SSL connection to a single authorised computer (the Oracle 

server), which then downloaded the encrypted malware from the university’s DMZ server. 

The final test related maintenance operation concerns adding a new tool to the MATEF for 

testing.  Alongside the tool binary itself, a DOS batch file must be created to initiate and 

shutdown the tool (where available) and provide any required command-line arguments.  This 

was found to be a relatively straightforward operation to implement and was only limited by 

the available command-line options available for the tool. 

From an analysis perspective, the MATEF currently requires that the output of the tool must 

be analysed to identify ‘footprints’ of given activity.  For example, the tool may differentiate 

and report differently on the creation of a new file that has resulted from a ‘Save as’ operation 

compared to a ‘File … New’ operation.  Once understood, the interpretation of the log file 

must be coded into a Python file, referred to as the tool wrapper (see Section 4.3.8). 

In practice, it was not always possible to interpret the output of a tool.  With many of the tools 

having little or no documentation provided and even less (if any) technical support, this could 

delay (or even prevent) the use of the given tool within the MATEF.  

Statistical analysis software 

As stated in Section 4.3.8, the statistical analysis component uses a script in conjunction with 

a wrapper to read the log file of the tool used in the test.   The product of this script is a 

comma separated value (CSV) file. 

The current implementation of the MATEF analyses this file using the statistical software 

SPSS (http://www.ibm.com/spss).  This is a manual process and requires skills and 

knowledge in using SPSS.  Furthermore, skills and knowledge in the interpretation of the 

statistical results are needed to obtain an informed view of the tool that has been tested.  

Much of this analysis could be automated to remove the dependence on SPSS and possibly 

some of the manual statistical interpretation of the results. 

Having considered the areas where the performance of the MATEF could be improved, an 

evaluation against the Research Question will now be considered. 
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6.4 Evaluation against the Research Question 

By way of a reminder, the Research Question in section 1.2 stated: 

Can a systematic basis for trusted practice be established for evaluating malware 

artefact detection tools used within a forensic investigation? 

How well the MATEF addresses this question can be approached by first recalling from 

section 3.3 that trusted practice is defined as the trust placed on the reliability of the evidence 

tendered.  Recall further that the Forensic Regulator’s Codes of Practice and Conduct (2016) 

provides a framework by which to establish such practice and is implemented through a 

number of requirements.  As argued in section 6.2, these requirements have largely been met. 

In terms of MATEF’s ability to evaluate malware artefact detection tools, this has been 

successful, in that a means to quantify and differentiate the results obtained from different 

software tools has been achieved.  The methodology taken can also be argued to be 

systematic in nature, as dependent variables have been identified and monitored as a result of 

making changes to independent variables throughout. 

Therefore, the MATEF provides a systematic means by which to evaluate tools and provide 

data to inform a practitioner’s decision in their choice of tools for a forensic investigation 

involving malware.  Given a scientific methodology to obtain this data was previously absent, 

the MATEF is the first to establish a methodical approach to increase the trust placed in 

software tools used in the practice of malware forensics. 

Despite these positives, there are several opportunities to develop and improve the MATEF.  

These are explored in the next section covering the limitations of the MATEF. 

6.5 Limitations of the MATEF 

This section presents what are anticipated as the main criticisms of the research.  Where 

possible, each of the criticisms highlighted is addressed.  The latter half of the section 

presents thoughts on contingencies in the event the primary research direction becomes 

unattainable. 

Representative malware population 

The implementation of the MATEF used (see Section 4.5) saw the exclusion of malware that 

was not repeatable.  This might be considered to reduce the representativeness of the malware 

used to test the tools.  Furthermore, it could also be argued that the rapid and relentless 

growth in malware means the MATEF approach does not consider a malware population that 
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is representative at the time of testing.  However, it is also argued that much of modern 

malware is adapted from existing code and so radically new behaviour is rare (de la Cuadra, 

2007).  Alzab (2015) agrees, stating that malware authors are “recycling existing malware” 

using obfuscation techniques instead of writing new code.  A study by Bayer et al. (2009) 

identified similarities of behaviour between 901,294 samples of malware.    

Furthermore, referring to the Aims of the research (Section 1.2), the research seeks to provide 

a methodology to evaluate malware analysis tools, hence updating the malware dataset prior 

to performing an analysis would address this criticism.  Thus the design and utility of the 

MATEF is independent of the choice of malware used to populate its database. 

