134,699 research outputs found

    Advanced Signal Processing and Adaptive Learning Methods

    Get PDF
    [No abstract available

    Review of fundamental active current extraction techniques for SAPF

    Get PDF
    The field of advanced digital signal processing methods is one of the fastest developing scientific and technical disciplines, and is important in the field of Shunt Active Power Filter control methods. Shunt active power filters are highly desirable to minimize losses due to the increase in the number of nonlinear loads (deformed power). Currently, there is rapid development in new adaptive, non-adaptive, and especially hybrid methods of digital signal processing. Nowadays, modern methods of digital signal processing maintain a key role in research and industrial applications. Many of the best practices that have been used to control shunt active power in industrial practice for decades are now being surpassed in favor of new progressive approaches. This systematic research review classifies the importance of using advanced signal processing methods in the field of shunt active power filter control methods and summarizes the extant harmonic extraction methods, from the conventional approach to new progressive methods using genetic algorithms, artificial intelligence, and machine learning. Synchronization techniques are described and compared as well.Web of Science2220art. no. 798

    Survey on Signal Processing for GNSS under Ionospheric Scintillation: Detection, Monitoring, and Mitigation

    Get PDF
    Ionospheric scintillation is the physical phenomena affecting radio waves coming from the space through the ionosphere. Such disturbance is caused by ionospheric electron density irregularities and is a major threat in Global Navigation Satellite Systems (GNSS). From a signal processing perspective, scintillation is one of the most challenging propagation scenarios, particularly affecting high-precision GNSS receivers and safety critical applications where accuracy, availability, continuity and integrity are mandatory. Under scintillation, GNSS signals are affected by amplitude and phase variations, which mainly compromise the synchronization stage of the receiver. To counteract these effects, one must resort to advanced signal processing techniques such as adaptive/robust methods, machine learning or parameter estimation. This contribution reviews the signal processing landscape in GNSS receivers, with emphasis on different detection, monitoring and mitigation problems. New results using real data are provided to support the discussion. To conclude, future perspectives of interest to the GNSS community are discussed

    Low-Complexity Sub-band Digital Predistortion for Spurious Emission Suppression in Noncontiguous Spectrum Access

    Full text link
    Noncontiguous transmission schemes combined with high power-efficiency requirements pose big challenges for radio transmitter and power amplifier (PA) design and implementation. Due to the nonlinear nature of the PA, severe unwanted emissions can occur, which can potentially interfere with neighboring channel signals or even desensitize the own receiver in frequency division duplexing (FDD) transceivers. In this article, to suppress such unwanted emissions, a low-complexity sub-band DPD solution, specifically tailored for spectrally noncontiguous transmission schemes in low-cost devices, is proposed. The proposed technique aims at mitigating only the selected spurious intermodulation distortion components at the PA output, hence allowing for substantially reduced processing complexity compared to classical linearization solutions. Furthermore, novel decorrelation based parameter learning solutions are also proposed and formulated, which offer reduced computing complexity in parameter estimation as well as the ability to track time-varying features adaptively. Comprehensive simulation and RF measurement results are provided, using a commercial LTE-Advanced mobile PA, to evaluate and validate the effectiveness of the proposed solution in real world scenarios. The obtained results demonstrate that highly efficient spurious component suppression can be obtained using the proposed solutions
    corecore