6 research outputs found

    Symbolic Trajectory Description in Mobile Robotics

    Get PDF

    State of the Art in Face Recognition

    Get PDF
    Notwithstanding the tremendous effort to solve the face recognition problem, it is not possible yet to design a face recognition system with a potential close to human performance. New computer vision and pattern recognition approaches need to be investigated. Even new knowledge and perspectives from different fields like, psychology and neuroscience must be incorporated into the current field of face recognition to design a robust face recognition system. Indeed, many more efforts are required to end up with a human like face recognition system. This book tries to make an effort to reduce the gap between the previous face recognition research state and the future state

    A novel case-based reasoning approach to radiotherapy dose planning

    Get PDF
    In this thesis, novel Case-Based Reasoning (CBR) methods were developed to be included in CBRDP (Case-Based Reasoning Dose Planner) -an adaptive decision support system for radiotherapy dose planning. CBR is an artificial intelligence methodology which solves new problems by retrieving solutions to previously solved similar problems stored in a case base. The focus of this research is on dose planning for prostate cancer patients. The records of patients successfully treated in the Nottingham University Hospitals NHS Trust, City Hospital Campus, UK, were stored in a case base and were exploited using case-based reasoning for future decision making. After each successful run of the system, a group based Simulated Annealing (SA) algorithm automatically searches for an optimal/near optimal combination of feature weights to be used in the future retrieval process of CBR. A number of research issues associated with the prostate cancer dose planning problem and the use of CBR are addressed including: (a) trade-off between the benefit of delivering a higher dose of radiation to cancer cells and the risk to damage surrounding organs, (b) deciding when and how much to violate the limitations of dose limits imposed to surrounding organs, (c) fusion of knowledge and experience gained over time in treating patients similar to the new one, (d) incorporation of the 5 years Progression Free Probability and success rate in the decision making process and (e) hybridisation of CBR with a novel group based simulated annealing algorithm to update knowledge/experience gained in treating patients over time. The efficiency of the proposed system was validated using real data sets collected from the Nottingham University Hospitals. Experiments based on a leave-one-out strategy demonstrated that for most of the patients, the dose plans generated by our approach are coherent with the dose plans prescribed by an experienced oncologist or even better. This system may play a vital role to assist the oncologist in making a better decision in less time; it incorporates the success rate of previously treated similar patients in the dose planning for a new patient and it can also be used in teaching and training processes. In addition, the developed method is generic in nature and can be used to solve similar non-linear real world complex problems

    A novel case-based reasoning approach to radiotherapy dose planning

    Get PDF
    In this thesis, novel Case-Based Reasoning (CBR) methods were developed to be included in CBRDP (Case-Based Reasoning Dose Planner) -an adaptive decision support system for radiotherapy dose planning. CBR is an artificial intelligence methodology which solves new problems by retrieving solutions to previously solved similar problems stored in a case base. The focus of this research is on dose planning for prostate cancer patients. The records of patients successfully treated in the Nottingham University Hospitals NHS Trust, City Hospital Campus, UK, were stored in a case base and were exploited using case-based reasoning for future decision making. After each successful run of the system, a group based Simulated Annealing (SA) algorithm automatically searches for an optimal/near optimal combination of feature weights to be used in the future retrieval process of CBR. A number of research issues associated with the prostate cancer dose planning problem and the use of CBR are addressed including: (a) trade-off between the benefit of delivering a higher dose of radiation to cancer cells and the risk to damage surrounding organs, (b) deciding when and how much to violate the limitations of dose limits imposed to surrounding organs, (c) fusion of knowledge and experience gained over time in treating patients similar to the new one, (d) incorporation of the 5 years Progression Free Probability and success rate in the decision making process and (e) hybridisation of CBR with a novel group based simulated annealing algorithm to update knowledge/experience gained in treating patients over time. The efficiency of the proposed system was validated using real data sets collected from the Nottingham University Hospitals. Experiments based on a leave-one-out strategy demonstrated that for most of the patients, the dose plans generated by our approach are coherent with the dose plans prescribed by an experienced oncologist or even better. This system may play a vital role to assist the oncologist in making a better decision in less time; it incorporates the success rate of previously treated similar patients in the dose planning for a new patient and it can also be used in teaching and training processes. In addition, the developed method is generic in nature and can be used to solve similar non-linear real world complex problems

    Advanced metrics for class-driven similarity search

    No full text
    This paper presents two metrics for the Nearest Neighbor Classifier that share the property of being adapted, i.e. learned, on a set of data. Both metrics can be used for similarity search when the retrieval critically depends on a symbolic target feature. The first one is called Local Asymmetrically Weighted Similarity Metric (LASM) and exploits reinforcement learning techniques for the computation of asymmetric weights. Experiments on benchmark datasets show that LASM maintains good accuracy and achieves high compression rates outperforming competitor editing techniques like Condensed Nearest Neighbor. On a completely different perspective the second metric, called Minimum Risk Metric (MRM) is based on probability estimates. MRM can be implemented using different probability estimates and performs comparably to the Bayes classifier based on the same estimates. Both LASM and MRM outperform the NN classifier with the Euclidean metric. 1
    corecore