Reproducibility concerns 

It is possible that the results for a given tool will vary between different organisations using 

this methodology.  This is not an uncommon problem and has been identified in a 

conventional computer forensics context by Garfinkle et al. (2009).  It is also recognised by 

the VIM standard (JCGM, 2008), which defines this situation in terms of reproducibility.  

Thus, rather than being a ‘problem’, this phenomenon is considered a useful by-product of the 

framework that would facilitate any future cross-lab study into reproducibility of tools. 

Oracle (third-party) dependency 

A key element of the MATEF design is the malware database and its representative content.  

The maintenance of this database is dependent on access to third-party databases storing 

artefact details in proprietary formats.   This reliance on a third-party may be identified as a 

weakness of the framework.  The intention in the design however is to build redundancy into 

the system by designing the database to be populated from multiple sources, thereby 

spreading the risk of source availability.  The disadvantage of this approach is that some 

sources provide a richer level of artefact detail than others. 

Accuracy of the Oracle  

Criticism may also be directed at the accuracy of the third party providing malware artefact 

information.  Online sandbox tools may only execute samples once and for no more than a 

maximum time duration before terminating (Bayer, Habibi, Balzarotti, Kirda & Kruegel, 

2009).  Furthermore, malware can typically behave differently each time it is run (Moser, 

Kruegel & Kirda, 2007) or not run at all if it detects a monitored environment.  There is 

therefore an unknown level of doubt or uncertainty in the accuracy of the artefacts reported 

by the third-party sandbox tool.  This can be addressed to some degree by validating results 

against well-documented malware samples such as those belonging to the Zeus family. 



Chapter 6  - Evaluation of the MATEF  Page 150  

 

Testing against zero-day malware 

Young or zero-day malware may not be in any of the online source databases at the time a 

tool is tested.  Hence if there is a requirement to test a tool against a specific sample of 

malware identified on a suspect’s computer, this may not be possible until it has been 

submitted to one or more online analysis engines.  Under these circumstances a decision 

would need to be made to submit it to one or more online sandboxes for analysis.  However 

this decision must be taken in light of the associated risks, such as alerting the malware author 

of its discovery (see section 4.2.5).  If the analysis is being performed around the time of the 

trial, then this is likely to be many months since the alleged offence.  Under these 

circumstances, the likelihood that the malware is not been reported is much smaller.  

Alternatively, the sample could be analysed with an offline Oracle such as the Cuckoo 

Foundation (2016) sandbox. 

Having reviewed the different approaches to evaluating the MATEF, these will be brought 

together to identify further work. 

6.6 Evaluation conclusions and further work 

In the previous section it has been shown that although the MATEF meets all of the internal 

requirements (see Table 6-2), three of the external requirements (admissibility, validated and 

generally accepted) were not met, see Table 6-1.  Furthermore, whilst most of the aims were 

achieved, the anti-forensic mitigations were only partly met.  See the discussion under further 

work below. 

As set out below, there is scope for further improvement of the MATEF, however it 

nonetheless does provide a systematic means by which to evaluate tools and provide data to 

inform a practitioner’s decision in their choice of tools for a forensic investigation involving 

malware, thereby addressing the Research Question (section 1.2).  Before considering the 

areas for further work it is worth highlighting those areas where it is felt there is little or no 

room for improvement. 

Areas unlikely to be improved  

The evaluation has identified some areas of MATEF that are realistically not likely to be 

improved upon.  The inclusion of a command-line interface (CLI) to the large number of 

existing tools that do not have a CLI for both the execution of the tool and the export of its 

log file are outside the control of the MATEF.  
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Another area is the process of adding a new tool, which requires the manual inspection of the 

tool’s output to encode this logic into a wrapper file.  The lack of any standard format in the 

output of similar tools results in a diverse range of output formats from tools, each of which 

need to be linked to known input events (user actions) to interpret them correctly. 

It can be argued that these areas fall more within the implementation of the MATEF rather 

than the framework itself.  Hence their impact on the MATEF is minimal. 

Areas that could be improved 

In terms of further work, the three areas not met in the requirements are identified in Table 

6-1.  Briefly, these concern admissibility, validation and general acceptance.   

The first of these can be addressed by evaluating tools using the MATEF and then including 

the results from such tests in the evidence package produced for cases submitted to the 

Criminal Justice System.  If it is determined that the results produced by the MATEF informs 

the decision made on admissibility, then this requirement can be argued to have been met. 

