648 research outputs found

    Advancing Healthcare Security: A Cutting-Edge Zero-Trust Blockchain Solution for Protecting Electronic Health Records

    Get PDF
    The effective management of electronic health records (EHRs) is vital in healthcare. However, traditional systems often need help handling data inconsistently, providing limited access, and coordinating poorly across facilities. This study aims to tackle these issues using blockchain technology to improve EHR systems' data security, privacy, and interoperability. By thoroughly analyzing blockchain's applications in healthcare, we propose an innovative solution that leverages blockchain's decentralized and immutable nature, combined with advanced encryption techniques such as the Advanced Encryption Standard and Zero Knowledge Proof Protocol, to fortify EHR systems. Our research demonstrates that blockchain can effectively overcome significant EHR challenges, including fragmented data and interoperability problems, by facilitating secure and transparent data exchange, leading to enhanced coordination, care quality, and cost-efficiency across healthcare facilities. This study offers practical guidelines for implementing blockchain technology in healthcare, emphasizing a balanced approach to interoperability, privacy, and security. It represents a significant advancement over traditional EHR systems, boosting security and affording patients greater control over their health records.Ā Doi: 10.28991/HIJ-2023-04-03-012 Full Text: PD

    Data trust framework using blockchain and smart contracts

    Get PDF
    Lack of trust is the main barrier preventing more widespread data sharing. The lack of transparent and reliable infrastructure for data sharing prevents many data owners from sharing their data. Data trust is a paradigm that facilitates data sharing by forcing data controllers to be transparent about the process of sharing and reusing data. Blockchain technology has the potential to present the essential properties for creating a practical and secure data trust framework by transforming current auditing practices and automatic enforcement of smart contracts logic without relying on intermediaries to establish trust. Blockchain holds an enormous potential to remove the barriers of traditional centralized applications and propose a distributed and transparent administration by employing the involved parties to maintain consensus on the ledger. Furthermore, smart contracts are a programmable component that provides blockchain with more flexible and powerful capabilities. Recent advances in blockchain platforms toward smart contracts' development have revealed the possibility of implementing blockchain-based applications in various domains, such as health care, supply chain and digital identity. This dissertation investigates the blockchain's potential to present a framework for data trust. It starts with a comprehensive study of smart contracts as the main component of blockchain for developing decentralized data trust. Interrelated, three decentralized applications that address data sharing and access control problems in various fields, including healthcare data sharing, business process, and physical access control system, have been developed and examined. In addition, a general-purpose application based on an attribute-based access control model is proposed that can provide trusted auditability required for data sharing and access control systems and, ultimately, a data trust framework. Besides auditing, the system presents a transparency level that both access requesters (data users) and resource owners (data controllers) can benefit from. The proposed solutions have been validated through a use case of independent digital libraries. It also provides a detailed performance analysis of the system implementation. The performance results have been compared based on different consensus mechanisms and databases, indicating the system's high throughput and low latency. Finally, this dissertation presents an end-to-end data trust framework based on blockchain technology. The proposed framework promotes data trustworthiness by assessing input datasets, effectively managing access control, and presenting data provenance and activity monitoring. A trust assessment model that examines the trustworthiness of input data sets and calculates the trust value is presented. The number of transaction validators is defined adaptively with the trust value. This research provides solutions for both data owners and data usersā€™ by ensuring the trustworthiness and quality of the data at origin and transparent and secure usage of the data at the end. A comprehensive experimental study indicates the presented system effectively handles a large number of transactions with low latency

    A Review of IoT Security and Privacy Using Decentralized Blockchain Techniques

    Get PDF
    IoT security is one of the prominent issues that has gained significant attention among the researchers in recent times. The recent advancements in IoT introduces various critical security issues and increases the risk of privacy leakage of IoT data. Implementation of Blockchain can be a potential solution for the security issues in IoT. This review deeply investigates the security threats and issues in IoT which deteriorates the effectiveness of IoT systems. This paper presents a perceptible description of the security threats, Blockchain based solutions, security characteristics and challenges introduced during the integration of Blockchain with IoT. An analysis of different consensus protocols, existing security techniques and evaluation parameters are discussed in brief. In addition, the paper also outlines the open issues and highlights possible research opportunities which can be beneficial for future research

