3,201 research outputs found

    Energy-efficient bandwidth reservation for bulk data transfers in dedicated wired networks

    Get PDF
    International audienceThe ever increasing number of Internet connected end-hosts call for high performance end-to-end networks leading to an increase in the energy consumed by the networks. Our work deals with the energy consumption issue in dedicated network with bandwidth provisionning and in-advance reservations of network equipments and bandwidth for Bulk Data transfers. First, we propose an end-to-end energy cost model of such networks which described the energy consumed by a transfer for all the crossed equipments. This model is then used to develop a new energy-aware framework adapted to Bulk Data Transfers over dedicated networks. This framework enables switching off unused network portions during certain periods of time to save energy. This framework is also endowed with prediction algorithms to avoid useless switching off and with adaptive scheduling management to optimize the energy used by the transfers. 1 Introductio

    Data transfer scheduling with advance reservation and provisioning

    Get PDF
    Over the years, scientific applications have become more complex and more data intensive. Although through the use of distributed resources the institutions and organizations gain access to the resources needed for their large-scale applications, complex middleware is required to orchestrate the use of these storage and network resources between collaborating parties, and to manage the end-to-end processing of data. We present a new data scheduling paradigm with advance reservation and provisioning. Our methodology provides a basis for provisioning end-to-end high performance data transfers which require integration between system, storage and network resources, and coordination between reservation managers and data transfer nodes. This allows researchers/users and higher level meta-schedulers to use data placement as a service where they can plan ahead and reserve time and resources for their data movement operations. We present a novel approach for evaluating time-dependent structures with bandwidth guaranteed paths. We present a practical online scheduling model using advance reservation in dynamic network with time constraints. In addition, we report a new polynomial algorithm presenting possible reservation options and alternatives for earliest completion and shortest transfer duration. We enhance the advance network reservation system by extending the underlying mechanism to provide a new service in which users submit their constraints and the system suggests possible reservation requests satisfying users\u27 requirements. We have studied scheduling data transfer operation with resource and time conflicts. We have developed a new scheduling methodology considering resource allocation in client sites and bandwidth allocation on network link connecting resources. Some other major contributions of our study include enhanced reliability, adaptability, and performance optimization of distributed data placement tasks. While designing this new data scheduling architecture, we also developed other important methodologies such as early error detection, failure awareness, job aggregation, and dynamic adaptation of distributed data placement tasks. The adaptive tuning includes dynamically setting data transfer parameters and controlling utilization of available network capacity. Our research aims to provide a middleware to improve the data bottleneck in high performance computing systems

    An optimized resilient advance bandwidth scheduling for media delivery services

    Get PDF
    Part 3: Evaluation and Experimental Study of Rich Network ServicesInternational audienceIn IP-based media delivery services, we often deal with predictable network load and traffic, making it beneficial to use advance reservations even when network failure occurs. In such a network, to offer reliable reservations, fault-tolerance related features should be incorporated in the advance reservation system. In this paper, we propose an optimized protection mechanism in which backup paths are selected in advance to protect the transfers when any failure happens in the network. Using a shared backup path protection, the proposed approach minimizes the backup capacity of the requests while guaranteeing 100% single link failure recovery. We have evaluated the quality and complexity of our proposed solution and the impact of different percentages of backup demands and timeslot sizes have been investigated in depth. The presented approach has been compared to our previously-designed algorithm as a baseline. Our simulation results reveal a noticeable improvement in request acceptance rate, up to 9.2%. Moreover, with fine-grained timeslot sizes and under limited network capacity, the time complexity of the proposed solution is up to 14% lower

    Cloud resource provisioning and bandwidth management in media-centric networks

    Get PDF

    Improving Real-Time Data Dissemination Performance by Multi Path Data Scheduling in Data Grids

    Get PDF
    The performance of data grids for data intensive, real-time applications is highly dependent on the data dissemination algorithm employed in the system. Motivated by this fact, this study first formally defines the real-time splittable data dissemination problem (RTS/DDP) where data transfer requests can be routed over multiple paths to maximize the number of data transfers to be completed before their deadlines. Since RTS/DDP is proved to be NP-hard, four different heuristic algorithms, namely kSP/ESMP, kSP/BSMP, kDP/ESMP, and kDP/BSMP are proposed. The performance of these heuristic algorithms is analyzed through an extensive set of data grid system simulation scenarios. The simulation results reveal that a performance increase up to 8 % as compared to a very competitive single path data dissemination algorithm is possible

    End-host based mechanisms for implementing Flow Scheduling in GridNetworks

    Get PDF
    In Grids, transfer jobs and network resources need to be managed in a more deterministic way than in the Internet. New approaches like flow scheduling are proposed and studied as alternatives to traditional QoS and reservation proposals. To enable such flow scheduling approaches, run-time mechanisms controlling flow sending time and rate have to be implemented in the data plane. This paper quantify and compares in a range of latency conditions, such end-host based mechanisms combined with transport protocols to instantiate different scheduling strategies. We show that, in high speed network, a single-rate scheduling strategy implemented by an AIMD-based protocol with packet pacing mechanism offers predictable performance and is insensitive to latency. This paper also highlights the limits of other strategies and rate limitation mechanisms like token bucket which may present unpredictability and other drawbacks

    E2MaC: an energy efficient MAC protocol for multimedia traffic

    Get PDF
    Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We present a novel MAC protocol that achieves a good energy efficiency of wireless interface of the mobile and provides support for diverse traffic types and QoS. The scheduler of the base station is responsible to provide the required QoS to connections on the wireless link and to minimise the amount of energy spend by the mobile. The main principles of the E2MaC protocol are to avoid unsuccessful actions, minimise the number of transitions, and synchronise the mobile and the base-station. We will show that considerable amounts of energy can be saved using these principles. In the protocol the actions of the mobile are minimised. The base-station with plenty of energy performs actions in courtesy of the mobile. We have paid much attention in reducing the cost of a mobile for just being connected. The protocol is able to provide near-optimal energy efficiency (i.e. energy is only spent for the actual transfer) for a mobile within the constraints of the QoS of all connections in a cell, and only requires a small overhead

    Single-path versus multi-path advance reservation in media production networks

    Get PDF
    In media production, a set of actors works simultaneously on video content from different sources. If the actors are geographically spread, the use of a shared substrate network can improve their collaborative efficiency. In such a network traffic consists mostly of large video files, which need to be transferred respecting strict deadlines. Restrictions on the underlying network can force the use of single-path routing mechanisms over multi-path approaches. In this paper, we investigate the influence of using single-path routing compared to multi-path routing in deadline-aware advance reservation (AR) systems for media production networks. We have modified our previously designed optimal multi-path advance reservation model to incorporate the single-path mechanism and heuristic alternatives are presented and thoroughly evaluated. The experimental results show that the single-path optimal model can only provide satisfactory performance when the network is not in contention. With the heuristic approach, when adequate bandwidth is provided, the multi-path approach outperforms the single-path by up to 7.3%
    • …
    corecore