The second requirement, validation, is more challenging to achieve.  To validate the output 

from the MATEF requires a ‘ground truth’ to compare the results to.  Realistically the only 

sure way to achieve this is to produce one’s own software that exhibits the same behaviour as 

malware in terms of the artefacts it produces and the manner in which they are produced, e.g.: 

employ the use of anti-forensic techniques in an attempt to hide such artefacts. 

The last of these three unmet requirements, general acceptance, is achievable with time if the 

MATEF is adopted into working practice.  As with all new developments, it is difficult to 

demonstrate wider acceptance until later in the life-cycle of the project. 

From a performance perspective, the time to complete a Test Run remains the most 

significant area for further work to make the MATEF more practical for everyday use.  

Furthermore, a more economical use of disk space would improve the resource efficiency of 

the MATEF. 

A number of processes currently performed manually could be automated to alleviate the time 

required to undertake them.  These include sourcing and importing malware, performing 

statistical analysis on the CSV files and interpreting the results.  Sourcing might be achieved 

via the deployment of honeypots or subscriptions to malware share resources, whilst the 

remainder could be implemented via scripts. 

Longer term, the MATEF could be developed to cater for graphical user interface (GUI) 

tools.  Arguably this is more of a limitation of a tool rather than the MATEF if the tool cannot 
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be automated via a script. Another long term development may be the introduction of more 

recent operating systems into the VMs as a test environment.  Although more of an 

implementation (rather than framework) development, this would present challenge on two 

fronts.  The first being that when trying to test a tool, as many of the tools will not operate in 

more recent operating systems.  Secondly, the current operating system used by the MATEF 

implementation (Windows XP) has been selected given it meets the external requirement to 

be a fertile environment for testing malware, see section 3.3.1. 

6.7 Chapter summary 

This chapter evaluated the MATEF from a number of different perspectives.  To facilitate 

this, it opened by first considering the evaluation criteria that can be applied in section 6.1.  

This identified that one approach to this is to evaluate how well MATEF has met the 

requirements of the framework, as well as how well it has achieved the aims of the 

framework, see section 6.2.  In addition to addressing the requirements and aims, the 

performance measures of the MATEF were identified and discussed in section 6.3.  This 

section largely considered the speed and resource requirements of the MATEF.  Evaluating 

the MATEF against the requirements, aims and performance measures provides grounding for 

establishing how well the MATEF has addressed the fundamental motivation for the research; 

expressed through the Research Question, see section 6.4.  The chapter drew to a close by 

first identifying the limitations of the MATEF and responding to each of these in turn.  

Following this, the chapter synthesised the findings of the above critique and presented a 

discussion on further work.  

The next chapter recaps on the preceding chapters and draws conclusions on the thesis as a 

whole. 
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Chapter 7  Conclusions 
 

We live in an increasingly interconnected world where technology is ubiquitous and much of 

our infrastructure and economy is dependent on our ability to operate in cyber space.  Since 

2011 the UK Government has continued to invest in developing the UK’s resilience to the 

cyber threat, labelled as a “Tier One risk to UK interests” (Cabinet Office, 2016).  This 

requirement to develop the UK’s capability applies not just to national security but, as Burd 

et. al. (2011) argue, to cybercrime as well.   

This research has reported how changes to how cybercrime investigations are conducted 

within the UK Criminal Justice System (CJS) have identified a number of factors that have 

led to challenges to some expert evidence submitted to criminal proceedings.  Factors such as 

the ‘Trojan defence’, unfounded trust in software tools, problems with expert evidence and 

lack of provenance are all areas where evidence submitted is open to challenge.  Furthermore, 

the now active requirement for forensic practitioners (including teams operating within the 

police) to be accredited by the Forensic Science Regulator in order to submit evidence to the 

CJS, means practitioners need to evidence their trust in tools used for investigations, 

including those involving malware. 

To address this requirement, a framework has been developed to provide empirical data on 

the ability of software tools to identify artefacts produced by malware.  To summarise the 

success of his framework, it is worth recapping on the research goals, which this framework 

addresses. 

7.1 Goals and findings 

By way of recap, the goals of the research were identified in Table 1-2 (Section 1.2) as: 

• Determine if there is there a problem with a lack of trusted practice in malware forensics 

• Identify the requirements for a solution 

• Develop a methodology for evaluating malware artefact detection tools 

It is argued that the first of these goals has been met, as evidenced by the literature review 

(Chapter 2 ).  This has provided a case for a lack of trusted practice in the field of malware 

forensics. 
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The second goal has also been met; given the research identified a number of requirements to 

develop the framework (see Chapter 3 ) and the majority of these were met (see Chapter 6 ).   