    Advances in Information Security and Privacy

    Get PDF
    With the recent pandemic emergency, many people are spending their days in smart working and have increased their use of digital resources for both work and entertainment. The result is that the amount of digital information handled online is dramatically increased, and we can observe a significant increase in the number of attacks, breaches, and hacks. This Special Issue aims to establish the state of the art in protecting information by mitigating information risks. This objective is reached by presenting both surveys on specific topics and original approaches and solutions to specific problems. In total, 16 papers have been published in this Special Issue

    A critical literature review of security and privacy in smart home healthcare schemes adopting IoT & blockchain: problems, challenges and solutions

    Get PDF
    Protecting private data in smart homes, a popular Internet-of-Things (IoT) application, remains a significant data security and privacy challenge due to the large-scale development and distributed nature of IoT networks. Recently, smart healthcare has leveraged smart home systems, thereby compounding security concerns in terms of the confidentiality of sensitive and private data and by extension the privacy of the data owner. However, PoA-based Blockchain DLT has emerged as a promising solution for protecting private data from indiscriminate use and thereby preserving the privacy of individuals residing in IoT-enabled smart homes. This review elicits some concerns, issues, and problems that have hindered the adoption of blockchain and IoT (BCoT) in some domains and suggests requisite solutions using the aging-in-place scenario. Implementation issues with BCoT were examined as well as the combined challenges BCoT can pose when utilised for security gains. The study discusses recent findings, opportunities, and barriers, and provide recommendations that could facilitate the continuous growth of blockchain application in healthcare. Lastly, the study then explored the potential of using a PoA-based permission blockchain with an applicable consent-based privacy model for decision-making in the information disclosure process, including the use of publisher-subscriber contracts for fine-grained access control to ensure secure data processing and sharing, as well as ethical trust in personal information disclosure, as a solution direction. The proposed authorisation framework could guarantee data ownership, conditional access management, scalable and tamper-proof data storage, and a more resilient system against threat models such as interception and insider attacks

    Validation of design artefacts for blockchain-enabled precision healthcare as a service.

    Get PDF
    Healthcare systems around the globe are currently experiencing a rapid wave of digital disruption. Current research in applying emerging technologies such as Big Data (BD), Artificial Intelligence (AI), Machine Learning (ML), Deep Learning (DL), Augmented Reality (AR), Virtual Reality (VR), Digital Twin (DT), Wearable Sensor (WS), Blockchain (BC) and Smart Contracts (SC) in contact tracing, tracking, drug discovery, care support and delivery, vaccine distribution, management, and delivery. These disruptive innovations have made it feasible for the healthcare industry to provide personalised digital health solutions and services to the people and ensure sustainability in healthcare. Precision Healthcare (PHC) is a new inclusion in digital healthcare that can support personalised needs. It focuses on supporting and providing precise healthcare delivery. Despite such potential, recent studies show that PHC is ineffectual due to the lower patient adoption in the system. Anecdotal evidence shows that people are refraining from adopting PHC due to distrust. This thesis presents a BC-enabled PHC ecosystem that addresses ongoing issues and challenges regarding low opt-in. The designed ecosystem also incorporates emerging information technologies that are potential to address the need for user-centricity, data privacy and security, accountability, transparency, interoperability, and scalability for a sustainable PHC ecosystem. The research adopts Soft System Methodology (SSM) to construct and validate the design artefact and sub-artefacts of the proposed PHC ecosystem that addresses the low opt-in problem. Following a comprehensive view of the scholarly literature, which resulted in a draft set of design principles and rules, eighteen design refinement interviews were conducted to develop the artefact and sub-artefacts for design specifications. The artefact and sub-artefacts were validated through a design validation workshop, where the designed ecosystem was presented to a Delphi panel of twenty-two health industry actors. The key research finding was that there is a need for data-driven, secure, transparent, scalable, individualised healthcare services to achieve sustainability in healthcare. It includes explainable AI, data standards for biosensor devices, affordable BC solutions for storage, privacy and security policy, interoperability, and usercentricity, which prompts further research and industry application. The proposed ecosystem is potentially effective in growing trust, influencing patients in active engagement with real-world implementation, and contributing to sustainability in healthcare

