196,008 research outputs found

    Management of a taxi services company through use of GPS positioning and GPRS data transfer

    Get PDF
    The article describes methods of management and use of the GPS systems in taxi companies through application of advanced information technologies, such as GPS positioning and GPRS data transfer. All these systems are united in an integrated solution – taxi information system (TIS), which includes all aspects of the activities of the taxi companies

    Legal Requirements for Admission to Public Schools

    Get PDF
    Advanced driver assistance systems for heavy duty vehicles, such as lookahead cruise and gearshift controllers, rely on high quality map data. Current digital maps do not offer the required level of road grade information. This contribution presents an algorithm for on-board road grade estimation based on fusion of GPS and vehicle sensor data with measurements from previous runs over the same road segment. An incremental update scheme is utilized to ensure that data storage requirements are independent of the number of measurement runs. Results of the implemented system based on six traversals of a known road with three different vehicles are presented.QC 20120216</p

    Computer vision techniques for forest fire perception

    Get PDF
    This paper presents computer vision techniques for forest fire perception involving measurement of forest fire properties (fire front, flame height, flame inclination angle, fire base width) required for the implementation of advanced forest fire-fighting strategies. The system computes a 3D perception model of the fire and could also be used for visualizing the fire evolution in remote computer systems. The presented system integrates the processing of images from visual and infrared cameras. It applies sensor fusion techniques involving also telemetry sensors, and GPS. The paper also includes some results of forest fire experiments.European Commission EVG1-CT-2001-00043European Commission IST-2001-34304Ministerio de Educación y Ciencia DPI2005-0229

    LiDAR and Camera Detection Fusion in a Real Time Industrial Multi-Sensor Collision Avoidance System

    Full text link
    Collision avoidance is a critical task in many applications, such as ADAS (advanced driver-assistance systems), industrial automation and robotics. In an industrial automation setting, certain areas should be off limits to an automated vehicle for protection of people and high-valued assets. These areas can be quarantined by mapping (e.g., GPS) or via beacons that delineate a no-entry area. We propose a delineation method where the industrial vehicle utilizes a LiDAR {(Light Detection and Ranging)} and a single color camera to detect passive beacons and model-predictive control to stop the vehicle from entering a restricted space. The beacons are standard orange traffic cones with a highly reflective vertical pole attached. The LiDAR can readily detect these beacons, but suffers from false positives due to other reflective surfaces such as worker safety vests. Herein, we put forth a method for reducing false positive detection from the LiDAR by projecting the beacons in the camera imagery via a deep learning method and validating the detection using a neural network-learned projection from the camera to the LiDAR space. Experimental data collected at Mississippi State University's Center for Advanced Vehicular Systems (CAVS) shows the effectiveness of the proposed system in keeping the true detection while mitigating false positives.Comment: 34 page

    MONITORING OF LANDSLIDES WITH MASS MARKET GPS: AN ALTERNATIVE LOW COST SOLUTION

    Get PDF
    The territory of Italy is seriously afflicted by hydrological risk, with 82% of its area affected by this phenomenon. In recent years, technologies and advanced research have played an important role in realizing complex automatic systems devoted to landslide monitoring and to alerting the population. Sometimes, the cost of these systems (communications network, sensors, software, technologies) prevents their use, and in particular the cost of sensors has a large impact on the final investment. For example, geodetic GNSS receivers are usually employed to conduct landslide monitoring, but they are costly. Nowadays, new technologies make it possible to use small and efficient low cost single frequency GPS receivers, which are able to achieve a centimetrical or better level of accuracy, in static positioning. The rapid development and diffusion of the GNSS network to provide a positioning service has made it possible to use single frequency receivers, thanks to the use of virtual RINEX. This product is generated by a network of permanent stations. In this research, the actual performance of a mass market GPS receiver was tested, with the purpose of verifying if these sensors can be used for landslide monitoring. A special slide was realized, in order to conduct a dedicated test of the detection of displacements. Tests were carried out considering two factors: acquisition time and distance from the Virtual Station. The accuracy and precision of movement determination were evaluated and compared, for each test, considering the different factors. The tests and results are described in this contributio

