research

Energy efficient transport technology: Program summary and bibliography

Abstract

The Energy Efficient Transport (EET) Program began in 1976 as an element of the NASA Aircraft Energy Efficiency (ACEE) Program. The EET Program and the results of various applications of advanced aerodynamics and active controls technology (ACT) as applicable to future subsonic transport aircraft are discussed. Advanced aerodynamics research areas included high aspect ratio supercritical wings, winglets, advanced high lift devices, natural laminar flow airfoils, hybrid laminar flow control, nacelle aerodynamic and inertial loads, propulsion/airframe integration (e.g., long duct nacelles) and wing and empennage surface coatings. In depth analytical/trade studies, numerous wind tunnel tests, and several flight tests were conducted. Improved computational methodology was also developed. The active control functions considered were maneuver load control, gust load alleviation, flutter mode control, angle of attack limiting, and pitch augmented stability. Current and advanced active control laws were synthesized and alternative control system architectures were developed and analyzed. Integrated application and fly by wire implementation of the active control functions were design requirements in one major subprogram. Additional EET research included interdisciplinary technology applications, integrated energy management, handling qualities investigations, reliability calculations, and economic evaluations related to fuel savings and cost of ownership of the selected improvements

    Similar works