    Engineering Blockchain Based Software Systems: Foundations, Survey, and Future Directions

    Full text link
    Many scientific and practical areas have shown increasing interest in reaping the benefits of blockchain technology to empower software systems. However, the unique characteristics and requirements associated with Blockchain Based Software (BBS) systems raise new challenges across the development lifecycle that entail an extensive improvement of conventional software engineering. This article presents a systematic literature review of the state-of-the-art in BBS engineering research from a software engineering perspective. We characterize BBS engineering from the theoretical foundations, processes, models, and roles and discuss a rich repertoire of key development activities, principles, challenges, and techniques. The focus and depth of this survey not only gives software engineering practitioners and researchers a consolidated body of knowledge about current BBS development but also underpins a starting point for further research in this field

    A patient agent controlled customized blockchain based framework for internet of things

    Get PDF
    Although Blockchain implementations have emerged as revolutionary technologies for various industrial applications including cryptocurrencies, they have not been widely deployed to store data streaming from sensors to remote servers in architectures known as Internet of Things. New Blockchain for the Internet of Things models promise secure solutions for eHealth, smart cities, and other applications. These models pave the way for continuous monitoring of patientā€™s physiological signs with wearable sensors to augment traditional medical practice without recourse to storing data with a trusted authority. However, existing Blockchain algorithms cannot accommodate the huge volumes, security, and privacy requirements of health data. In this thesis, our first contribution is an End-to-End secure eHealth architecture that introduces an intelligent Patient Centric Agent. The Patient Centric Agent executing on dedicated hardware manages the storage and access of streams of sensors generated health data, into a customized Blockchain and other less secure repositories. As IoT devices cannot host Blockchain technology due to their limited memory, power, and computational resources, the Patient Centric Agent coordinates and communicates with a private customized Blockchain on behalf of the wearable devices. While the adoption of a Patient Centric Agent offers solutions for addressing continuous monitoring of patientsā€™ health, dealing with storage, data privacy and network security issues, the architecture is vulnerable to Denial of Services(DoS) and single point of failure attacks. To address this issue, we advance a second contribution; a decentralised eHealth system in which the Patient Centric Agent is replicated at three levels: Sensing Layer, NEAR Processing Layer and FAR Processing Layer. The functionalities of the Patient Centric Agent are customized to manage the tasks of the three levels. Simulations confirm protection of the architecture against DoS attacks. Few patients require all their health data to be stored in Blockchain repositories but instead need to select an appropriate storage medium for each chunk of data by matching their personal needs and preferences with features of candidate storage mediums. Motivated by this context, we advance third contribution; a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The mapping between health data features and characteristics of each repository is learned using machine learning. The Blockchainā€™s capacity to make transactions and store records without central oversight enables its application for IoT networks outside health such as underwater IoT networks where the unattended nature of the nodes threatens their security and privacy. However, underwater IoT differs from ground IoT as acoustics signals are the communication media leading to high propagation delays, high error rates exacerbated by turbulent water currents. Our fourth contribution is a customized Blockchain leveraged framework with the model of Patient-Centric Agent renamed as Smart Agent for securely monitoring underwater IoT. Finally, the smart Agent has been investigated in developing an IoT smart home or cities monitoring framework. The key algorithms underpinning to each contribution have been implemented and analysed using simulators.Doctor of Philosoph

    Towards a Framework for Evaluation of Blockchain Implementations

    Get PDF
    Organizations appear to implement blockchain solutions based on fear of missing out instead of a clear understanding of blockchain usefulness. Actually, ninety percent of current blockchain projects do not need a blockchain to meet their requirements. Therefore, we employ a Design Science Research approach to develop a framework for evaluation of blockchain implementations. The framework incorporates common factors of blockchain decisions, including blockchain innovation, blockchain design, inter-organizational integration, and implementation environment. We contribute to the scientific literature by structuring previous research efforts in a four-step framework, which provides a fruitful ground for future conceptual and empirical studies. For practitioners, the framework is useful to identify blockchain projects that facilitate purposeful blockchain adoption
    • ā€¦
    corecore