107 research outputs found

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    A unified approach to sparse signal processing

    Get PDF
    A unified view of the area of sparse signal processing is presented in tutorial form by bringing together various fields in which the property of sparsity has been successfully exploited. For each of these fields, various algorithms and techniques, which have been developed to leverage sparsity, are described succinctly. The common potential benefits of significant reduction in sampling rate and processing manipulations through sparse signal processing are revealed. The key application domains of sparse signal processing are sampling, coding, spectral estimation, array processing, compo-nent analysis, and multipath channel estimation. In terms of the sampling process and reconstruction algorithms, linkages are made with random sampling, compressed sensing and rate of innovation. The redundancy introduced by channel coding i

    Dynamic Algorithms and Asymptotic Theory for Lp-norm Data Analysis

    Get PDF
    The focus of this dissertation is the development of outlier-resistant stochastic algorithms for Principal Component Analysis (PCA) and the derivation of novel asymptotic theory for Lp-norm Principal Component Analysis (Lp-PCA). Modern machine learning and signal processing applications employ sensors that collect large volumes of data measurements that are stored in the form of data matrices, that are often massive and need to be efficiently processed in order to enable machine learning algorithms to perform effective underlying pattern discovery. One such commonly used matrix analysis technique is PCA. Over the past century, PCA has been extensively used in areas such as machine learning, deep learning, pattern recognition, and computer vision, just to name a few. PCA\u27s popularity can be attributed to its intuitive formulation on the L2-norm, availability of an elegant solution via the singular-value-decomposition (SVD), and asymptotic convergence guarantees. However, PCA has been shown to be highly sensitive to faulty measurements (outliers) because of its reliance on the outlier-sensitive L2-norm. Arguably, the most straightforward approach to impart robustness against outliers is to replace the outlier-sensitive L2-norm by the outlier-resistant L1-norm, thus formulating what is known as L1-PCA. Exact and approximate solvers are proposed for L1-PCA in the literature. On the other hand, in this big-data era, the data matrix may be very large and/or the data measurements may arrive in streaming fashion. Traditional L1-PCA algorithms are not suitable in this setting. In order to efficiently process streaming data, while being resistant against outliers, we propose a stochastic L1-PCA algorithm that computes the dominant principal component (PC) with formal convergence guarantees. We further generalize our stochastic L1-PCA algorithm to find multiple components by propose a new PCA framework that maximizes the recently proposed Barron loss. Leveraging Barron loss yields a stochastic algorithm with a tunable robustness parameter that allows the user to control the amount of outlier-resistance required in a given application. We demonstrate the efficacy and robustness of our stochastic algorithms on synthetic and real-world datasets. Our experimental studies include online subspace estimation, classification, video surveillance, and image conditioning, among other things. Last, we focus on the development of asymptotic theory for Lp-PCA. In general, Lp-PCA for p\u3c2 has shown to outperform PCA in the presence of outliers owing to its outlier resistance. However, unlike PCA, Lp-PCA is perceived as a ``robust heuristic\u27\u27 by the research community due to the lack of theoretical asymptotic convergence guarantees. In this work, we strive to shed light on the topic by developing asymptotic theory for Lp-PCA. Specifically, we show that, for a broad class of data distributions, the Lp-PCs span the same subspace as the standard PCs asymptotically and moreover, we prove that the Lp-PCs are specific rotated versions of the PCs. Finally, we demonstrate the asymptotic equivalence of PCA and Lp-PCA with a wide variety of experimental studies

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Zero-padding Network Coding and Compressed Sensing for Optimized Packets Transmission

    Get PDF
    Ubiquitous Internet of Things (IoT) is destined to connect everybody and everything on a never-before-seen scale. Such networks, however, have to tackle the inherent issues created by the presence of very heterogeneous data transmissions over the same shared network. This very diverse communication, in turn, produces network packets of various sizes ranging from very small sensory readings to comparatively humongous video frames. Such a massive amount of data itself, as in the case of sensory networks, is also continuously captured at varying rates and contributes to increasing the load on the network itself, which could hinder transmission efficiency. However, they also open up possibilities to exploit various correlations in the transmitted data due to their sheer number. Reductions based on this also enable the networks to keep up with the new wave of big data-driven communications by simply investing in the promotion of select techniques that efficiently utilize the resources of the communication systems. One of the solutions to tackle the erroneous transmission of data employs linear coding techniques, which are ill-equipped to handle the processing of packets with differing sizes. Random Linear Network Coding (RLNC), for instance, generates unreasonable amounts of padding overhead to compensate for the different message lengths, thereby suppressing the pervasive benefits of the coding itself. We propose a set of approaches that overcome such issues, while also reducing the decoding delays at the same time. Specifically, we introduce and elaborate on the concept of macro-symbols and the design of different coding schemes. Due to the heterogeneity of the packet sizes, our progressive shortening scheme is the first RLNC-based approach that generates and recodes unequal-sized coded packets. Another of our solutions is deterministic shifting that reduces the overall number of transmitted packets. Moreover, the RaSOR scheme employs coding using XORing operations on shifted packets, without the need for coding coefficients, thus favoring linear encoding and decoding complexities. Another facet of IoT applications can be found in sensory data known to be highly correlated, where compressed sensing is a potential approach to reduce the overall transmissions. In such scenarios, network coding can also help. Our proposed joint compressed sensing and real network coding design fully exploit the correlations in cluster-based wireless sensor networks, such as the ones advocated by Industry 4.0. This design focused on performing one-step decoding to reduce the computational complexities and delays of the reconstruction process at the receiver and investigates the effectiveness of combined compressed sensing and network coding

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine
    • …
    corecore