The third goal is perhaps the most significant of the goals.  It is argued that this goal of the 

research has also been met, as is demonstrated by the empirical evidence produced using the 

MATEF.    A notable aspect of this research is that the framework has been implemented and 

tested using a large population of real-world malware binaries (over of 350,000).  This is 

relatively large when compared to other research groups who use fewer numbers of malware 

binaries. For example, Gashi et al. (2009) used 1,599 malware binaries during their study on 

anti-malware engines, whilst in a study (Gashi, Sobesto, Stankovic & Cukier, 2013) they used 

less than half this amount (900). Zolkipli and Jantan (2011) used a sample size of just 5 

binaries in their study on malware behaviour. 

Despite the success of this research, it is recognised that there are areas for improvement. 

7.2 Critical review of thesis 

Two primary criticisms can be levelled at this thesis.  These are a limitation in terms of (a) 

scope and (b) methodology.  These areas will be discussed in the following sub-sections. 

7.2.1 Scope limitations 

This thesis has been limited by its scope to: 

1. Quantity of artefacts observed when evaluating tools and not their values. 

2. Support for only evaluating Command-line interface (CLI) tools 

This limited scope of the thesis may suggest that its findings are limited as well.  However, 

the reduced information available from observing quantities and not values does not prevent a 

comparison being made between the expected and observed quantities.  Furthermore, this 

approach reduces the number of random variables from 2 to 1, as any variation in values is 

ignored by this approach.   

The support for CLI tools only again does not prevent a comparison being made between the 

expected and observed quantities, as at this time it only restricts which tools can be evaluated 

in this way.  In a time of growing quantities of data to process, the lack of command-line 

support by a tool to facilitate automation is more of a limitation of the tool than of the 

MATEF. 
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Despite these limitations in scope, the ability to compare expected and observed values is still 

honoured and hence satisfies the Research Question.  Furthermore, this research is still useful 

in that the findings: 

• Provide a means by which to evaluate tools in a malware environment, where 

previously there was none. 

• Add to common body of knowledge on software evaluation within the relatively 

young malware forensics field. 

7.2.2 Methodology limitations 

Critics of the MATEF may argue the use of another tool (in this case an online sandbox) to 

determine the expected numbers of artefacts does not provide an accurate representation of 

the true numbers of artefacts to be expected from executing a given malware binary.  Others 

may go further and suggest that it is not possible to obtain such a figure, due to the random 

nature of the malware. 

In response to these criticisms, random variations that manifest themselves when determining 

an approximated ground truth (as discussed in section 4.2.5) are inherently challenging to 

overcome.  However, the effect of these variations are minimised by performing multiple test 

runs and taking an average of the number of observed artefacts, see Table 6-4.  Furthermore, 

Hubbard (2014, p. 162) points out that if there is a lot of uncertainty in a quantity, then very 

little data is needed to reduce the uncertainty significantly.  In other words, gaining a little 

knowledge about how a tool copes with observing malware where previously there was a high 

level of uncertainty is a significant advance in our understanding of that tool.  Hence, 

producing an estimate of the expected number of artefacts to be observed significantly 

reduces the uncertainty in what is expected from subsequent observations.   Consequently, a 

reduction in uncertainty leads to an increase in trust (Bell, 2017, p. xix), hence this approach 

addresses the Research Question. 
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7.3 Contributions 

This research contributes to the common body of knowledge in the area of software tool 

evaluation in a malware forensics setting.  The main contribution is that it is the first to 

provide a framework to facilitate the empirical evaluation of a tool’s ability to detect malware 

artefacts under different operating conditions.  To recap from section 1.2, the Research 

Question states: 

Can a systematic basis for trusted practice be established for evaluating malware 

artefact detection tools used within a forensic investigation? 

To address this question the following related sub-questions were investigated:  

1. To what extent is there a case for a lack of trusted practice? 

2. What are the requirements for evaluating malware artefact detection tools? 

3. Do the conditions under which tools and malware operate have an effect on the 

ability to observe malware behaviour? 

4. Are observations of malware behaviour impacted by the practitioner’s choice of tool? 

5. What factors can be used to evaluate the performance of the methodology and hence 

identify areas of improvement. 

