6 research outputs found

    Addressing missing values in kernel-based multimodal biometric fusion using neutral point substitution

    Get PDF
    In multimodal biometric information fusion, it is common to encounter missing modalities in which matching cannot be performed. As a result, at the match score level, this implies that scores will be missing. We address the multimodal fusion problem involving missing modalities (scores) using support vector machines with the Neutral Point Substitution (NPS) method. The approach starts by processing each modality using a kernel. When a modality is missing, at the kernel level, the missing modality is substituted by one that is unbiased with regards to the classification, called a neutral point. Critically, unlike conventional missing-data substitution methods, explicit calculation of neutral points may be omitted by virtue of their implicit incorporation within the SVM training framework. Experiments based on the publicly available Biosecure DS2 multimodal (scores) data set shows that the SVM-NPS approach achieves very good generalization performance compared to the sum rule fusion, especially with severe missing modalities

    Addressing missing values in kernel-based multimodal biometric fusion using neutral point substitution

    Get PDF
    In multimodal biometric information fusion, it is common to encounter missing modalities in which matching cannot be performed. As a result, at the match score level, this implies that scores will be missing. We address the multimodal fusion problem involving missing modalities (scores) using support vector machines with the Neutral Point Substitution (NPS) method. The approach starts by processing each modality using a kernel. When a modality is missing, at the kernel level, the missing modality is substituted by one that is unbiased with regards to the classification, called a neutral point. Critically, unlike conventional missing-data substitution methods, explicit calculation of neutral points may be omitted by virtue of their implicit incorporation within the SVM training framework. Experiments based on the publicly available Biosecure DS2 multimodal (scores) data set shows that the SVM-NPS approach achieves very good generalization performance compared to the sum rule fusion, especially with severe missing modalities

    A Modified Neutral Point Method for Kernel-Based Fusion of Pattern-Recognition Modalities with Incomplete Data Sets

    Get PDF
    It is commonly the case in multi-modal pattern recognition that certain modality-specific object features are missing in the training set. We address here the missing data problem for kernel-based Support Vector Machines, in which each modality is represented by the respective kernel matrix over the set of training objects, such that the omission of a modality for some object manifests itself as a blank in the modality-specific kernel matrix at the relevant position. We propose to fill the blank positions in the collection of training kernel matrices via a variant of the Neutral Point Substitution (NPS) method, where the term ”neutral point” stands for the locus of points defined by the ”neutral hyperplane” in the hypothetical linear space produced by the respective kernel. The current method crucially differs from the previously developed neutral point approach in that it is capable of treating missing data in the training set on the same basis as missing data in the test set. It is therefore of potentially much wider applicability. We evaluate the method on the Biosecure DS2 data set

    Addressing Missing Values in Kernel-based Multimodal Biometric Fusion using Neutral Point Substitution

    No full text
    In multimodal biometric information fusion, it is common to encounter missing modalities in which matching cannot be performed. As a result, at the match score level, this implies that scores will be missing. We address the multimodal fusion problem involving missing modalities (scores) using support vector machines (SVMs) with the neutral point substitution (NPS) method. The approach starts by processing each modality using a kernel. When a modality is missing, at the kernel level, the missing modality is substituted by one that is unbiased with regards to the classification, called a neutral point. Critically, unlike conventional missing-data substitution methods, explicit calculation of neutral points may be omitted by virtue of their implicit incorporation within the SVM training framework. Experiments based on the publicly available Biosecure DS2 multimodal (scores) data set show that the SVM-NPS approach achieves very good generalization performance compared to the sum rule fusion, especially with severe missing modalities

    IDレス生体認証における安全性と利便性の最適化に関する研究

    Get PDF
    学位の種別:課程博士University of Tokyo(東京大学
    corecore