8,738 research outputs found

    The new Magnetic Measurement System at the Advanced Photon Source

    Get PDF
    A new system for precise measurements of the field integrals and multipole components of the APS magnetic insertion devices is described. A stretched coil is used to measure magnetic field characteristics. The hardware includes a number of servomotors to move (translate or rotate) the coil and a fast data acquisition board to measure the coil signal. A PC under Linux is used as a control workstation. The user interface is written as a Tcl/tk script. The hardware is accessed from the script through a shared C-library. A description of the hardware system and the control program is given.Comment: 3 pages, 5 figures, paper 3271 submitted to ICALEPCS 2001 Conferenc

    Terahertz Diagnostic for the Advanced Photon Source Particle Accumulator Ring

    Get PDF
    Terahertz Diagnostic for the Advanced Photon Source Particle Accumulator Rin

    Chamber Surface Roughness and Electron Cloud for the Advanced Photon Source Superconducting Undulator

    Full text link
    The electron cloud is a possible heat source in the superconducting undulator (SCU) designed for the Advanced Photon Source (APS), a 7-GeV electron synchrotron radiation source at Argonne National Laboratory. In electron cloud generation extensive research has been done, and is continuing, to understand the secondary electron component. However, little work has been done to understand the parameters of photoemission in the accelerator environment. To better understand the primary electron generation in the APS; a beamline at the Australian Light Source synchrotron was used to characterize two samples of the Al APS vacuum chamber. The total photoelectron yield and the photoemission spectra were measured. Four parameters were varied: surface roughness, sample temperature, incident photon energy, and incident photon angle, with their results presented here.Comment: presented at ECLOUD'12: Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects, La Biodola, Isola d'Elba, Italy, 5-9 June 201

    The Advanced Photon Source Injector Test Stand Control System

    Get PDF
    The Advanced Photon Source (APS) primary and backup injectors consist of two thermionic-cathode rf guns. These guns are being upgraded to provide improved performance, to improve ease of maintenance, and to reduce downtime required for repair or replacement of a failed injector. As part of the process, an injector test stand is being prepared. This stand is effectively independent of the APS linac and will allow for complete characterization and validation of an injector prior to its installation into the APS linac. A modular control system for the test stand has been developed using standard APS control solutions with EPICS to deliver a flexible and comprehensive control system. The modularity of the system will allow both future expansion of test stand functionality and evaluation of new control techniques and solutions.Comment: Poster paper (TUAP015) at ICALEPCS 2001, 3 pages, 2 figures, pd

    RF System Upgrades to the Advanced Photon Source Linear Accelerator in Support of the Fel Operation

    Get PDF
    The S-band linear accelerator, which was built to be the source of particles and the front end of the Advanced Photon Source injector, is now also being used to support a low-energy undulator test line (LEUTL) and to drive a free-electron laser (FEL). The more severe rf stability requirements of the FEL have resulted in an effort to identify sources of phase and amplitude instability and implement corresponding upgrades to the rf generation chain and the measurement system. Test data and improvements implemented and planned are describedComment: LC 2000 (3 pages, 6 figures

    Optimizing floating guard ring designs for FASPAX N-in-P silicon sensors

    Full text link
    FASPAX (Fermi-Argonne Semiconducting Pixel Array X-ray detector) is being developed as a fast integrating area detector with wide dynamic range for time resolved applications at the upgraded Advanced Photon Source (APS.) A burst mode detector with intended \mbox{13 MHz} image rate, FASPAX will also incorporate a novel integration circuit to achieve wide dynamic range, from single photon sensitivity to 10510^{\text{5}} x-rays/pixel/pulse. To achieve these ambitious goals, a novel silicon sensor design is required. This paper will detail early design of the FASPAX sensor. Results from TCAD optimization studies, and characterization of prototype sensors will be presented.Comment: IEEE NSS-MIC 2015 Conference recor
    • …
    corecore