To begin with, exploratory evidence in the literature review (Chapter 2 ) has provided a case 

for a lack of trusted practice in the field of malware forensics (research sub-question 1 above). 

Another contribution is the systematic identification of a set of requirements for establishing 

trusted practice in the use of malware artefact detection tools (research sub-question 2 above).   

Two further contributions come from empirical evidence generated by the tools tested during 

this research.  The first of these compares how two different tools operate under different 

conditions (research sub-question 3 above), identifying an optimal execution time for a given 

tool. Secondly, empirical data is provided showing how these tools perform when compared 

with each other under the same operating conditions (research sub-question 4 above). 

An additional contribution is provided from the empirical evidence gathered on the 

performance of this framework, enabling areas of improvement to be identified (research sub-

question 5 above).   

More generally, the MATEF provides a systematic methodology for practitioners to apply to 

new or unfamiliar tools that will allow them to specify parameters, such as how long the tool 

must be run for to obtain the optimal number of artefacts.   
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In summary, the contributions of this thesis can be summed up to be: 

1. Confirmation for case for a lack of trusted practice in the field of malware forensics, 

evidence from the literature review.  

2. A framework to facilitate the production of empirical evidence of a tool’s ability to 

detect malware artefacts under different operating conditions, evidenced by the 

design and implementation of the MATEF, Chapter 4  

3. A set of requirements for establishing trusted practice in the use of malware artefact 

detection tools, evidenced by Chapter 3  

4. Empirical evidence generated identifying the optimal execution time for a given tool 

when observing malware artefacts, evidenced by Chapter 5  

5. Empirical evidence that the choice of tool can impact on the number of artefacts 

observed, evidenced by Chapter 5  

6. Empirical evidence of the performance of this framework, evidenced by section 6.3. 

7. A systematic methodology for practitioners to specify operating parameters (such as 

how long the tool must be run for) when obtaining new or unfamiliar tools. 

7.4 Further work 

The evaluation of the research (see section 6.6) identified a number of areas for further work.  

The first of these was that if the MATEF was extended to include its own Oracle analysis 

platform the issue surrounding the rate of submission of malware to and subsequent delivery 

of reports would be overcome.  Another area identified that would extend the scope of the 

MATEF significantly would be the support for tools that do not support a CLI.  Also 

proposed for further work were the admissibility, validation and general acceptance 

requirements (see Table 6-1) that were not met by this research. 

Performance issues were also identified as areas where further work could be undertaken.  

The time to complete a Test Run and a more economical use of disk space were singled out as 

specific areas of improvement. 

The use of both bare metal and virtual machines together to test malware analysis tools is a 

recommended malware analysis lab requirement (see section 3.3.2) and would be of benefit 

for testing tools where the malware binary is aware of a virtualised environment and so 

behaves differently.  However, consideration should be given to the impact this approach 

would have on the speed of testing, which would be slower to allow physical machines to be 

reset between tests. 
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The process of evaluating a malware analysis tool to observe malware on different operating 

systems is not an extension of the MATEF; this is because the framework is conceptually the 

same, regardless of the implementation.  However, by implementing the framework on 

different VM platforms in parallel, the results obtained will more inclusive and further help to 

inform the practitioner in their choice of tool, regardless of the operating system in place on a 

suspect’s computer. 

A number of processes that are currently manually performed were also considered for further 

work.  These include sourcing and ingesting malware into the MATEF platform, statistical 

analysis operations on CSV files derived from tool log files and interpreting the results.   

7.5 Chapter summary 

This chapter opened by revisiting the goals of the research and considering the extent to 

which these have been met.  Of particular note was the size of the dataset used in the research, 

which is significantly larger than those used in other studies. 

A critique of the thesis followed and examined the scope and methodologies of the research.  

A case for using quantities rather than values in observations was made to minimise the 

effects of random variations and thereby increase the level of trust in the data.  The issue of 

supporting only command-line interface (CLI) tools was also discussed.  Whilst 

acknowledging the limits this placed on the MATEF’s scope it was argued this was more of a 

limitation of the tools being tested than the MATEF itself. 

The difficulties of determining ‘Ground Truth’ were identified and the method used to 

estimate this discussed, concluding that the approach reduces uncertainty and thereby increase 

trust in the results obtained. 

The chapter closed with a review and summary of the contributions made by this research, 

followed by suggestions for further work. 