    Total ionospheric electron content calibration using SERIES GPS satellite data

    Get PDF
    The current status of the Deep Space Network advanced systems research into ionospheric calibration techniques, based on Global Positioning System (GPS) data is described. A GPS-based calibration system is planned to replace the currently used Faraday rotation method by 1989. The SERIES receiver system determines the differential group delay of signals transmitted at two different carrier frequencies. This differential delay includes an ionospheric component and a GPS transmitter offset. The transmitter offsets are different for each GPS satellite. Tests were conducted to assess the effect of the offsets on the ionospheric calibration accuracy. From the obtained data, the total electron content and GPS transmitter offsets are calculated by a least squares estimation method employing a local model of total ionospheric electron content. The end product is an estimation of the total ionospheric content for an arbitrary line-of-sight direction. For the presented polynomial fitting technique, the systematic error due to mismodeling is estimated to be approximately 6 x 10 to the 16th power el/sq m, while the formal error is approximately 2 x 10 to the 16th power el/sq m. The final goal is an error of 3 x 10 to the 16th power el/sq m (approximately 0.7 ns at 2.3 GHz)

    Self-Positioning Smart Buoys, The \u27Un-Buoy\u27 Solution: Logistic Considerations Using Autonomous Surface Craft Technology and Improved Communications Infrastructure

    Get PDF
    Moored buoys have long served national interests, but incur high development, construction, installation, and maintenance costs. Buoys which drift off-location can pose hazards to mariners, and in coastal waters may cause environmental damage. Moreover, retrieval, repair and replacement of drifting buoys may be delayed when data would be most useful. Such gaps in coastal buoy data can pose a threat to national security by reducing maritime domain awareness. The concept of self-positioning buoys has been advanced to reduce installation cost by eliminating mooring hardware. We here describe technology for operation of reduced cost self-positioning buoys which can be used in coastal or oceanic waters. The ASC SCOUT model is based on a self-propelled, GPS-positioned, autonomous surface craft that can be pre-programmed, autonomous, or directed in real time. Each vessel can communicate wirelessly with deployment vessels and other similar buoys directly or via satellite. Engineering options for short or longer term power requirements are considered, in addition to future options for improved energy delivery systems. Methods of reducing buoy drift and position-maintaining energy requirements for self-locating buoys are also discussed, based on the potential of incorporating traditional maritime solutions to these problems. We here include discussion of the advanced Delay Tolerant Networking (DTN) communications draft protocol which offers improved wireless communication capabilities underwater, to adjacent vessels, and to satellites. DTN is particularly adapted for noisy or loss-prone environments, thus it improves reliability. In addition to existing buoy communication via commercial satellites, a growing network of small satellites known as PICOSATs can be readily adapted to provide low-cost communications nodes for buoys. Coordination with planned vessel Automated Identification Systems (AIS) and International Maritime Organization standards for buoy and vessel notificat- - ion systems are reviewed and the legal framework for deployment of autonomous surface vessels is considered

    Vulnerability analysis of satellite-based synchronized smart grids monitoring systems

    Get PDF
    The large-scale deployment of wide-area monitoring systems could play a strategic role in supporting the evolution of traditional power systems toward smarter and self-healing grids. The correct operation of these synchronized monitoring systems requires a common and accurate timing reference usually provided by a satellite-based global positioning system. Although these satellites signals provide timing accuracy that easily exceeds the needs of the power industry, they are extremely vulnerable to radio frequency interference. Consequently, a comprehensive analysis aimed at identifying their potential vulnerabilities is of paramount importance for correct and safe wide-area monitoring system operation. Armed with such a vision, this article presents and discusses the results of an experimental analysis aimed at characterizing the vulnerability of global positioning system based wide-area monitoring systems to external interferences. The article outlines the potential strategies that could be adopted to protect global positioning system receivers from external cyber-attacks and proposes decentralized defense strategies based on self-organizing sensor networks aimed at assuring correct time synchronization in the presence of external attacks
    corecore