6 research outputs found

    3D position mapping of continuum arm

    Get PDF
    Modelling a continuum arm is one of the major challenges in soft robotic researches. An accurate position model allows wider use of continuum robot arms in industrial and medical applications. Furthermore, accurate control can be achieved. This paper illustrates the 3D position of a constructed soft arm from 4 pneumatic muscle actuators (PMAs) in parallel, and models the movement of its free end in space. The performance of the contraction and extension PMAs and the behaviour of the contraction and extension arms are analysed, and a comparison between the two arms is explained. Finally, the mathematical models are presented and validated

    Active soft end effectors for efficient grasping and safe handling

    Get PDF
    The end effector is a major part of a robot system and it defines the task the robot can perform. However, typically, a gripper is suited to grasping only a single or relatively small number of different objects. Dexterous grippers offer greater grasping ability but they are often very expensive, difficult to control and are insufficiently robust for industrial operation. This paper explores the principles of soft robotics and the design of low-cost grippers able to grasp a broad range of objects without the need for complex control schemes. Two different soft end effectors have been designed and built and their physical structure, characteristics and operational performances have been analysed. The soft grippers deform and conform to the object being grasped, meaning they are simple to control and minimal grasp planning is required. The soft nature of the grippers also makes them better suited to handling fragile and delicate objects than a traditional rigid gripper

    An Integrated Intelligent Nonlinear Control Method for a Pneumatic Artificial Muscle

    Full text link

    Collaborative system and multi robots based on pneumatic muscle actuator

    Get PDF
    Designing a multi-robot system provides numerous advantages for many applications, such as low cost, multi-tasking and more efficient group work. While the rigidity of the robots used in industrial and medical application increase the probability of risk of injury. Therefore, many researches are done to increase the safety factor for robot-human interaction, as a result, either the separated between the human and robot is suggested or the force shutdown to robot system is applied. These solutions might be useful for industrial applications, nonetheless it is not for medical and the application require the direct interaction between the human and machine. To overcome the rigidity problem, a soft pneumatic muscle actuator PMA is used in this thesis to design a fully soft robot arm.The performances and the behaviours of these actuators are tested to enhance the force formula for the contraction and the extension PMAs. General length formulas are proposed in terms of the initial length in addition to the structure-based formulas for the tensile force and length. Three different novel actuators are proposed together with their kinematics. These actuators include: the self-bending contraction actuator SBCA, the double-bend pneumatic muscle actuator DB-PMA and the circular pneumatic muscle actuator CPMA. The presented actuators are used with the simple contraction and extension actuators to design different novel structures of continuum arms and end effectors. Then an efficient control system is proposed by using a parallel structure of the neural network NN and proportional P controller (PNNP controller). The presented continuum arms formed a multiple robot system to perform several tasks under the PNNP controller
    corecore