7.6 Concluding remarks 

In this thesis we have provided a case for a lack of trusted practice in the field of malware 

forensics.  To address this, we identified the gap between current practice and the regulatory, 

legal and technical requirements. We further went on to design a framework designed to 

systematically address the gap and apply scientific principles to the testing of malware 

analysis tools.  A prototype was built to implement the framework and used to test tools on a 

large corpus of malware. 
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Whilst it is acknowledged there are limitations of the prototype implemented in terms of 

scope and the establishment of ground truth (see section 7.2), such limitations do not affect 

the framework itself.  Indeed, since there is no generally accepted scientific methodology  to 

evaluate tools used in malware analysis, we believe that the work presented in this thesis to 

develop a framework based on such methodology goes some way towards addressing the lack 

of trust in tools used in the field of malware forensics.  Moreover, the empirical data 

presented in the thesis has highlighted the optimal execution time of a tool under test.  Hence, 

controls such as this can inform a subsequent procedure, which is then arguably underpinned 

with scientifically established empirical data.  

Furthermore, providing a methodology to evaluate a malware analysis tool where previously 

there was none goes some way to reducing the uncertainty in the output of the tool.  A 

reduction in uncertainty, in turn, increases the trust placed in the practice of using that tool. 
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The following sources were used to perform the literature review for this research. 

Source type Source 

Databases IEEE 

 

Science Direct 

 

Lexis-Nexis 

 

Springer-link 

 

Taylor and Francis 

 

Scopus 

Social media http://www.icerocket.com/ 

 

http://www.h-net.org/ 

Mail lists HTCC 

 

http://lsoft.com/lists/list_q.html 

 

http://www.jiscmail.ac.uk/ 

Discussion groups/Usenet https://groups.google.com/forum/#!browse 

 

http://nzbindex.com/ 

Official reports/transcripts http://researchbriefings.parliament.uk/ 

 

www.official-documents.co.uk 

 

http://europa.eu/ 

 

www.statistics.gov.uk 

 

http://ec.europa.eu/eurostat 

Datasets https://data.gov.uk/ 

Dissertations Proquest (via OU library) 

 

http://oaister.worldcat.org/ - filter on Thesis 

Search engines http://oaister.worldcat.org/ 

 

Google scholar 

Forums http://boardreader.com/ 
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3:29	
05	m

in	
Process	M

onitor	
1	

	
	

131	
210816.1006	

21/08/16	10:06	
22/08/16	07:52	

21:46	
22/08/16	20:48	

23/08/16	02:07	
5:19	

05	m
in	

TCPVCon	
3	

20:37	
04:53	

130	
200816.0858	

20/08/16	08:58	
21/08/16	07:01	

22:03	
22/08/16	20:48	

23/08/16	02:16	
5:28	

05	m
in	

TCPVCon	
2	

	
	

116	
230716.1127	

23/07/16	11:27	
24/07/16	05:30	

18:03	
26/07/16	09:08	

26/07/16	13:01	
3:53	

05	m
in	

TCPVCon	
1	

	
	

137	
020916.2120	

02/09/16	21:20	
03/09/16	22:04	

24:44	
04/09/16	10:11	

04/09/16	17:15	
7:04	

10	m
in	

Process	M
onitor	

3	
22:48	

06:13	
136	

010916.0814	
01/09/16	08:14	

02/09/16	10:58	
26:44	

04/09/16	10:11	
04/09/16	17:09	

6:58	
10	m

in	
Process	M

onitor	
2	

	
	

118	
270716.1542	

27/07/16	15:42	
28/07/16	08:38	

16:56	
31/07/16	20:35	

01/08/16	01:12	
4:36	

10	m
in	

Process	M
onitor	

1	
	

	
133	

230816.2250	
23/08/16	22:50	

25/08/16	00:00	
25:10	

25/08/16	10:50	
25/08/16	16:29	

5:38	
10	m

in	
TCPVCon	

3	
24:17	

06:03	
132	

220816.2033	
22/08/16	20:33	

23/08/16	22:03	
25:30	

25/08/16	10:49	
25/08/16	17:16	

6:27	
10	m

in	
TCPVCon	

2	
	

	
119	

280716.1559	
28/07/16	15:59	

29/07/16	14:10	
22:11	

31/07/16	11:03	
31/07/16	17:08	

6:04	
10	m

in	
TCPVCon	

1	
	

	
N

ote: 1 – Elapsed tim
e reported as H

H
:M

M


