118,727 research outputs found

    Two-dimensional optical processing using one-dimensional input devices

    Get PDF
    Two-dimensional optical processing architectures that are implemented with one-dimensional input spatial light modulators are reviewed. The advanced state of the art of available one-dimensional devices and the flexibility that exists in the design of two-dimensional architectures with one-dimensional transducers leads to the implementation of the most powerful and versatile optical processors. Signal and image processing architectures of this type are discussed

    The "MIND" Scalable PIM Architecture

    Get PDF
    MIND (Memory, Intelligence, and Network Device) is an advanced parallel computer architecture for high performance computing and scalable embedded processing. It is a Processor-in-Memory (PIM) architecture integrating both DRAM bit cells and CMOS logic devices on the same silicon die. MIND is multicore with multiple memory/processor nodes on each chip and supports global shared memory across systems of MIND components. MIND is distinguished from other PIM architectures in that it incorporates mechanisms for efficient support of a global parallel execution model based on the semantics of message-driven multithreaded split-transaction processing. MIND is designed to operate either in conjunction with other conventional microprocessors or in standalone arrays of like devices. It also incorporates mechanisms for fault tolerance, real time execution, and active power management. This paper describes the major elements and operational methods of the MIND architecture

    Shadow epitaxy for in-situ growth of generic semiconductor/superconductor devices

    Full text link
    Uniform, defect-free crystal interfaces and surfaces are crucial ingredients for realizing high-performance nanoscale devices. A pertinent example is that advances in gate-tunable and topological superconductivity using semiconductor/superconductor electronic devices are currently built on the hard proximity-induced superconducting gap obtained from epitaxial indium arsenide/aluminium heterostructures. Fabrication of devices requires selective etch processes; these exist only for InAs/Al hybrids, precluding the use of other, potentially superior material combinations. We present a crystal growth platform -- based on three-dimensional structuring of growth substrates -- which enables synthesis of semiconductor nanowire hybrids with in-situ patterned superconductor shells. This platform eliminates the need for etching, thereby enabling full freedom in choice of hybrid constituents. We realise and characterise all the most frequently used architectures in superconducting hybrid devices, finding increased yield and electrostatic stability compared to etched devices, along with evidence of ballistic superconductivity. In addition to aluminium, we present hybrid devices based on tantalum, niobium and vanadium. This is the submitted version of the manuscript. The accepted, peer reviewed version is available from Advanced Materials: http://doi.org/10.1002/adma.201908411 Previous title: Shadow lithography for in-situ growth of generic semiconductor/superconductor device

    Nanomechanical single-photon routing

    Get PDF
    The merger between integrated photonics and quantum optics promises new opportunities within photonic quantum technology with the very significant progress on excellent photon-emitter interfaces and advanced optical circuits. A key missing functionality is rapid circuitry reconfigurability that ultimately does not introduce loss or emitter decoherence, and operating at a speed matching the photon generation and quantum memory storage time of the on-chip quantum emitter. This ambitious goal requires entirely new active quantum-photonic devices by extending the traditional approaches to reconfigurability. Here, by merging nano-optomechanics and deterministic photon-emitter interfaces we demonstrate on-chip single-photon routing with low loss, small device footprint, and an intrinsic time response approaching the spin coherence time of solid-state quantum emitters. The device is an essential building block for constructing advanced quantum photonic architectures on-chip, towards, e.g., coherent multi-photon sources, deterministic photon-photon quantum gates, quantum repeater nodes, or scalable quantum networks.Comment: 7 pages, 3 figures, supplementary informatio

    Unraveling radial dependency effects in fiber thermal drawing

    Full text link
    Fiber-based devices with advanced functionalities are emerging as promising solutions for various applications in flexible electronics and bioengineering. Multimaterial thermal drawing, in particular, has attracted strong interest for its ability to generate fibers with complex architectures. Thus far, however, the understanding of its fluid dynamics has only been applied to single material preforms for which higher order effects, such as the radial dependency of the axial velocity, could be neglected. With complex multimaterial preforms, such effects must be taken into account, as they can affect the architecture and the functional properties of the resulting fiber device. Here, we propose a versatile model of the thermal drawing of fibers, which takes into account a radially varying axial velocity. Unlike the commonly used cross section averaged approach, our model is capable of predicting radial variations of functional properties caused by the deformation during drawing. This is demonstrated for two effects observed, namely, by unraveling the deformation of initially straight, transversal lines in the preform and the dependence on the draw ratio and radial position of the in-fiber electrical conductivity of polymer nanocomposites, an important class of materials for emerging fiber devices. This work sets a thus far missing theoretical and practical understanding of multimaterial fiber processing to better engineer advanced fibers and textiles for sensing, health care, robotics, or bioengineering applications

    HSTREAM: A directive-based language extension for heterogeneous stream computing

    Full text link
    Big data streaming applications require utilization of heterogeneous parallel computing systems, which may comprise multiple multi-core CPUs and many-core accelerating devices such as NVIDIA GPUs and Intel Xeon Phis. Programming such systems require advanced knowledge of several hardware architectures and device-specific programming models, including OpenMP and CUDA. In this paper, we present HSTREAM, a compiler directive-based language extension to support programming stream computing applications for heterogeneous parallel computing systems. HSTREAM source-to-source compiler aims to increase the programming productivity by enabling programmers to annotate the parallel regions for heterogeneous execution and generate target specific code. The HSTREAM runtime automatically distributes the workload across CPUs and accelerating devices. We demonstrate the usefulness of HSTREAM language extension with various applications from the STREAM benchmark. Experimental evaluation results show that HSTREAM can keep the same programming simplicity as OpenMP, and the generated code can deliver performance beyond what CPUs-only and GPUs-only executions can deliver.Comment: Preprint, 21st IEEE International Conference on Computational Science and Engineering (CSE 2018

    Energy efficient transport technology: Program summary and bibliography

    Get PDF
    The Energy Efficient Transport (EET) Program began in 1976 as an element of the NASA Aircraft Energy Efficiency (ACEE) Program. The EET Program and the results of various applications of advanced aerodynamics and active controls technology (ACT) as applicable to future subsonic transport aircraft are discussed. Advanced aerodynamics research areas included high aspect ratio supercritical wings, winglets, advanced high lift devices, natural laminar flow airfoils, hybrid laminar flow control, nacelle aerodynamic and inertial loads, propulsion/airframe integration (e.g., long duct nacelles) and wing and empennage surface coatings. In depth analytical/trade studies, numerous wind tunnel tests, and several flight tests were conducted. Improved computational methodology was also developed. The active control functions considered were maneuver load control, gust load alleviation, flutter mode control, angle of attack limiting, and pitch augmented stability. Current and advanced active control laws were synthesized and alternative control system architectures were developed and analyzed. Integrated application and fly by wire implementation of the active control functions were design requirements in one major subprogram. Additional EET research included interdisciplinary technology applications, integrated energy management, handling qualities investigations, reliability calculations, and economic evaluations related to fuel savings and cost of ownership of the selected improvements
    • …
    corecore